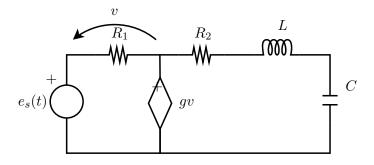
6^a Aula de Exercícios PSI3211: Circuitos Elétricos I

Monitores:

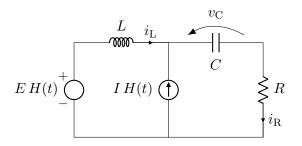
Daniel Gileo Tiglea (daniel.tiglea@usp.br) Felipe H. Mashiba (fhmashiba@usp.br)

Baseado nos slides dos ex-monitores Flávio R. M. Pavan e Fábio B. Ferreira; e baseada nas provas antigas

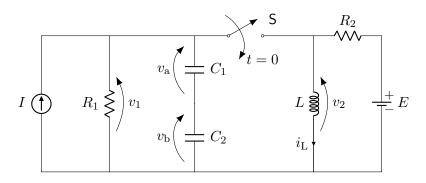

1° semestre de 2019

Tópicos abordados

Os exercícios desta aula abordam os seguintes tópicos da matéria:

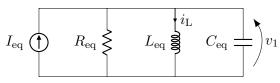

- Redes de 2^a Ordem:
 - Comportamento livre,
 - ► Resolução no domínio do tempo (tratamento generalizado),
 - ▶ Ressonância e índice de mérito.

Considere o circuito a seguir.


Escreva as expressões de α e ω_0 .

Considere o circuito da figura a seguir.

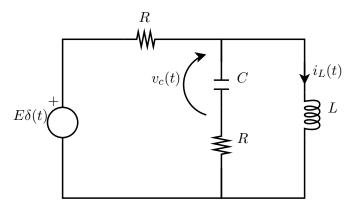
- (a) Escreva as expressões de α e ω_0 .
- (b) Com E= 10 V, I= 4 A, L= 2 H, C= 0,5 F, R= 4 Ω , $i_{\rm L}(0_-)=$ 1 A e $v_{\rm C}(0_-)=$ 0, calcule $\left.\frac{di_{\rm L}(t)}{dt}\right|_{t=0_+}$ e a componente permanente de $i_{\rm L}(t)$.
- (c) Nas mesmas condições do item (b), calcule a resposta completa $i_{\rm L}(t)$ para $t \ge 0$.


O circuito a seguir foi montado com os capacitores C_1 e C_2 inicialmente descarregados. A chave S permaneceu aberta por muito tempo e foi fechada em t=0.

(a) Escreva as expressões de $v_1(0_-)$, $v_{\rm a}(0_-)$, $v_{\rm b}(0_-)$, $i_{\rm L}(0_-)$ e $v_1(0_+)$ em função dos parâmetros do circuito, sendo E e I constantes.

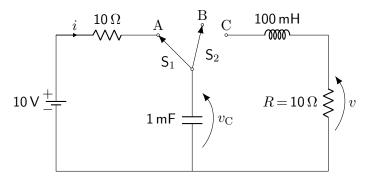
Exercício 3 (cont.)

(b) Com a chave S fechada, o circuito anterior é equivalente ao circuito da figura a seguir, para t>0.



Calcule os valores de $I_{\rm eq}$, $R_{\rm eq}$, $L_{\rm eq}$ e $C_{\rm eq}$ em função dos parâmetros do circuito original.

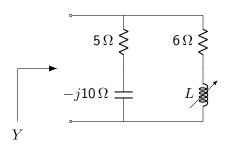
(c) Com $I=\frac{1}{6}$ mA, $R_1=6$ k Ω , L=62.5 H, $C_1=5$ μ F, $C_2=5$ μ F, $R_2=3$ k Ω e E=9 V, foram obtidos os seguintes valores para o circuito original: $v_1(0_-)=1$ V e $i_{\rm L}(0_-)=3$ mA.


Obtenha os parâmetros α e ω_0 do circuito. Caracterize seu comportamento livre e forneça a expressão de $v_1(t)$ para $t \geq 0$, substituindo os valores numéricos correspondentes.

Considere o circuito a seguir.

Obtenha as expressões de $v_c(0_+)$ e $i_L(0_+)$ em função dos parâmetros do circuito, das condições iniciais nulas (em $t=0_-$) e da tensão impulsiva $E\delta(t)$.

Considere o circuito a seguir. O capacitor está inicialmente descarregado e as chaves S_1 e S_2 são conectadas em A e B, respectivamente, no instante t=0.


- (a) Forneça a expressão de i(t) para t > 0.
- (b) Em $t=1\,\mathrm{s}$, as chaves S_1 e S_2 mudam respectivamente para B e C de forma abrupta. Forneça a expressão de v(t) para $t>1\,\mathrm{s}$.

Exercício 5 (cont.)

- (c) Qual é o índice de mérito Q_1 do circuito com as chaves S_1 em B e S_2 em C ? Se o valor de R fosse alterado para que o circuito tivesse amortecimento crítico, qual seria o novo valor Q_2 do índice de mérito?
- (d) Considere agora que a chave S_1 muda para a posição A e a chave S_2 permanece em C. Nesse caso, quanto vale a tensão v_C no capacitor para $t \to +\infty$?

A admitância do circuito a seguir, em $f=2\,\mathrm{kHz}$, vale

$$Y = \left(\frac{6}{36 + X_{\rm L}^2} + \frac{5}{136}\right) + j\left(\frac{10}{136} - \frac{X_{\rm L}}{36 + X_{\rm L}^2}\right), \text{ com } X_{\rm L} = 2\pi f L.$$

Quais são os valores de L para que a ressonância a fase nula ocorra em $f=2\,\mathrm{kHz}$?

Respostas

1.
$$\alpha = \frac{R_2}{2L}$$
 e $\omega_0 = \frac{1}{\sqrt{LC}}$.

2. (a)
$$\alpha = \frac{R}{2L} e \omega_0 = \frac{1}{\sqrt{LC}}$$
.

(b)
$$\left. \frac{di_{\rm L}(t)}{dt} \right|_{t=0_+} = -5\,{\rm A\,s^{-1}} \ {\rm e} \ i_{\rm Lp}(t) = -4\,{\rm A}.$$

(c)
$$i_{\rm L}(t) = 5e^{-t} - 4 \ (A, s), \ t \ge 0.$$

3. (a)
$$v_{\rm a}(0_-)=\frac{C_2}{C_1+C_2}R_1I,\ v_{\rm b}(0_-)=\frac{C_1}{C_1+C_2}R_1I,$$
 $v_1(0_-)=R_1I,\ i_{\rm L}(0_-)=\frac{E}{R_2}\ {\rm e}\ v_1(0_+)=v_1(0_-)=R_1I.$

(b)
$$I_{\text{eq}} = I + \frac{E}{R_0}$$
, $R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_0}$, $L_{\text{eq}} = L$ e $C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$.

(c)
$$\alpha = 100 \,\mathrm{s}^{-1}$$
, $\omega_0 = 80 \,\mathrm{rad}\,\mathrm{s}^{-1}$.

Comportamento livre: superamortecido.

$$v_1(t) \approx 0.2222e^{-40t} + 0.7778e^{-160t} \text{ (V, s)}, \ t \ge 0.$$

Respostas (cont.)

4.
$$i_L(0_+) = \frac{E}{2L}$$
; $v_c(0_+) = \frac{E}{2RC}$

5. (a)
$$i(t) = e^{-100t}$$
 (A, s), $t > 0$.

(b)
$$v(t) = 11.54e^{-50(t-1)}\cos\left(86.6(t-1) - 90^{\circ}\right) \text{ (V,s)}, \ t \ge 1\text{s}.$$

(c)
$$Q_1 = 1 \text{ e } Q_2 = 0.5.$$

(d)
$$v_{\rm C}(+\infty) = 5 \, \rm V.$$

6.
$$L_1 = 0.8 \,\mathrm{mH} \,\mathrm{e} \, L_2 = 0.29 \,\mathrm{mH}.$$