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Abstract
Sirtuins (SIRTs) are NAD+-dependent histone deacetylases and play a role in
virtually all cell biological processes. As SIRTs functions vary according to their
subtypes, they can either activate or inhibit signaling pathways upon different
conditions or tissues. Recent studies have focused on metabolic effects performed
by SIRTs in several cell types since specific metabolic pathways (e.g., aerobic
glycolysis, oxidative phosphorylation, β-oxidation, glutaminolysis) are used to
determine the cell fate. However, few efforts have been made to understand the
role of SIRTs on B lymphocytes metabolism and function. These cells are
associated with humoral immune responses by secreting larger amounts of
antibodies after differentiating into antibody-secreting cells. Besides, both the
SIRTs and B lymphocytes are potential targets to treat several immune-mediated
disorders, including cancer. Here, we provide an outlook of recent studies
regarding the role of SIRTs in general cellular metabolism and B lymphocytes
functions, pointing out the future perspectives of this field.

Key words: B cells; Metabolic sensors; Histone deacetylases; Cancer
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Core tip: Current studies have focused on understanding which intracellular molecules
coordinate the metabolic flux within the cells. In addition to metabolism, sirtuins play a
role in virtually all cell biological processes, but they have not been properly described
in B lymphocytes function and metabolism, despite the importance of these immune
cells in health and disease. Here we discuss studies that associate sirtuins and B
lymphocytes, highlight the gaps found in the literature and point out the future research
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INTRODUCTION
Over the past decade, studies have focused on understanding which intracellular
molecules coordinate the metabolic flux within the cells, mainly those belonging to
the immune system[1-3]. Under activation, immune cells suddenly shift their metabolic
profile  to  achieve  their  cell  fates.  These  changes  provide  sufficient  energy  and
generate a diversity of metabolic intermediates to allow rapid proliferation, perform
specific functions and thus successfully combat the inflammatory insult[4].  Hence,
immune cells are metabolically active populations which quickly respond to external
signals (cytokines, chemokines, hormones, growth factors) to meet their bioenergetic
demand.

However,  the  role  of  the  metabolic  sensors  has  been evaluated in  only  a  few
immune  cell  types,  such  as  T  cells,  macrophages  and  dendritic  cells[1,2].  The  B
lymphocytes are the main components of humoral responses, responding to both
specific and non-specific antigens, producing antibodies after differentiation into
plasmablasts/plasma  cells  [antibody-secreting  cells  (ASCs)],  and  generating
immunological memory after antigen re-exposure[5].  The functional diversity of B
lymphocytes (protection, regulation, effector function, memory) makes these cells
essential during immune responses[6]. Thus, any changes in B cell development or
function is sufficient to develop several diseases (immunodeficiency, autoimmunity,
cancer). Despite their great importance in immune responses, the means by which the
metabolic sensors act on the development and function of B lymphocytes has been
sparsely evaluated[7].

The  molecular  sensors  have  evolutionarily  developed  within  the  cells.  They
converge a plethora of environmental signals that induce abrupt metabolic changes,
leading the cells to achieve different fates (e.g.,  differentiation, activation, anergy,
autophagy  or  cell  death)[3].  The  most  studied  metabolic  sensors  include  the
mammalian  (or  mechanistic)  target  of  rapamycin  complex  1  (mTORC1),  AMP-
activated protein kinase (AMPK), hypoxia-inducible factor 1-alpha (HIF-1α), c-Myc
protein, peroxisome proliferator-activated receptors (PPARs) and sterol regulatory
element-binding proteins  (SREBPs)[3].  Recently,  another  protein  family  has  been
pointed out as an important metabolic sensor, the sirtuins (SIRTs). These nicotinamide
adenine dinucleotide (NAD+)-dependent deacetylases or adenosine diphosphate-
ribosyltransferases  are  not  only  related  to  cell  metabolism,  but  also  to  cell
proliferation,  survival,  senescence,  stress,  gene  stability,  ribosomal  DNA
recombination and epigenetic regulations[8]. The wide range of SIRTs functions is due
to their variable distribution within cells (cytoplasm, nucleus, and mitochondria) and
highlights the importance of these proteins in cell biology. Here we briefly describe
the  SIRTs  structure,  distribution  and  functions,  outline  their  role  on  general
metabolism  aspects,  characterize  the  origin  and  development  of  B  lymphocyte
subtypes, and provide an outlook of recent studies regarding the role of SIRTs on
metabolism, growth and function of B lymphocytes, pointing out the gaps that need
to be filled in the next few years.

SIRTUINS
Initially identified in Saccharomyces cerevisiae as lifespan yeast proteins[9], it is now
known that SIRTs constitute a highly conserved protein family among bacteria, plants
and mammals[10,11]. The founding member of this family was discovered through a
spontaneous  mutation  that  caused  sterility  in  yeast.  The  mutation  reduced  the
transcription of the silent mating-type loci HML and HMR, later called as Mating-type
Regulator  1  (MAR1)  and currently  named as  Silencing  Information  Regulator  2
(SIR2)[12]. Twelve years later, it was identified that the SIR2-induced silencing of the
mating-type loci in yeasts was associated with low levels of histone acetylation at the
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N-terminal  lysine  residues  of  H4  histones[13].  Consistent  with  this  finding,  the
overexpression  of  SIR2  promoted  significant  histone  hypoacetylation  and
consequently extended yeast lifespan[14]. Thus, the SIRs (or SIRTs in humans/mice)
were first classified as class III histone deacetylases.

The SIRTs activity is controlled by the intracellular NAD+/NADH ratio,  being
activated when NAD+  levels  are  increased[15,16].  SIRTs catalyze the acetyl  groups
removal of acetylated lysine-containing proteins to generate a deacetylated protein,
free nicotinamide and a unique acetyl-ADP-ribose (O-ADP-ribose) metabolite, which
is formed by the transfer of the acetyl group into the ADP-ribose fraction of NAD+[17,18].

Although SIRTs were originally identified as histone lysine deacetylases, several
other biological  processes over numerous non-histone substrates have also been
described. Hence, some SIRTs subtypes may play roles as deacetylase, desuccinylase,
demaloynylase, deglutarylase, long-chain deacylase, lipoamidase or ADP-ribosyl
transferase enzymes[19,20]. It has also been shown that SIRT isotypes display different
specificities for ε-N-acyllysine post-translational modifications (PTM), an essential
epigenetical modification process. Moreover, SIRTs affinities for various substrates
still need to be investigated[21,22]. It is also important to emphasize that all enzymatic
activity performed by SIRTs are dependent on the NAD+ availability, thus reflecting
the  cellular  metabolic  status.  Consequently,  SIRTs  have  also  been  classified  as
metabolic sensors.

SIRTs  have  a  conserved  catalytic  core  formed  by  two  domains  which  are
responsible for catalyzing the transference of an acetyl group from a protein to a
NAD+ molecule. One domain is a large and well-conserved Rossman-fold domain,
characteristic of NAD+/NADH binding proteins, which accommodates NAD+[23,24].
The  other  domain  is  smaller,  less  conserved  and  contains  a  zinc  binding  site.
Although zinc does not actively participate in the deacetylation process, it plays a role
in  the  structural  integrity  required  for  the  reaction,  since  the  SIRT  deacetylase
function is abolished when the zinc binding site is mutated[25]. There are also four
polypeptide chains linking both larger and smaller domains, forming a cleft in which
the substrates, NAD+  and acetyl-lysine-containing protein bind on opposite sides.
These four connecting polypeptide chains vary in size and sequence according to
different SIRT isotypes, and such diversity may interfere with enzymatic activity,
protein location and substrate specificity[10,26].

In yeasts, four SIRs have been identified (SIR1-4), whereas in humans and mice
seven homologs (SIRT1-7) have been described[27]. SIRTs can be divided according to a
specific terminology based on their structural sequence: SIRT1, 2 and 3 (class I), SIRT4
(class II), SIRT5 (class III) and SIRT6 and 7 (class IV)[28]. Despite the high structural
similarity  among  the  SIRTs,  each  one  presents  unique  features  regarding  their
enzymatic activities, cellular sublocations, and molecular targets as shown in Table 1.
Therefore, the classification based on cellular sublocation has been most widely used,
being SIRT1, 3, 6 and 7 classified as nuclear (SIRT1 may also be found in cytoplasm),
SIRT2 as cytoplasmic (but it  can also be found in nucleus) and SIRT3, 4 and 5 as
mitochondrial proteins[29].

In summary,  SIRTs were formerly described as histone deacetylases,  but their
enzymatic capacity has now been extended to several other non-acetylated substrates.
Moreover, their ubiquitous distribution within cells and different tissues virtually
expands the function of SIRTs for all cellular biological activities. The dependency of
SIRTs on NAD+ make them critical metabolic sensors that control several metabolic
processes which will be described below.

SIRTUINS AND METABOLISM
As important metabolic sensors, studies have demonstrated that SIRTs modulate the
gene  expression,  PTMs,  and  activity  of  key  metabolic  enzymes  associated  to
glycolysis, oxidative phosphorylation (OXPHOS), glutamine metabolism, β-oxidation
and fatty acid synthesis (Figure 1)[30,31].

Glucose is the primary cell metabolic fuel and provides several intermediates to
other biosynthetic reactions in all mammalian cells, plants and many microorganisms.
Glucose is transported into cells via the high-affinity glucose transporters (GLUT)[32].
While adipose tissue, liver, and muscle depend on the GLUT4 isoform, both T and B
lymphocytes  rely  on GLUT1[33].  Moreover,  other  non-immune cells  may express
sodium-glucose linked transporters (SGLT), which import both glucose and sodium
ions into the cell[34]. The glucose may be addressed to several metabolic pathways
within a cell but is primarily destined for glycolysis.

Glycolysis is a cytosolic metabolic pathway in which glucose is converted into two
pyruvate molecules. The pyruvate can be either used to synthesize acetyl-CoA and
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Table 1  Sirtuins localization and function

Sirtuin Localization Enzymatic activity General functions References

SIRT1 Nucleus Cytoplasm Deacetylase Deacylase Metabolism Mitochondrial
biogenesis Cellular stress
Chromatin regulation Cell

differentiation

[30]

SIRT2 Cytoplasm Nucleus Deacetylase Demyristoylase
ADP-ribosylase Deacylase

Cell cycle Cell differentiation
Metabolism Tumor

suppression

[97]

SIRT3 Mitochondria Deacetylase Decrotonylase
Deacylase

Metabolism Mitochondrial
biogenesis Antioxidant

activity

[98,99]

SIRT4 Mitochondria ADP-ribosylase Lipoamidase
Deacetylase Deacylase

Tumor suppression
Metabolism Tumor

suppression

[100]

SIRT5 Mitochondria Desuccinylase Deacylase
Demalonylase Deglutarylase

Deacetylase

Metabolism
[101]

SIRT6 Nucleus Deacylase Deacetylase ADP-
ribosylase

DNA repair Metabolism
Inflammation

[102]

SIRT7 Nucleus Deacetylase Deacylase Ribosome biogenesis Tumor
promotion Metabolism

[103]

ADP: Adenine diphosphate; SIRT: Sirtuin.

fuel  the  tricarboxylic  acid  (TCA)  cycle  or  converted  into  lactate.  Since  lactate
production  usually  occurs  upon oxygen deprivation,  this  metabolic  pathway is
referred to as "lactic fermentation." Nevertheless, in B lymphocytes and other cells, the
lactate production can occur even in the presence of oxygen, and it is termed "aerobic
glycolysis"  or  Warburg effect[35].  For  each molecule  of  glucose  produced during
glycolysis, there is a net sum of two units of adenosine triphosphate (ATP), an energy
storing molecule[36]. As stated earlier, SIRTs play several roles in regulating glycolysis.
SIRT1, 3 and 6 have been shown to suppress glycolysis while enhancing β-oxidation.
SIRT1  activates  the  peroxisome proliferator-activated  receptor  γ  coactivator-1α
(PGC1-α)  and  inhibits  HIF1-α,  essential  inducers  of  OXPHOS/β-oxidation  and
glycolysis,  respectively.  Mice lacking SIRT3 increase the reactive oxygen species
(ROS) production, which in turn stabilizes HIF-1α inside the cell nucleus, enhancing
glycolysis[37].  SIRT3,  in  turn,  inhibits  superoxide dismutase  2  (SOD2)  enzyme to
suppress the ROS-mediated stabilization of HIF1-α. SIRT6 acts as a co-repressor of
HIF1-α and also inhibits c-Myc, another crucial glycolytic regulator which is also
associated with glutamine metabolism[37].  On the other hand, SIRT5 can increase
glycolysis  by  activating  the  glycolytic  enzyme  glyceraldehyde  3-phosphate
dehydrogenase (GAPDH) through demalonylation reactions[38].  Altogether,  these
results  show  that  several  SIRTs  control  positive  and  negatively  the  glycolysis.
However,  further  studies  are  needed  to  understand  why  similar  proteins  have
opposite or overlapped functions in regulating the glucose within cells.

One study showed that during the late acute inflammatory response, there is a
metabolic  shift  from glycolysis  towards OXPHOS in several  immune cells  types,
characterized  by  lower  expression  levels  of  GLUT1,  which  was  shown  to  be
dependent on SIRT1 and SIRT6[39]. Furthermore, knockdown of these proteins results
in a decreased GLUT1 expression in human monocytic cell lines activated with LPS,
indicating an essential metabolic role of SIRTs during inflammatory responses[39]. We
speculate that SIRTs, as regulators of glycolysis, might affect the GLUT1 expression
among immune cell subpopulations. However, this information is still understudied
and requires further investigation.

If the pyruvate is not converted into lactate, it can be oxidized into acetyl-CoA by
the pyruvate dehydrogenase (PDH) complex in the mitochondria, entering the TCA
cycle.  Acetyl-CoA combines with oxaloacetate to originate citrate and a series of
following reactions take place to give rise to important products: NADH and FADH2.

Most non-proliferating and terminally differentiated T cells (e.g., naïve and memory T
cells), as well as resting B lymphocytes, use the TCA cycle to generate NADH and
FADH2  coenzymes,which  transfer  electrons  to  fuel  OXPHOS[40].  The  OXPHOS
produces thirty six molecules of ATP per mol of glucose[41], and it is the most efficient
method for generating energy from different metabolic intermediates, such as glucose,
fatty acids or amino acids, although the slowest one[42].
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Figure 1

Figure 1  Sirtuins and metabolism. SIRTs are metabolic sensors that modulate a variety of metabolic pathways, including glycolysis (Warburg effect),
gluconeogenesis, fatty acid oxidation, glutaminolysis, TCA cycle and OXPHOS. SIRTs 1, 3 and 6 restrain the glycolytic pathway through HIF-1α inhibition or direct
effects. SIRT3 upregulates OXPHOS pathway by enhancing the activity of the mitochondrial complexes I, II and III and dampening ROS production. SIRT1 is also
able to increase the fatty acid oxidation by activating PPAR-α and PGC1-α, while SIRT3 upregulates the fatty acid oxidation upon caloric restriction conditions. SIRT2
induces gluconeogenesis. SIRT3 and 4 activates and inhibits, respectively, the glutaminolysis by regulating the GDH activity. SIRT5 increases glycolysis by increasing
the activity of the GAPDH enzyme. SIRT7 can also repress HIF-1α and therefore inhibit transcription of glycolytic genes. At last, SIRT1 performs a positive feedback
loop with AMPK, since AMPK rises NAD+ levels in cells, which in turn enhances SIRT1 activity and lastly leads to AMPK activation. AMPK suppresses glycolysis via
mTORC1 inhibition and promotes fatty acid oxidation. In the Figure, SIRTs are represented based on their functions only and not by localization. AMPK: AMP-
activated protein kinase; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; GDH: Glutamate dehydrogenase enzyme; HIF-1α: Hypoxia-inducible factor 1-alpha;
mTORC1: Target of rapamycin complex 1; NAD+: Nicotinamide adenine dinucleotide; OXPHOS: Oxidative phosphorylation; PGC1-α: Proliferator-activated receptor γ
coactivator-1α; PPAR-α: Peroxisome proliferator-activated receptor alpha; ROS: Reactive oxygen species; SIRTs: Sirtuins; TCA: Tricarboxylic acid.

It is described that SIRT3 deacetylates several enzymes related to the TCA cycle,
enhancing their activities. SIRT3 targets isocitrate dehydrogenase 2 (IDH), which
catalyzes the oxidative decarboxylation of isocitrate to 2-oxoglutarate, and acetyl-
coenzyme synthetase 2 that provides acetyl-CoA to the TCA in a PDH-independent
manner[40]. SIRT1 has shown to be an activator of acetyl-CoA synthetase 1, restoring
acetyl-CoA levels[43].

Fatty acids and glutamine also supply the TCA cycle and OXPHOS by additional
metabolic reactions such as β-oxidation and glutaminolysis, respectively[44]. As stated
above, SIRT6 was described as an important regulator of c-Myc activity. c-Myc has
been associated with glutamine metabolism by activating the glutaminase 1 (GLS1),
which converts  glutamine to  glutamate.  SIRT3,  in  turn,  increases  the  activity  of
glutamate  dehydrogenase  (GDH),  responsible  for  converting  glutamate  into  α-
ketoglutarate, while SIRT4 inhibits GDH activity[31]. SIRT4 acts as a tumor suppressor
protein, being able to inhibit mitochondrial glutamine metabolism by repressing GDH
activity (Figure 1).

Regarding β-oxidation, SIRT1 has been shown to increase this pathway activity by
activating both PPAR-α and PGC1α, thus promoting the expression of downstream
targeted genes which are related to increased use of lipids. At the same time, SIRT1
inhibits  lipid synthesis  through deacetylation of  SREBP-1c or  via  suppression of
PPAR-γ [45 ].  Upon  caloric  restriction,  SIRT3  activates  long-chain  Acyl-CoA
dehydrogenase (LCAD) and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2),
promoting β-oxidation and ketogenesis,  respectively.  Also,  SIRT3 also enhances
cellular respiration by enabling mitochondrial complexes I, II and III and decreasing
ROS production, given it stimulates the activity of the SOD2. SIRT4 dampens the
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transcription of genes underlying β-oxidation, such as PPAR-α, whereas SIRT6 is
thought to repress the transcription of fatty-acid synthesis-related genes[45].

Interestingly, SIRTs can play their role along with another critical metabolic sensor,
the AMPK. AMPK is usually activated by increasing intracellular calcium influxes or
AMP/ATP ratio in the cells. This kinase inhibits the activity of mTOR, a member of
the PI3Ks protein kinase family which plays a central role in upregulating glycolysis
as  well  as  protein  synthesis,  energy  balance,  cell  proliferation  and  survival[3].
Therefore, AMPK inhibits glycolysis and promotes both β-oxidation and OXPHOS in
several cell  types[3,46,47].  AMPK can also act on metabolic reprogramming through
transcriptional and PTM as observed in SIRTs[48,49]. Studies show that SIRT1 forms a
positive feedback loop with AMPK: AMPK increases NAD+ levels in cells, which in
turn enhances SIRT1 activity and lastly leads to AMPK activation[50].

Although the role of SIRT2 in metabolism has not been appropriately investigated,
it induces gluconeogenesis in the adipose tissue via PGC1α and FOXO1 activation[51,52].
FOXO1 is a vital coordinator of longevity, tumor suppression, metabolism and cell
growth[53]. Gluconeogenesis is a metabolic pathway in which glucose is synthesized
from non-carbohydrate precursors (e.g., lactate, glycerol and some amino acids) being
activated  in  some  specialized  tissues  under  glucose  deprivation  states.
Gluconeogenesis has not been described in immune cells, but a recent study showed
that memory T cells upregulate the gluconeogenesis-related enzyme Pck-1 to increase
gluconeogenesis activity[54]. SIRT7 expression and function in immune cells have not
been well  characterized.  However,  SIRT7 regulates low glucose-induced cellular
stress  by  uncoupling  rRNA synthesis  and enabling  energy  storage  in  HEK293T
cells[55].  Also,  SIRT7 can also repress  HIF-1α (Figure 1)  and therefore  inhibit  the
transcription of glycolytic genes in many cell lineages such as Hep3B, HeLa, HEK293T
and MDA-MB-231[55].

Briefly, SIRTs may either activate or inhibit metabolic pathways depending on their
isotypes, localization and cellular activation status. Moreover, SIRT1 is the most well-
described isotype and regulates several metabolic pathways, whereas SIRT2 and 7
lack metabolic descriptions in immune cells.

B LYMPHOCYTES
B lymphocytes have a pivotal role in adaptive immune responses through cytokine
secretion, antigen presentation to T cells, as well as by their unique ability to produce
antibodies after differentiating into ASCs[56-58].

Early in life, B lymphocytes are produced in the fetal liver, and after birth, they are
generated in the bone marrow (BM) throughout life[5] (Figure 2). In addition, current
studies have found that B lymphocytes can also develop from the gut shortly after
birth and the resident microbiota plays a crucial role in increasing the antigen receptor
repertoire of these cells[59].

The first B-cell lineage-committed progenitors are derived from hematopoietic stem
cells and known as pre-pro B lymphocytes. These cells express B lymphocyte-specific
surface proteins such as B220 (or CD45R)[60].  Subsequently,  these cells undergo µ
heavy chain somatic recombination through rearrangement of V(D)J gene segments to
assembly the pre-BCR, becoming pro-B lymphocytes[61].  In this stage, cells start to
express the CD19 coreceptor under the control of the transcription factor Pax5[62]. The
pre-BCR is a transitory complex consisting of a successful V(D)J recombination, a
surrogate light chain and two intracellular signaling proteins (Igα and Igβ); pre-BCR
is expressed in the surface of pre-B lymphocytes[63,64]. If the pre-BCR results from a
nonproductive V(D)J recombination process, then the pre-B lymphocyte development
stops and the cell undergoes apoptosis[65]. The correct signaling through the pre-BCR
promotes intracellular changes that block second allele recombination, in a process
termed as allelic exclusion[66]. Furthermore, the proper BCR signaling induces somatic
recombination of  κ  or  λ  light  chains  through the rearrangement  of  VJ  segments,
allowing the BCR assembly[64,65]. Upon reaching the immature stage, B lymphocytes
express  a  functional  BCR  as  a  surface  IgM  protein.  Finally,  the  immature  B
lymphocytes leave the BM towards the spleen where further developmental steps
occur, by the time they are ultimately differentiating into follicular (FO) or marginal
zone (MZ) B lymphocytes.

Before B lymphocytes differentiate into FO or MZ B cells they go through three
transitional stages (T1, T2 and T3)[67], which are quite different between human and
mouse[68]. T1 and T2 B lymphocytes give rise to mature B lymphocytes, whereas the
development and function of T3 cells remains unclear[69]. The role of these transitional
B lymphocytes  is  to  allow the second round of  regulatory checkpoint  aiming to
decrease potential cell autoreactivity.
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Figure 2

Figure 2  Sirtuins and B lymphocytes. B lymphocyte development begins in the fetal liver or bone marrow and continues in the periphery. B-1 and B-2 B
lymphocytes differentiate into ASCs by distinct pathways. The origin of Breg cells is still not precise. Despite the role of SIRTs in healthy B lymphocytes have not been
adequately investigated, some studies have described some functions in a disease context. SIRT1 and 2 inhibition are essential to treat CLL, although other studies
show that SIRT1 is important at some point of ASCs differentiation. Moreover, since AMPK-mTORC1 axis regulates GC reactions and antibody production, it suggests
that SIRT1 (or SIRT3/4) also coordinate this process. Glutaminolysis was shown to be an essential metabolic pathway to enhance proliferation of Burkitt lymphoma-
derived B lymphocytes. Thus, SIRT3 and 4 might play roles in the pathogenesis by activating or inhibiting, respectively, the GDH activity. Additionally, HIF-1α was
shown to be essential to IL-10-producing Bregs development, suggesting that SIRT1/3/6 are downregulated in these populations. The question marks indicate
speculative roles of SIRTs. AMPK: AMP-activated protein kinase; ASCs: Antibody-secreting cells; B: B lymphocytes; BCR: B cell receptor; Breg: B regulatory
lymphocytes; CLL: Chronic lymphocytic leukemia; CLP: Common lymphoid progenitor; FO B: Follicular B lymphocytes; GC: Germinal center; GDH: Glutamate
dehydrogenase enzyme; HIF-1α: Hypoxia-inducible factor 1-alpha; HSC: Hematopoietic stem-cell; mTORC1: Target of rapamycin complex 1; MZ: Marginal zone;
SIRTs: Sirtuins; T1/T2/T3: Transitional stages 1, 2 and 3, respectively, of B lymphocytes.

Although  MZ  B  lymphocytes  are  usually  associated  to  T-independent  B
lymphocyte responses, one study showed that they could respond to T lymphocytes,
differentiate into germinal center (GC) cells and subsequently in ASCs and memory B
lymphocytes[70]. However other studies are needed to confirm this observation.

FO  B  lymphocytes  can  recirculate  and  migrate  to  follicles  within  secondary
lymphoid  organs.  They  are  located  nearby  follicular  CD4+  T  cells,  allowing
bidirectional cooperation during T-dependent B lymphocytes responses. However,
FO B lymphocytes are also found within the BM in small clusters, where they respond
to bloodborne pathogens in a T-independent manner[71]. FO B lymphocytes are the
primary source of  memory B lymphocytes  and plasmablasts  that  can terminally
differentiate in long-lived plasma cells and synthesize large amounts of antibodies.

Another possible fate of immature B lymphocytes is to become B-1 cells, which are
able to self-renew in the periphery, populating the fluids from the pleural, peritoneal
and intestinal cavities[72,73].  These cells produce antibodies independently of T cell
assistance and are often referred to as innate mediators. An important role of B-1 cells
is  to  synthesize  polyspecific  natural  antibodies  (IgM and IgA),  which recognize
several carbohydrate residues and rapidly respond to mucosal pathogens[57,73].

Another emerging B lymphocyte population are the regulatory B cells (Bregs).
Similarly to the well-described regulatory T lymphocytes (Tregs), Bregs inherently
produce IL-10 to control inflammatory responses, but also TGF-β and IL-35[74,75]. In
addition, Bregs can induce apoptosis or anergy of T cells, suppress the differentiation
of monocytes and dendritic cells and cooperate with Treg differentiation[74]. The origin
of  these  cells  is  not  well  established,  although  it  is  known  that  conventional  B
lymphocytes can differentiate into Breg cells at all stages of development[76].

B  lymphocytes  are  associated  with  several  pathological  conditions,  such  as
autoimmunity,  non-autoimmune inflammatory diseases,  and cancer.  In Systemic
lupus erythematosus (SLE), for instance, larger amounts of autoantibodies able to
recognize nuclear proteins are produced and may accumulate as immune complexes
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in the joints, skin, kidney and serosal membranes, leading to a severe inflammatory
status[77]. Moreover, chronic lymphocytic leukemia (CLL), the most common form of
leukemia in  western countries,  is  a  type of  cancer  that  arises  from uncontrolled
proliferation of B lymphocytes in lymphoid and non-lymphoid organs[78].  CLL is
characterized by a poor outcome and reduced survival  rates among the affected
patients.

In summary, B lymphocytes are the powerhouses of humoral immune responses
given  their  ability  to  secrete  antibodies  capable  of  neutralizing  and opsonizing
pathogens. Besides, B lymphocytes undergo multiple developmental steps to generate
different subsets. Thus, given the complexity of B lymphocytes, it is reasonable to
assume that these cells cooperate in maintaining homeostasis and that any putative
changes in their function or maturation steps might contribute to the development of
several pathologies.

SIRTUINS, B LYMPHOCYTES, AND METABOLISM
Few studies have focused on understanding B lymphocyte metabolism compared to
other immune and non-immune cell types. It is described that in a resting state, B
lymphocytes  present  higher  rates  of  glycolysis  when compared to  T  cells;  upon
activation, they increase both glycolysis and OXPHOS at similar rates[32]. However,
only glycolysis  but  not  OXPHOS was shown to  be  essential  for  LPS-activated B
lymphocyte development, proliferation, and function[79]. When glycolysis is impaired
in vitro at distinct steps, the proliferation of stimulated B lymphocytes and antibody
secretion are strongly suppressed[32]. B lymphocytes lacking GLUT1 show significantly
IgM and IgG production impairment  in  immunization models[32].  In  addition to
glycolysis, fatty acids are also produced de novo to support synthesis and expansion of
membranes in plasma cells[80].  Concomitantly, fatty acids are essential to generate
energy via β-oxidation. Since antibodies are glycoproteins, the metabolism of amino
acids and glucose-derived intermediates are necessary during all antibody generation
process[81].

The  role  of  SIRTs  in  B  lymphocytes  has  been  described  under  pathological
conditions and lacks information on healthy B lymphocytes. Recent studies indicate
that SIRT1 regulates the immune response by delaying the onset of autoimmunity
since nuclear-reactive autoantibodies were found in the sera of  SIRT1-null  mice.
Moreover, these animals had deposits of immune complexes within the liver and the
kidneys, indicating an autoimmune-like condition due to the lack of SIRT1[82]. Since a
rapid  and  increased  glycolytic  activity  is  found  under  chronic  B  lymphocyte
Activating  Factor  (BAFF)-exposure  in  B  lymphocytes[32]  to  induce  experimental
autoimmunity, it is plausible to consider that SIRT1 counter-regulates the glucose
pathway in healthy B lymphocytes. However, it is still not a matter of investigation.

Another study showed that both SIRT1 and 2 contribute to CLL pathogenicity.
SIRT1 mRNA expression and protein levels were increased in B lymphocyte-derived
cell  lines  from human patients  with  CLL compared to  control  healthy  group[78].
Additionally,  pharmacological  inhibition of  both SIRT1 and 2  using EX-527 and
sirtinol,  respectively,  in  PBMC  cells  from  patients  with  CLL  resulted  in  dose-
dependent cytotoxicity, increased apoptosis rates and elevated mitochondrial ROS
production[78]. These results indicate SIRTs as potential targets for clinical trials in
patients affected by CLL and for other B lymphocyte-related conditions.

It  has also been described that SIRT3 expression is reduced in CLL, leading to
accumulation  of  ROS  and  induction  of  a  Warburg-like  metabolic  pathway  that
supports the uncontrolled proliferation of B lymphocytes[83]. However, the underlying
metabolic changes in these pathogenic B lymphocytes require further investigations.

Pan-histone-deacetylase inhibitors (HDACi) such as panobinostat have shown to be
capable of reducing autoreactive plasma cell counts and autoantibodies in a mouse
model for SLE[84]. However, immunological memory was not compromised after the
treatment,  given  that  the  level  of  circulating  memory  B  lymphocytes  remained
unaltered. Meanwhile, it is not possible to state whether SIRTs mediate these changes
or if other histone deacetylases are more relevant in this context.

Another study suggests that the microRNA 34a(miR34a)-SIRT1-p65 axis is crucial
for activating intestinal immune responses during chronic simian immunodeficiency
virus (SIV) infection in rhesus macaques. It was described that miR-34a upregulation
coupled with a downregulation of SIRT1 enhance the NF-κB activity in both IgA+ and
IgG+ intestinal plasma cells, contributing to B lymphocyte hyperresponsiveness in
chronic SIV-infected macaques[85].

The  glutamine  metabolism  has  been  shown  as  an  essential  regulator  of  B
lymphocyte  proliferation  and  survival  under  glucose  deprivation  and  hypoxia
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conditions  in  P493  cells,  a  B  lymphocyte-derived  cell  line  to  study  Burkitt
lymphoma[86].  Hypoxia is an essential feature found in tumor microenvironments.
Since  SIRT3  and  SIRT4  activates  and  inhibits,  respectively,  the  glutaminolysis
pathway, these proteins are potential targets for future studies focusing on glutamine
metabolism in normal or cancerous B lymphocytes. Interestingly, SIRT4 deletion in a
mouse model for Burkitt-lymphoma resulted in increased tumor proliferation and
mortality rates, indicating that SIRT4 might act as a tumor suppressor as described in
other cell types[87]. However, the association among B lymphocytes, metabolism and
SIRT3/4 remains to be clarified in the Burkitt-lymphoma context (Figure 2).

Breg metabolism characterization has not been described so far, although HIF-1α is
essential to IL-10-producing B lymphocytes development[88]. Nevertheless, it is well
established that Treg metabolism rely on mitochondrial OXPHOS[4]. SIRT1 has already
been associated with the induction of FoxP3+  Treg cells,  although it is still  under
investigation[89]. Moreover, AMPK has also been described as an important molecular
sensor to induce Treg differentiation[90]. Altogether, these results suggest that Breg and
Treg have different regulators since HIF-1α is pro-glycolytic (Figure 2).

Recent researches indicate that mTORC1 activity is essential for the GC reactions,
increasing the rate of somatic hypermutation and affinity maturation of isotype-
switched B lymphocytes[91]. However, AMPK has also shown to induce terminally
differentiated plasma cells and enhance antibody production[92], suggesting that SIRT1
might  be downregulated in GC B lymphocytes  and upregulated in plasma cells.
Nevertheless, underlying mechanisms describing how this putative metabolic shift
occurs  during  the  process  is  unknown.  Also,  future  studies  should  investigate
whether  SIRTs have distinct  roles  in  differentiating plasma cells  and memory B
lymphocytes during GC reactions.

Importantly, B lymphocytes play substantial roles in the pathogenesis of metabolic
(e.g.,  obesity,  cancer,  diabetes,  periodontal  disease)  and  non-metabolic  (SLE,
reumathoid  arthritis,  graft-verus-host  diseases,  HIV  infection)  conditions[93-103].
Therefore, future investigations on the impact of SIRTs in B lymphocytes metabolism
and  function  will  provide  potential  alternatives  on  treating  or  dampening  the
progression of a wide range of illnesses.

In summary, the role of SIRTs in B lymphocytes remains under investigation, and
the association with metabolic aspects is at the beginning of understanding. Further
studies  focusing  on  comprehension  of  SIRTs  functions  in  the  development  and
metabolism of B lymphocytes under homeostasis conditions must also be encouraged.

CONCLUSION
Altogether,  these  results  show  that  SIRTs  play  roles  in  virtually  all  biological
processes in cells but should be further evaluated in B lymphocytes since they are
related to several homeostatic and pathologic responses. Moreover, several SIRTs
isotypes have not been sufficiently investigated, and future studies are necessary to
achieve a broader and more complete understanding of their functions in the cell
metabolism. It is important to state that B lymphocytes have several cell subsets and
the assessments regarding the role  of  metabolic  sensors should be performed in
specific  B  lymphocyte  subpopulations.  Thus,  future  investigations  must  answer
whether or which SIRTs are important to each B lymphocyte subtype in both healthy
and  pathological  states.  The  better  comprehension  of  how  metabolic  sensors,
especially SIRTs, control the development,  metabolism, function, and lifespan of
immune cells is therefore essential and suggests they may be valuable and potential
pharmacological targets to treat several metabolic-related diseases.
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