Resolução de Exercícios Módulo 2 Fernando de Azevedo Ribeiro Saab

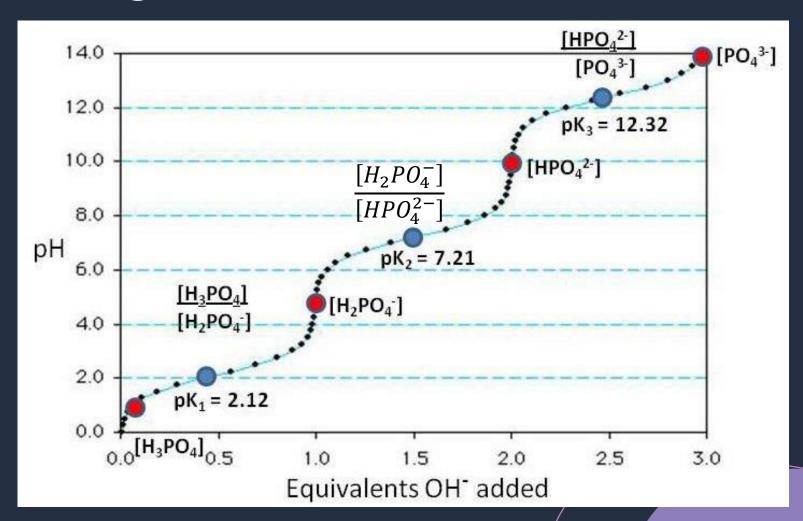
• Ácidos de Brønsted: Doadores de Prótons.

Exemplos:

- Ácido Clorídrico (HCL + H₂O → H₃O⁺ + Cl⁻)
- Ácido Acético (CH₃COOH + H₂O → H₃O⁺ + CH₃COO⁻)
- Bases de Brønsted: Aceptores de Prótons.

Exemplos:

- Amônia (NH₃ + H⁺ \rightarrow NH₄⁺)
- Hidrogenofosfato (HPO₄²⁻ + H⁺ \rightarrow H₂PO₄-)


• Ácidos fortes: Dissociação completa.

$$HCI/HNO_3 \rightarrow H^+ + CI^-/NO_3^-$$

0.1M \rightarrow 0.1M + 0.1M

Logo,
$$[H^+] = 0.1M = 10^{-1}M$$
, $\therefore pH = 1$

$$H_2S \rightarrow K_a = 1x10^{-7} = [H^+][HS^-] / [H_2S]$$

Como $[H_2S] \rightarrow 1x [H^+] + 1x [HS^-] temos que$
 $[H^+] = [HS^-]$
Logo $[H^+]^2 / [H_2S] = 1x10^{-7} = [H^+]^2 / 0.1 \rightarrow [H^+] = 10^{-4}$
 $pH = -log [H^+] = 4$

CH₃COOH \rightarrow K_a= 2x10⁻⁵ = [H⁺][CH₃COO⁻] / [CH₃COOH] Como [CH₃COOH] \rightarrow 1x [H⁺] + 1x [CH₃COO⁻] temos que [H⁺] = [CH₃COO⁻] Logo [H⁺]² / [CH₃COOH] = 2x10⁻⁵ = [H⁺]² / 0.1 \rightarrow [H⁺] = 1,4142x10⁻³ pH = -log [H⁺] = 2,84948

- NaOH é uma base forte, e se dissocia completamente. Não forma, portanto, sistema tampão.
- Ácido acético tem pKa = 4.76, o que significa que não formaria sistema tampão com pH = 7
- O Ácido Fosfórico apresenta pKa2=7.21, no espectro de -1~+1 do pH desejado. Assim, este será escolhido.

•
$$pH = pK_a + log \frac{[A^-]}{[AH]}$$

•
$$7 = 7.21 + log \frac{[A^-]}{[AH]}$$

•
$$log \frac{[A^-]}{[AH]} = -0.21$$

•
$$\frac{[HPO_4^{2-}]}{[H_2PO_4^{-}]} = 10^{-0.21}$$
 :: $\frac{[HPO_4^{2-}]}{[H_2PO_4^{-}]} = 0.616595$