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1 Lorentz transformations for classical fields
The Lorentz transformations are the linear global transformations (u, v = 0,1,2,3)
ZC =N or & =N:& (1.1)
that leave invariant the quadratic form
ds® = dz®® — da'’ — dz®® — da®’ = Nwda” da” N = diag. (1,—1,—1,—-1) (1.2)

It then follows that A has to satisfy

Mo N = T or ATpA=n (1.3)
We also have that
) ox’ 0 ) o )
- - A_ly — A_l —_— 14
da" Oz Dav nY v or o 9z i)

Among the Lorentz transformations we have the spatial rotations and the Lorentz boosts.
The rotations on the planes (1, 2), (2, 3), and (3, 1), are respectively (0 < 6 < 27)

1 0 0 0
0 cosf@ sinf O
A (Ri) = 0 —sinf cosf 0 (1.5)
0 0 0 1
10 0 0
01 0 0
A (Bas) = 0 0 cosf sinf (1.6)
0 0 —sinf cosf
1 0 0 0
0 cosf 0—siné
0 sinf 0 cos 0
The Lorentz boosts on the planes (0, ¢), 7 =1,2,3, are (—o0 < a < 00)
coshao —sinha 0 0
—sinha  cosha 0 O
0 0 01
coshae 0 —sinha 0
0 1 0 0
A (Boz) = —sinha 0 cosha 0 (1.9)
0 0 0 1



cosha 0 0 —sinha
0 10 0
—sinha 0 0 cosha
with a being the rapidity
1
tanh o = - cosha = ——— sinha = v/fe (1.11)
c

V1 —0v2/c? /1 —0v2/c?

Note that the matrices A (R;;) e A (By;) are real, and that A (R;;) are orthogonal (AT (R;;) =
A~'(R;;)) and therefore are unitary (A'(R;;) = A~!(R;;)). However, the matrices A (By;)
are symmetric and so are neither orthogonal or unitary. Consequently, such a vector repre-
sentation, of dimension 4, of the Lorentz group is not unitary. That is a particular case of a
more general fact: any finite dimensional representation of a non-compact (infinite volume)
Lie group is necessarily non unitary. The unitary representations of the Lorentz group (and
also of the Poincaré group) are infinite dimensional.
For an infinitesimal rotation we shall write

Rij=1+i0¢ci Ji+ 0 (0?) (1.12)
and for an infinitesimal boost
By =1+iakK;+0 (o) (1.13)
We then have
000 0 0 0 00 00 0 0
1ooo o 0 0 0 1 00 —1 0
A =il g g o 1 |PARI=11 g o g o [ AB =1l g 1 ¢ o
001 0 0 -1 0 0 00 0 0
(1.14)
and
0100 0010 000 1
1000 0000 oo oo
AE) =il g oo [1AE)I=1 1 o g o |5 AE=E] 5 g ¢ g
0000 0000 1000
(1.15)

We then have the Lorentz algebra

[Ji, Jj] = igijk Jk
[Jiy Kj] = ieyn Ky (1.16)
[Ki, K;] = —iei i
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Note that )
ANV =21 A(N) =1 (1.25)

and so

1+2A(N;) and 1424 (N;) (1.26)
are projectors. In fact, if | v) is a given state of the representation, then the states
lv) = (1£2A (V) | v) |52y = (1£2A (N:)) | v) (1.27)
are eigenstates

A(N) o) = £ | vs) (W) 12s) == | o) (1.28)

Of course, we can not diagonalize (have eigenstates) of all N;’s and N;’s at the same time.
Usualy we diagonilize N3 and Nj.

1.1 The vector field A,

As an example take a vector field A, transforming as the derivative (see (1.4))

/ —1v / —1
AM:A MA,, or A=A -A (1.29)
Let us denote
Ay
Ay
A= A, (1.30)
As

We can construct the eigenstates of N3 and N3 by using the projectors. However, note that
A (N3) and A (Ng) mix the components Ay <> As, and A; <> As, but not otherwise. Then
we can split each eigenvector into two. So, we write

Ao
A= ﬁ; - w 11/2, 1/2>+(AIJ;72AZ) | —1/2, —1/2)
As
+ (A?’gAO) 11/2, —1/2>+(A3JQFA°) | —1/2,1/2) (1.31)
with
0 -1
1/2,1/2) = | ; /2, -1/2) = |
0 1
1 0
0 1
-1/2,1/2) = | | 12, -2 =] (1.32)
1 0




One can check that

A(N3)|51,52>251 |51,52> A(N3)|51,52>252|51,52> Sa::lil/Q
(1.33)
Therefore, A, transforms under the doublet of the SU(2) generated by N;, and also by the
doublet of the SU(2) generated by N;.
Note that under the SO(3) (or SU(2)) group of spatial rotations, generated by J; =
N; + N;, we have a triplet representation given by

) = 5112172

0) = & (1-1/2,1/2)+]1/2, ~1/2) (1.34)

1) = %|_1/2,_1/2> (1.35)
and a singlet given by

Oho =5 (1 =1/2, 1/2)~ [ 1/2, ~1/2)) (1.36)

Therefore, 3 degrees of freedom of A, correspond to a spin-one particle, and one degree of
freedom to a spin-zero particle. Indeed, we can write

Ao
A
A
As

A= = (A —id) [1)+ As |0) - (A +idy) | —1) + Ao |O)y  (137)

1.2 Other fields

We give here the representations of the Lorentz group under which some other fields trans-
form.

1. The first one is the real scalar field ¢ that transform under the scalar representations
of the two SU(2)’s generated by NN; and N;, which we denote (0, 0):

| ¢) =l 0)@ | 0) (1.38)

In the case of a complex scalar field ¢ = ¢ + i¢s, the real and imaginary parts of the
field transform under the scalar representation.

2. The spinors fields transform under the spinor representations of the Lorentz group.
In fact, the Weyl left and right spinors ¥, and g transform under the (1/2, 0) and
(0, 1/2) representations respectively, i.e.

| o) = £1/2)® | 0) | Yr) = 0)® | £1/2) (1.39)



So, each one has two independent components. The Dirac spinor transforms under the
(1/2,0) + (0, 1/2) representation, i.e.

| ) = £1/2)® | 0)+ | 0)® | £1/2) (1.40)
and so it has four independent components.

. As we have seem above the vector field A, transforms under the (1/2, 1/2) represen-
tation, i.e.

| A,) =] £1/2)® | £1/2) (1.41)
and so it has four independent components, and as representations of the rotation
subgroup SO(3) it has a spin 1 and a spin 0 components, i.e.

| A,) =| 0)+ | 0,£1) (1.42)

. The field tensor F),, or any other antisymmetric rank 2 tensor B, transform under
the (1, 0) + (0, 1) representation, i.e.

| B) =|0,£1)® | 0)+ | 0)® | 0, £1) (1.43)

and so it has 6 independent components. Its self-dual and anti-self-dual components
transform under the (1, 0) and (0, 1) respectively, i.e.

| B&) =10,£1)® | 0) | BL) =l 0@ 0,£1) (1.44)

with

1 i i
B/(Lzllj) = 5 (lrlup Nvo + §€uupa> B (145)
where 7, = diag. (1, —1, —1, —1) is the Minkowski metric and €,,,, is the totally
anti-symmetric tensor with €903 = 1.

. The metric field described by a symmetric matrix g, transforms under the represen-
tation (1, 1) + (0, 0) of the Lorentz group, i.e.

| ) = 0,£1)® | 0,£1)+ | 0)® | 0) (1.46)

and so it has 10 independent components. In terms of representations of the rotation
subgroup SO(3) it decomposes into a spin 2, a spin 1 and 2 spin 0 representations, i.e.

| gur) ==1 0,21, £2)4 | 0, £1)+ | 0)+ | 0) (1.47)

The particle associated to the graviton itself has spin 2 and so only 5 independent
components. The extra 5 degrees of freedom can be eliminated by the 5 Lorentz

covariant conditions
g, =0 g =0 (1.48)

) H



2 The Poincaré group

The Poincaré group is an extension of the Lorentz group by the addition of the space-time

translations
¥ = ANz¥ + o or r=A-z+a (2.49)

It can be realised in matrix notation as

z¥ a® 2
zV A al x!
? | = a? z? (2.50)
23 a’ x3
1 0 1 1

For infinitesimal translations we have
T,=1+eP,+0(c) (2.51)

The generators of infinitesimal translations being

1 0 0 0
0 0 0 1 0 0 0 0
Py = 0 P = 0 Py = 1 P; = 0
0 0 0 1

0 0 0 0 0 0 0 0

Adding a fifth row and column of zeros to the matrices (1.14) and (1.15) we get that

[Ji,Po]:O [Ji,Pj]:iéijkPk (2.52)
and
[K;, Po]=—i P [Ki,Pj]:—iéijPO (2.53)
In addition,
[P, P,]=0 (2.54)

So, the translations constitute an abelian invariant sub-algebra of the Poincaré Lie algebra,
and so the Poincaré algebra and the Poincaré group are not semisimple.
One can use a four dimensional notation and introduce the antisymmetric generators
M, as
nv

1

The commutation relations for the Lorentz group become
[ My, Mpo] = t0p Myuo — i0pp My — i Mo Mpup + 1 uo My, (2.56)
The commutation relations (2.52) and (2.53) for the Poincaré group become

[MMV7PP]:_inupPu+inupPp (257)

7



The Poicaré group has two Casimir operators. The first one in the square of momenta
P? = pju P* (2.58)

One can check that
|P*, M, |=|P?, P]=0 (2.59)

The other Casimir is less trivial and it is constructed form the so-called Pauli-Lubansky
vector

1

W, = 55/“4»0 Py MP? (2.60)

which satisfies
(M., W,]=—in,W,+in, W, (W,,P,]=0 (2.61)

The second Casimir operator is

W?=w,w# (2.62)

which satisfies
(W2, M| = [W?, B,] =0 (2.63)

The representations of the Poincaré group have studied by Eugene P. Wigner and fall
into three classes!:

1. P? =m? >0, (m? real and positive), and W? = —m? s (s + 1), where s is the spin and
s=0, % , 1, % , 2.... The representation is labelled by the mass m and the spin s, and
the states are labelled the third eigenvalues s3 of S35 component of the spin operator,
and s3 = —s, —s+1...s—1, s, and the continuous eigenvalues of P;. Massive particle

have therefore 2 s + 1 degrees of freedom.

2. P2 =0 and W? = 0. Since P, W* = 0, it follows that P, and W, are proportional,
with the constant of proportionality called helicity, and has values £s, where s is the
spin of the representation, and s =0, % s d 4 % , 2.... Therefore massless particles with
s # 0 have only 2 degrees of freedom. Note that

Pg—ﬁQ =0 — P02ﬁ2 — P0:€1|ﬁ| €1 = =*1
Woz—WQ = — WOZW2 — W0:€2|W| €9 = %1
P()Wo—ﬁ'W = — ﬁW:€1€2|ﬁ||W| —7 C080:€1€2:ﬂ:1

So
W:)\ﬁ — W0:€1€2|)\|P0 (264)
and

P-W=AP>=|P||W|cosO=|A| PPcosd — A=e16 |A| — Wyo=2APR

'Eugene P. Wigner, Reviews of Modern Physics, vol. 29, n. 3, 255 (1957)



So
W,=AP, (2.65)

But

1 .. P =
WO= S PMy = P-J= AP =i [A|| P| » A=e (2.66)

) -

. P? =0 but the spin is continuous. The length of W, is minus the square of a positive
number. Such a representation describes a massless particle with an infinite number of
polarization states labeled by a continuous variable. A s far we know it is not realisable
in Nature.



