Lista de exercícios - Equilíbrio de precipitação e solubilidade

Solubilidade

- 1) Qual a solubilidade e a concentração dos íons em solução proveniente dos sais pouco solúveis abaixo: (em parêntese o valor de Kps) desconsidere os equilíbrios ácido-base.
- a) AgBr (5.3×10^{-13}) b) Ag₂CO₃ (8.2×10^{-12}) c) Ag₂CrO₄ (1.1×10^{-12}) d) Ba(OH)₂ (5.0×10^{-3}) e) Bi(OH)₃ (3.2×10^{-32}) f) Pb₃(PO₄)₂ (7.9×10^{-43})

Efeito do íon comum

- 2) Calcule a concentração dos íons em solução com a adição de 0,01 mol L⁻¹ de Ag⁺ e os sais abaixo:
- a) AgBr b) Ag₂CrO₄

Efeito do pH

3) Calcule a solubilidade do $Bi(OH)_3$ em uma solução com pH = 7.

Efeito da força iônica

4) Qual a solubilidade de AgBr em uma solução contendo 0,01; 0,1 e 0,5 mol L^{-1} de NaNO₃? $Di_{Ag} = 2,5 \times 10^{-8}$; $di_{Br} = 3,0 \times 10^{-8}$

Precipitação

5) Em uma solução a $[Ag^+] = 2.3 \times 10^{-5} \text{ mol L}^{-1}$ e a de $[Br^-] = 1.8 \times 10^{-3} \text{ mol L}^{-1}$. Irá ocorrer a precipitação de AgBr? Se essa solução for diluída 1000 vezes qual a concentração dos íons? Existe precipitado?

Precipitação seletiva

6) Em uma mistura de íons conforme apresentado abaixo, quais sais iriam precipitar primeiro? Utilize os dados do exercício 1. Bi³⁺, Ba²⁺, Pb²⁺, OH⁻ e PO₄³⁻.

Respostas:

- The spost is a series of the series of the
- 2) a) $[Ag^{+}]\approx 0.01 \text{ mol } I^{-1}, [Br^{-}]=5.30\times 10^{-11} \text{ mol } I^{-1}; b) [Ag^{+}]\approx 0.01 \text{ mol } I^{-1}, [CrO_{4}^{2-}]=1.10\times 10^{-8} \text{ mol } I^{-1}.$
- 3) $[Bi^{3+}] = 3.2x10^{-11} \text{ mol } I^{-1}; [OH] \approx 1.00x10^{-7} \text{ mol } I^{-1}$
- 4) a) $s = 8.1 \times 10^{-7} \text{ mol } \Gamma^{-1}$; b) $s = 9.70 \times 10^{-7} \text{ mol } \Gamma^{-1}$; c) $1.21 \times 10^{-6} \text{ mol } \Gamma^{-1}$.
- 5) sim, $[Ag^+][Br^-] > kps$; após diluição $[Ag^+] = 2.3x10^{-8}$ mol I^{-1} , $[Br^-] = 1.8x10^{-6}$ mol I^{-1} , não existe precipitado.
- 6) O $Bi(OH)_3$ e o $Pb_3(PO_4)_2$ serão os primeiros a precipitarem, simultaneamente, pois não existe íon comum ao dois sais, após precipitar todo o $Bi(OH)_3$ que irá começar a precipitar o $Ba(OH)_2$ por causa da constante de estabilidade menor.

<u>Lista de exercícios – Complexação</u>

Questões teóricas

- 1) O que é um complexo?
- 2) O que são números de coordenação?
- 3) O que é, e qual a influência da hibridização na estrutura química dos complexos?
- 4) O que é um quelato?
- 5) Por que o EDTA sofre influência do pH da solução?
- 6) O que define a afinidade de complexação?
- 7) Por que a complexação de elementos tóxicos, como Al3+, Cd2+ são desejáveis?

Para os exercícios abaixo utilizem os dados da apostila pág. 105 e 106.

- 1) Qual o valor da constante de estabilidade do quelato Cu²⁺-EDTA, Fe³⁺-EDTA e Ba²⁺-EDTA?
- 2) Em uma solução com pH 5,0 qual a concentração da espécie Y⁴⁻ em uma solução de EDTA 0.2 mol L⁻¹?
- 3) Em uma solução com pH 3,0 qual a porcentagem de Cu^{2+} iônico (livre) em uma solução com concentrações iniciais de 0,2 mol L^{-1} do sal dissódico de EDTA (Na_2EDTA) e 0,1 mol L^{-1} de Cu^{2+} .
- 4) Em uma solução pH 4, contendo 0,05 mol L⁻¹ de Fe³⁺ e Ba²⁺, qual a porcentagem de íons Fe²⁺ e Ba²⁺ complexado, sabendo que a concentração inicial de Na₂EDTA é de 0,2 mol L⁻¹. Qual dos dois íons irá complexar primeiro?

Respostas:

1) Composto químico formado pela ligação de coordenação de um metal de transição e ligantes doadores de pares de elétrons. 2) É o número de pares de elétrons que podem ser compartilhados pelo íon metálico. 3) São rearranjos dos orbitais moleculares, visando a minimização da energia de distribuição dos elétrons. A hibridização define qual o número de coordenação, conseqüentemente o arranjo espacial, ex. tetraédrico, linear, etc. 4) É um complexo formado com um ligante polidentado. 5) Porque seu comportamento é de um ácido poliprótico. 6) Principalmente o íon metálico e o grupo ligante. 7) Porque torna estes elementos indisponíveis.

- 1) 6,31x10¹⁸; 1,26x10²⁵; 5,75x10⁷
- 2) 4,95x10⁻⁸
- 3) 0% (todo o cobre está complexado)
- 4) 100% do Fe³⁺ está complexado, 2,73% do Ba²⁺ está complexado. O ferro complexa primeiro porque sua afinidade com o EDTA é maior, pode ser comprovado pelo elevado valor da constante de estabilidade.