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Big Data Analytics in Intelligent
Transportation Systems: A Survey

Li Zhu, Fei Richard Yu

Abstract— Big data is becoming a research focus in intelligent
transportation systems (ITS), which can be seen in many projects
around the world. Intelligent transportation systems will produce
a large amount of data. The produced big data will have
profound impacts on the design and application of intelligent
transportation systems, which makes ITS safer, more efficient,
and profitable. Studying big data analytics in ITS is a flourishing
field. This paper first reviews the history and characteristics of
big data and intelligent transportation systems. The framework
of conducting big data analytics in ITS is discussed next, where
the data source and collection methods, data analytics methods
and platforms, and big data analytics application categories
are summarized. Several case studies of big data analytics
applications in intelligent transportation systems, including road
traffic accidents analysis, road traffic flow prediction, public
transportation service plan, personal travel route plan, rail
transportation management and control, and assets maintenance
are introduced. Finally, this paper discusses some open challenges
of using big data analytics in ITS.

Index Terms—Big data analytics, intelligent transportation
systems (ITS), machine learning, transportation.

I. INTRODUCTION

ECENTLY, Big Data has become a hot topic in both

academia and industry. It represents large and complex
data sets obtained from all kinds of sources. Many of the most
popular data process techniques contain Big Data techniques,
including data mining, machine learning, artificial intelligence,
data fusion, social networks and so on [1]. Many people
use Big Data analytics in various fields, and have achieved
great success [2]. For example, in business field, some enter-
prises use Big Data to understand the consumer behavior
more accurately so as to optimize the product price, improve
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operational efficiency and reduce personnel costs [3]. In social
network field [3], through Big Data analytics of instant mes-
saging, online social networking, microblog and sharing space,
some companies such as Facebook, Twitter and Linkedin can
understand the user’s current behavior, social connections and
rules of social behavior, and then promote some products.
In health care field, by processing, and querying of health
care data, doctors can analyze the pathogenic characteristics,
assessment of the patient’s physique so as to develop more
humane treatment plans and suggestions and reduce incidence
of patients [4]. In smart grid field, via the analysis of smart
grid data, grid operators can know which parts of the electricity
load and power frequency are too high, and even can diagnose
which lines are in failure state. The results of these data
analysis can be contributed to the upgrading of the electrical
grid, renovation and maintenance work [5]. With successful
application of Big Data analytics in so many fields, intelligent
transportation systems also start looking at Big Data with great
interests.

Intelligent transportation systems (ITS) have been developed
since the beginning of 1970s. It is the future direction of the
transportation system. ITS incorporate advanced technologies
which include electronic sensor technologies, data transmis-
sion technologies, and intelligent control technologies into
the transportation systems [6]. The purpose of ITS is to
provide better services for drivers and riders in transportation
systems [7]-[9].

In ITS, data can be obtained from diverse sources, such as
smart card, GPS, sensors, video detector, social medias, and
so on. Using accurate and effective data analytics of seemingly
disorganized data can provide better service for ITS [10], [11].
With the development of ITS, the amount of data generated in
ITS is developing from Trillionbyte level to Petabyte. Given
such amount of data, traditional data processing systems are
inefficient, and cannot meet the data analytics requirement.
This is because they do not foresee the rapid growth of data
amount and complexity.

Big Data analytics provides ITS a new technical method.
ITS can benefit from Big Data analytics in the follow-
ing aspects.

1. Vast amounts of diverse and complex data generated in
ITS can be handled by Big Data analytics. Big Data analyt-
ics has resolved three problems: data storage, data analysis
and data management. Big Data platforms such as Apache
Hadoop and Spark are capable to processing massive amounts
of data, and they have been widely used in academia and
industry [12], [13].
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2. Big Data analytics can improve the ITS operation effi-
ciency. Many subsystems in ITSs need to handle large amount
of data to give information or provide decision to manage
traffic. Through fast data collection and analysis of current and
historical massive traffic data, traffic management department
can predict traffic flow in real time. Public transportation Big
Data analytics can help management department to learn the
riders journey patterns in the transportation network, which
can be used for better public transportation service planning.
Big Data analytics of transportation APP developers can help
the users to reach their destination in a most suitable route
and with the shortest possible time.

3. Big Data analytics can improve the ITS safety level.
Using advanced sensor and detection techniques, massive
amount of real time transportation information can be
obtained. Through Big Data analytics, we can effectively
predict the occurrence of traffic accident. When accidents
happens, or emergency rescue is needed, the real time response
capability in the Big Data analytics based system can greatly
improve the emergency rescue ability. Big Data analytics can
also offer new opportunities to identify assets problems, such
as pavement degradation, ballast aging, etc. It can help make
maintenance decision in an appropriate time, and prevent the
vehicle or infrastructure from being in a failure state.

Although applications of Big Data analytics in ITS have
the great vision, many critical research issues and significant
challenges remain need to be addressed. To the best of our
knowledge, a systematic summary of Big Data analytics from
data sources and collection methods, data analytics methods
and platforms, to Big Data analytics applications in ITS
has not been done before. In this survey, we first discuss
the sources of Big Data in ITS and how we can collect the
generated Big Data. The framework of conducting Big Data
analytics in ITS is discussed. We also summarize the data
analytics methods and platforms in ITS. Some case studies
of Big Data analytics applications in ITS are introduced
as well.

The rest of paper is organized as follows. The architec-
ture of conducting Big Data analytics in ITS is discussed
in Section II. Section III summarizes the data source and
collection methods. Big Data analytics methods are discussed
in Section IV. Section V introduces the cases studies of ITS
Big Data analytics applications in details. We present the Big
Data analytics platforms in Section VI. Some open challenges
of using Big Data analytics in ITS are discussed in Section VII.
Finally, We conclude the paper in Section VIII.

II. THE ARCHITECTURE OF CONDUCTING BIG
DATA ANALYTICS IN ITS

A. Big Data Characteristics in ITS

Intelligent transportation system incorporates advanced
technologies which include electronic sensor technologies,
data transmission technologies, and intelligent control tech-
nologies into the transportation systems [6]. The purpose of
ITS is to provide better services for drivers and riders in
transportation systems [7]. According to [7], ITS includes
six fundamental components: advanced transportation man-
agement systems, advanced traveler information systems,

advanced vehicle control systems, business vehicle manage-
ment, advanced public transportation systems, and advanced
urban transportation systems. Literature review [7]-[9] indi-
cates that most of these components are specific to vehicles
and road transportation. Therefore, we focus on ITS in-road
transportation in this survey paper.

The data collected by the intelligent transportation sys-
tems (ITS) are increasingly complex and are with Big Data
features. Big companies including Gartner IBM and Microsoft
put forward that that Big Data could be described by three Vs,
i.e., volume, variety, and velocity [14], [15].

Volume refers to the quantities of data produced by various
sources and are still expanding. With the growth of the amount
of traffic, and detectors, the volume of data in transportation
has increased significantly. In addition, travelers, goods and
vehicles generate more data when tracking transponders are
used. The data generated from infrastructures, environmental
and meteorological monitoring is also increasing as a critical
part of transportation data.

Variety is mainly focused on all kinds of data produced
by detectors, sensors, and even social media. The variety of
transport-related data has increased remarkably. For exam-
ple, modern vehicles can report internal system telemetry
in real time and the information of all crew members and
passengers.

The velocity of data in transportation has increased due to
improved communications technologies, increased processing
power and speed of monitoring and processing. For example,
ticketing and tolling transactions that use smart cards or tags
are now immediately reported, whereas paper-based ticketing
needs human processing to acquire helpful data from the
transactions.

B. The Architecture of Conducting Big Data Analytics in ITS

The architecture of conducting Big Data analytics in ITS is
shown in Fig. 1. It can be divided into three layers, which
are data collection layer, data analytics layer, and application
layer.

« Data collection layer: Data collection layer is the basis of
the architecture, since it provides the necessary data for
the upper layer. The data come from diverse sources such
as induction loop detectors, microwave radars, video sur-
veillance, remote sensing, radio frequency identification
data, and GPS, etc. Details about collection of Big Data
will be introduced in next sections.

« Data analytics layer: Data analytics layer is the core layer
of architecture. This layer is primarily to receive data
from the data collection layer, and then apply various
Big Data analytics approaches and the corresponding
platform to complete data storage, management, mining,
analysis, and sharing. Details about the Big Data analyt-
ics approaches and platform will be introduced in next
sections.

o Application layer: Application layer is the topmost layer
in this architecture. It applies the data process results
from the data analytics layer in different transportation
circumstances, for example, traffic flow prediction, traffic
guidance, signal control, and emergency rescue, etc.
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Fig. 1.

Using advanced data collection techniques, the data col-
lection layer monitors people, vehicles, roads and the envi-
ronment. The original traffic data which includes structured
data, semi-structured and mixed data is transmitted to the data
analytics layer via wired or wireless communication. After the
data analytics layer receives the original traffic data, it first
classifies the data, removes duplicate data, cleans the data and
distributes the useful and accurate data in a distributed manner.
Then it uses mathematics and engineering theory to extract the
hidden information, mainly including descriptive analysis and
predictive analysis. Using the analysis results, the application
layer can predict the trend of future traffic flow and passengers
flow, analyze the traffic accident prone locations, adjust the
signal distribution, and implement traffic control to provide
decision support for the city management department.

ITI. BI1G DATA COLLECTION IN ITS

People unconsciously participate in the collection, trans-
mission and application of Big Data in ITS. The technology
development in ITS has led to an increase in the complexity,
diversity and amount of data created and collected from
vehicle, and people movements. According to different sources
in ITS, Big Data in ITS can be primarily categorized into the
following types, and the collected data is illustrated in Table I.

A. Big Data From Smart Cards

Automatic Fare Collection (AFC) systems has been widely
deployed in urban rail systems, which makes the smart card
data become the main data source for investigating the passen-
gers movement patterns [16]-[18]. In AFC systems passengers
are required to use smart cards when they take buses or trains.
The electronic readers will capture passenger details such
as boarding time, OD information, etc., when they touch
their smart cards. Smart cards in AFC systems generate huge
amount of data records every day in big cities. For instance,

TABLE I

Bi1G DATA INITS
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Source Tools Data
Smart Smart Card oD Flows,
Card Travel Time
GPS GPS Vehicle Position,
Vehicle Density,
Vehicle Speed
Video Video Camera Vehicle
Position, Vehicle
Speed,  Vehicle
Density, Vehicle
Classification
Road Induction Loops, Vehicle
Site Road Tubes, Position, Vehicle
Sensor Microwave Speed,  Vehicle
Radar, Density, Vehicle
LIDAR/Infared Classification
Acoustic, Toll
Plazas
Floating  License Plate Travel Time, OD
Car Recognition, Flows
Sensor Transponders
Wide GPS, Cell Travel Time, OD
Area phone Tracking, Flows
Sensor Airborne Sensors
Connected Diverse Sensors Coordinate,
and Au- speed,
tonomous acceleration,
Vehicles safety data,
(CAVs)
Passive Social Media, Travel Time, OD
Collec- Mobile  Phone Flows
tion Data
Other Smart Grid, Electric
Sources Smart  Meters, and Energy
Cellular Service, Consumption,
Dedicated Tests Location,

Channel Data

Transportation for London (TfL) collects smart card data from
8 million trips every day at London metro stations.

Substantial work has been done to use smart card data
to study the spatial and temporal patterns of public trans-
portation passenger travel behaviour [19]-[22]. Due to its
potential capacity of offering comprehensive spatial-temporal
information on travel behaviour [17], [21], smart card data
is becoming a significant component of public transportation
services planning and management.

B. Big Data From GPS

GPS is the most popular tool for location tracking. Traffic
data can be collected more efficiently and safely with location
tracking via GPS. Combining geographic information sys-
tem (GIS) or other map displaying technologies, GPS provides
a promising tool for data collection, and the collected data can
be used for addressing many traffic issues, such as travel mode
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detection [23], [24], travel delay measurement [25] and traffic
monitoring [26].

C. Big Data From Videos

Video cameras are widely deployed in ITS. As demonstrated
in advanced traffic management systems (ATMS), video image
detection systems (VIDS) are good alternatives compared with
conventional sensors for tasks like vehicle identification and
traffic flow detection. One advantage of VIDS is the low
cost [27]. Freeway imaging sensors that use massive video data
have been successfully deployed to carry out incident detection
and have shown high accuracy in certain circumstance [28].
Apart from general traffic management [29], transportation
engineers and planners that collect more accurate vehicle video
data can improve the image process system so as to be better
at making general transportation demand regarding vehicle
emission models.

D. Big Data From Sensors

Sensor equipment installed in ITS is used to collect data
such as vehicle speeds, vehicle density, traffic flows, and
trip times. Traditional on-road sensors, (e.g., infrared and
microwave detectors), have been evolving to obtain, compute
and transfer traffic data [30]. As presented in [30], data
collection from sensors can be divided into three sources:
roadside data, floating car data, and wide area data [31].

Roadside data mainly refers to the data collected by sensors
located along roadside. Traditional roadside sensors such as
inductive magnetic loops, pneumatic road tubes, piezoelectric
loops arrays and microwave radars have been used for many
years. New generation roadside sensors such as ultrasonic
and acoustic sensor systems, magnetometer vehicle detec-
tors, infrared systems, light detection and ranging (LIDAR),
and video image processing and detection systems gradually
appear with recent advanced technology developments.

Floating car data (FCD) mainly refers to the vehicle mobil-
ity data at different locations in ITS, where customized detec-
tors are embedded in vehicles [32]. Some onboard sensors
provide confident and efficient information for travel route
selection and estimations. With developments of vehicle sensor
technique, popular FCD sensors techniques include: automatic
vehicle identification (AVI), license plate recognition(LPR),
and transponders such as probe vehicles and electronic
toll tags.

Wide area data refers to the wide area traffic flow data that
is collected by diverse sensor tracking techniques such as pho-
togrammetric processing, sound recording, video processing,
and space-based radar.

E. Big Data From CAV and VANET

Connected and autonomous vehicles (CAV) are new tech-
nologies in ITS area that combines radical changes of vehicles
design and their interactions with the road infrastructure.
Connected and autonomous vehicles incorporate a range of
different technologies, facilitating the safe, efficient move-
ment of people and goods. CAV enabled traffic system has
demonstrated great potential to mitigate congestion, reduce
travel delay, and enhance safety performance [33], [34]. CAVs

can generate big amount of environmentally relevant real-
time transportation data, such as coordinate, speed, accel-
eration, safety data [33]. Using latest network technologies
such as Software Defined Networking, data can be obtained
more efficiently [35] These data can be used to create
actionable information to support and facilitate green trans-
portation choices, and apply to the real-time adaptive signal
control [36], [37].

Vehicle Ad Hoc Network (VANET) is a kind of mobile ad
hoc network that uses vehicles and infrastructure elements as
nodes to increase the coverage area and the communication
capabilities. As an important part of ITS, VANET generates
large amounts of data [38]. Data preparation and real-time
results are challenging tasks for large-scale analysis. Using Big
Data analytics, we can address most of data related VANET
challenges [39], such as data filting [40], congestion and
accidents alerting [41], and Traffic Flow prediction [42].

F. Big Data From Passive Collection

Compared with the actively collected data in transportation
research, the rapid development of mobile technologies have
enabled the collection of a massive amount of passive data.
Passive data refers to those data not collected through active
collection. It is generated for purposes that are not intended but
can be potentially used for research [43], [44]. Chen et al. [45]
and Zeyu et al. [46] propose to combine passive Big Data such
as mobile phone data, internet access data and active data
to study human mobility, travel behavior, and transportation
planning. In [47], contextual information such as current time,
cell phone ID, user identity are used for predicting the stay
time of mobile users.

Social media data is the most popular passive data, and
it refers to applications or websites where people interact
with each other to create, share, and exchange information
and ideas. Social media networks such as Linkedin, Facebook
and Twitter have been developed rapidly recently. They have
become relevant interests of transportation professionals as
they provide information flows between providers and con-
sumers in real time [48]. Though data collected via social
media networks is generally unstructured and requires com-
plicated processing, it provides significant transportation
information when attitudes are expressed in different kind of
transportation, and responses to travel disruptions are found in
social media [49]-[52].

G. Big Data From Other Sources

There are some sources of data that cannot be classified
into the above categories. For example, real-time infrastructure
state is considered as an important source of data [53]. The
best known example is the smart grid [54], which will allow us
to collect daily electricity consumption information for electric
vehicles and train traction in urban rail transportation system.

Another important data source is the data from dedicated
test in ITS. For example, in our previous work, we carry out
field tests in a real train ground communication system in
urban rail transportation Communication Based Train Con-
trol (CBTC) system [55], [56]. A large amount of channel
gain data is obtained from the field test. The data is processed



ZHU et al.: BIG DATA ANALYTICS IN ITSs: A SURVEY

to model the stochastic characteristic of channel state, and the
model is used to optimize the CBTC system performance.

IV. BIG DATA ANALYTICS METHODS ITS

Machine learning is most popular modelling and analytics
theory in Big Data ecosystems, which makes it easy to derive
patterns and models from large amount of data. In ITS areas,
machine learning theory has also be widely used to conduct
data analytic. Depending on the completeness of data set that
is available for learning, Machine learning models can be
categorized into supervised, unsupervised and reinforcement
learning algorithms. With the recent rapid development of
Artificial Intelligence, the powerful deep learning models have
also been adopted to ITS recently.

A. Supervised Learning

Labeled training data is used in supervised learning algo-
rithms [57]. The models use input data and the target outputs
(labels) to learn the function or map between them. Combined
with the learned model and the input data, the unseen outputs
can be predicted. Among all the supervised learning models,
linear regression, decision trees, neural networks, and support
vector machines, are the most frequently used in ITSs.

The function of regression is to explain the relationship
between one dependent variable and one or more independent
variables. Linear regression is the most commonly used super-
vised learning [58]. Linear regression is incredibly simple,
robust, easy to interpret, and easy to code. Despite its sim-
plicity, linear regression is particularly successful in various
ITS scenarios, such as traffic flow prediction [59], traffic speed
estimation [60], and transportation travel route evaluation [61].

A decision tree is a decision support tool that uses a tree-like
graph to model decisions and their possible consequences [62].
Due to their portability, robustness and transparency, decision
trees are widely used in various ITS scenarios, such as traffic
accident detection [63], accident severity analysis [64] and
travel mode choice [65].

Artificial Neural network (ANN) is a popular example of
flexible and robust supervised learning for both classification
and regression [57]. With enough hidden layers of process-
ing nodes and training data, ANN can learn any non-linear
relations between input and target data. As a data modeling
tool, it has also been adopted in ITS such as traffic flow
prediction [66], travel time prediction [67], traffic accident
detection [68] and remaining parking spaces forecasting [69].

Support vector machine (SVM) is another popular super-
vised learning algorithms that use labelled data for regression
and classification. Among all the Big Data analytics model
tools in ITS, SVMs have attracted great interests in research
area. It has been successfully used in travel time predic-
tion [70], bus arrival time prediction [71], and traffic accident
detection [72].

A typical example of using supervised learning in ITS
is introduced in [72], where SVM is used to predict traffic
incidents. Given the training subset {(xi, y1), (x2, y2),...,
(xi, yi) ...}, where x; is the input of the training sample which
consists of the values of the traffic flow parameters such as
volume, speed, occupancy and so on, and y; is the class label

387

of x;. With a kernel function K (x, x’), according to the SVM
classifier theory, the support vector a; can be obtained as,

I I
1
max. — > El vivjoioiK(x;, xj) + E a;
i=

i=1
[
st Y yiai =0, (1)
i=1

Then, we get the decision function g(x) to compute the
label for the sample x as,

I
g(x) = sgn(Q_ yio} K (x;,x) + b). ©)
i=1
If x is an incident sample, g(x) = 1. Otherwise, we have
glx) =—1L

B. Unsupervised Learning

Unsupervised learning normally also referred as clustering
focus on learning natural group from unlabeled multidimen-
sional data [57]. K-means is the most popular unsupervised
learning tool, and it has been widely adopted in highway
transportation planning [73], and travel time prediction [74].

With a set of historical data, authors of [74] gives a classic
example of using unsupervised learning to predict travel time.
The procedures are as follows,

1. Compute the travel time frequency ¢. It means the number
of time that the travel time appears.

2. Define a tuple I'(7;, €;, v;) that contains distinct features,
where 7; is the travel time, ¢; is the travel time frequency, and
v; is the travel velocity.

3. Find the greatest value in the data based on the travel
time frequency. A tuple I'(zp, &p,v,) is chosen as a centroid
of Cluster 1, where ¢, is the maximum travel time frequency,
7p is the corresponding maximum travel time associated
with ¢),, and v, is the travel velocity associated with &,.

4. Compare each tuple I'(zj,é&;,v;) with the centroid
['(zp,ep,vp) of Cluster 1 by compute their distance. Choose
the tuple I'(zy, &4, vy) with the maximum distance.

5. Build two clusters where the centroid of Cluster 1 is tuple
I'(zp, €p, vp) and that of Cluster 2 is tuple I'(zg4, &4, vg).

6. Define the cluster memberships of all the tuples by
assigning them to the nearest cluster centroid.

7. Re-estimate the cluster centre using the arithmetic mean.

8. Repeat step 6 and 7.

9. After complete preparation of clusters, desired predicted
time is calculated separately for each cluster as, ¢ =
z;-vzl gj*1j/ z;_v:l ¢j. Where ¢ is the travel time obtained
from kth cluster, N is the total number of tuple in the
associated cluster, ¢; is the travel time frequency of the
Jjth tuple, and 7; is the travel time of the jth tuple.

10. The final predicted approximate travel time is obtained
by computing the arithmetic mean of ¢ and ¢».

C. Reinforcement Learning

Different from supervised and unsupervised learning,
as shown in Fig. 2, the aim of the reinforcement learning
is to minimize the long term cost through exploration and
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Fig. 2. Reinforcement learning.

learn the optimal policy by interacting with the experimental
data [57]. Reinforcement learning is highly relevant to control
and optimization theory, and it has been proved to be quite
feasible in traffic signal control in ITS [75]-[78].

Using reinforcement learning in ITS requires a formulation
of the ITS control and optimization problem in the language of
reinforcement learning, specifically, defining a state space S,
an action space A and a reward R. One classic example
of using reinforcement learning in ITS traffic signal control
is formulated in [76]. The state of traffic at an intersection
with n lanes is formally defined as the discrete traffic state
encoding (DTSE). For each lane approaching the intersection,
the DTSE discretizes a length [ of the lane segment, beginning
at the stop line, into cells of length c¢. The selection of ¢ will
change the behavior of system. The DTSE is composed of
three vectors. The first vector B represents the presence of
a vehicle or not in the cell. The second vector R represents
the speed of the vehicle, and the third vector P is the current
traffic signal phase (i.e., the most recent action selected). Thus,
the system states can be defined as, S € (BR)%”P.

After the agent has observed the state of the environment,
it must choose one action from the set of all available actions.
The possible actions are North-South Green (a1), East-West
Green (a»)), North-South Advance Left Green (a3)), East-West
Advance Left Green (as)). The set of all possible actions A is
defined as A = {a1, az, a3, as}. At time ¢, the agent chooses
an action a(t), where a(t) € A.

After the agent has observed the state of the environment s;,
it performs an action a(t), and receives the reward. The reward
rr4+1 1 a consequence of performing a selected action from a
specific state. In this formulation, the reward is defined as
change in cumulative vehicle delay between actions.

The reinforcement learning algorithm used in this for-
mulation is Q-Learning [57], which is used to develop an
optimal action-selection policy. The optimal policy is achieved
by using the convolutional neural network to approximate
the action-value function. The action-value function Q(s;, a;)
maps states to action utilities (i.e., what is the value of each
action from a given state). The basis of Q-learning is the value
iteration update defined as,

O(st,ar) = Q(sy, ar)
+a(rg1+y mjlx O(si41,a1) — Ost, ). (3)

Where the learning rate o controls the degree to which new
action-value estimates are weighted against old estimates and

the discount factor y determines how immediate rewards
are weighted against future rewards. After the action-value
function has been sufficiently learned, the optimal policy can
be determined by selecting the action with the highest value.

D. Deep Learning

Deep learning models exploit much more system features
and complex architecture than traditional Artificial Neural
Network, and can achieve better performance than traditional
machine learning models. They have been widely applied in
ITSs. For example, a deep Restricted Boltzmann Machine and
Recurrent Neural Network architecture is utilized to model
and predict traffic congestion evolution based on GPS data
from taxi [79]. Using deep neural networks, fault diagnoses
on bogies with Big Data is carried out in [80]. Chen [81]
carry out the vehicle detection task using the rich feature of
convolutional neural network(CNN) learned from ImageNet
dataset. Duan er al. [82] use stacked auto-encoders for traffic
data imputation. In traffic flow area, deep learning model has
become a popular tool to predict traffic flow density [83]-[86].

Literature [85] gives a typical deep learning based approach
to do the traffic flow prediction. Stacked autoencoders (SAEs)
are used to learn generic traffic flow features. Considering
SAEs with K layers, the first layer is trained as an autoencoder,
with the training set as inputs. After obtaining the first hidden
layer, the output of the jth hidden layer is used as the input of
the (k + 1)th hidden layer. In this way, multiple autoencoders
can be stacked hierarchically. To use the SAE network for
traffic flow prediction, a logistic regression layer is added on
top of the network for supervised traffic flow prediction. The
whole deep architecture model is shown in Fig.3.

The data collected from all freeways are used as the input.
Considering the temporal relationship of traffic flow, the traffic
flow data at previous time intervals, i.€., yr—1, Xr—2, - -+ Xt—I
are used to predict the traffic flow at time interval . The pro-
posed model accounts for the spatia land temporal correlations
of traffic flow inherently.

E. Ontology Based Methods

An ontology is a formal naming and definition of the types,
properties, and interrelationships of the entities that really exist
in a particular domain of discourse. Ontology based methods
can accurately describe data semantics and infer implicit data
semantic relations. Compared with the traditional data extrac-
tion from the bottom up, ontology data integration has a top-
down feature and uses ontology modeling to share semantic
views of data and map heterogeneous data from different
data sources to minimize or even eliminate the ambiguous
understanding of shared data. Ontology based method has been
widely applied in ITSs. For example, Zhai et al. [87] propose
an information retrieval system for ITS based on a fuzzy ontol-
ogy framework. This framework includes three parts: concepts,
properties of concepts and values of properties, and it focuses
on information about traffic accidents. Fernandez and Ito [88]
propose a driver behavior model based in ontology for
intelligent transportation system. The driver behavior ontol-
ogy has the knowledge related to driver characteristics,
perception and cognitive state to perform different driving
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tasks. It can be used to predict traffic accidents and opti-
mize the road congestion. Fernandez and Ito [89] propose
to use the ontology to manage the sensor information in
intelligent transportation systems and convert the sensor data
into semantic data. The system performs the automatic traffic
light settings can use the data to predict and avoid traffic
accidents. Gregor et al. [90] propose a systematic methodology
to create ontology in ITS domain. This ontology will serve as
the basis of semantic information to a semantic service that
allows the connection of new equipment to an urban network.
Zhao et al. [91] introduce an ontology-based Knowledge Base,
which contains maps and traffic regulations. By accessing to
the Knowledge Base, the intelligent vehicles can be aware
of over speed situations and make decisions at intersec-
tions in comply with traffic regulations. Chen er al. [92]
depict an ontology-based approach for safety management in
Cooperative ITS (C-ITS), primarily in an automotive context.
It provides the support for ontology driven ITS development
and its formal information model. Yang and Wang [93] take
advantages of the semantic completeness of the ontology
to build urban traffic ontology model, which resolve the
problems as ontology mergence and equivalence verification in
semantic fusion of traffic information integration. The model
can increase the function of semantic fusion, and reduce the
amount of data integration of urban traffic information as
well enhance the efficiency and integrity of traffic information

query.

V. BIG DATA APPLICATIONS IN ITS

Big Data provides technical supports for the development
and applications of ITS. By efficient, accurate and timely
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data collection, analyzing and processing in road and rail
transportation system, the Big Data applications can provide
the public with convenient and high efficient transportation.
In order to identify problems, improving ITS efficiency, reduc-
ing costs and deriving valuable insights, Big Data applications
in ITS can be divided into the following six categories.

A. Road Traffic Accidents Analysis

Evidence shows that in the world around 1.2 million people
are killed and 50 million injured from traffic accidents every
year [94]. Accurate traffic accident data analysis results can
provide traffic department with important information to make
policies so as to prevent accidents.

Many studies focused on using Big Data analytics in
traffic accidents analysis. Using measured traffic flow data,
Golob and Recker [95] study the relationships among weather,
lighting conditions, traffic flow, and urban freeway accidents,
with a multivariate statistical model. In [10], Bayesian infer-
ence and Random forest are adopted in a real-time crash pre-
diction model to reduce crash risks. Xiong et al. [96] introduce
classification and regression trees (CART), logistic regression
and multivariate adaptive regression splines (MARS) to per-
form analytical operation on motor vehicle accident injury
data. Lee and Mannering [97] present a method which uses
zero-inflated count models and nested logit models to analyze
run-off-roadway accident frequency and severity on a 96.6km
section of highway in Washington State. The results show that
some measures can be taken to reduce run-off-roadway acci-
dent frequencies. Karlaftis and Golias [98] apply a rigorous
non-parametric statistical methodology which is hierarchical
tree-based regression (HTBR) to analyze the influences of
terrain and traffic characteristics on accident rates of rural
roads. The methodology can also be used to predict the
accident rates of highway. Chang, et. analyze the relationship
between highway geometric variables and traffic accidents by
using a negative binomial regression model and a classification
and regression tree model. The parameters come from the
2001-2002 accident data of National Freeway 1 in Taiwan [99].
Bédard et al. [100] determine the respective effect of driver,
crash, and vehicle characteristics to the fatality risk of
drivers by using a multivariate logistic regression algorithm,
the results indicate that increasing seat belt use, reducing
vehicle speed, and decreasing the number and severity of
driver-side impacts could prevent traffic accidents.

B. Road Traffic Flow Prediction

Timely and accurate traffic flow information is critical for
transportation management. Big Data analytics in ITS has an
advantage in traffic flow prediction [101]-[103]. According
to [9], a classic road traffic flow prediction model using Big
Data analytics is shown in Fig 4. The original ITS data is first
preprocessed to get the effective data set. Using selected data
mining or analysis method, traffic flow model is established
with the preprocess data. The traffic flow model gives decision
supports to traffic management department and get feedback
from real traffic flows to calibrate the model.

Many scholars have studied traffic flow prediction using Big
Data analytic. Lv et al. [85] propose a deep learning based
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Fig. 4. A typical traffic flow prediction model.

traffic flow prediction method which use the greedy layerwise
unsupervised learning algorithm. Stacked auto encoder (SAE)
model is used to learn generic traffic flow features. The
results show that the deep learning based model has superior
performance for traffic flow prediction. Liu et al. [104] analyze
multidimensional parameters and the traffic flow prediction
models is developed from different dimensions based on
SVMs. Dong et al. [105] propose a pre-selection space time
model to estimate the traffic flow at locations with little
data detectors. Canaud et al. [106] present a probability
hypothesis density filtering based model for real-time traffic
flow prediction. Pan er al. [107] put forward a modified
stochastic cell transmission model to support short-term traffic
flow prediction. Antoniou et al. [108] propose an approach
for local traffic flow state estimation and prediction based on
data-driven computational approaches. Using the seemingly
unrelated time-series equation (SUTSE), Ghosh er al. [109]
present a new multivariate structural time-series (MST) model
to predict traffic flow. The SUTSE model can respectively
track the change of each traffic flows and their components as
time goes by, and the results show it has a superior prediction
accuracy. Xu et al. [110] propose a novel online algorithm
which is a context-aware adaptive traffic prediction algorithm.
The algorithm can learn from the current traffic condition
and use the historical traffic data to predict the future traffic
flow. The experiments indicate that this algorithm do better
than the current solutions. Lu ef al. [111] build a traffic flow
state clustering model which adopts the simulated annealing
genetic algorithm using fuzzy c-means (SAGA-FCM). This
model is based on traffic speed data and occupancy data which
comprehensively considers the temporal, spatial, and historical
correlations of traffic flow Big Data.

With the recent rapid development of Al technology, deep
learning methods have been widely applied to predict traf-
fic flow. Huang et al. [84] introduce deep belief network
into transportation system. Ma et al. [79] combined deep
restricted Boltzmann machines (RBM) with RNN and formed
a RBM-RNN model that inherits the advantages of both RBM
and RNN. They also [86] use LSTM to predict traffic and

demonstrate that LSTM achieve better performance compared
with traditional neural networks in both stability and accu-
racy regarding traffic speed prediction by using loop detector
data collected in the Beijing road network. Lv er al. [85]
propose a novel deep-learning- based traffic prediction model
that considered spatiotemporal relations, and employed stack
autoencoder (SAE) to extract traffic features.

C. Public Transportation Services Planning

Public transportation Big Data analytics can help to under-
stand transportation riders journey patterns across the trans-
portation network. The riders journey patterns can be used to
inform decisions to transportation operators about the services
planning.

With heterogeneous sources of traffic measurements data,
Lu er al. [112] present a path flow based nonlinear opti-
mization model to estimate dynamic OD demand that does
not need explicit dynamic link information. Using triangu-
lated mobile phone records of millions of anonymous users,
authors of [113] present a method to predict average daily
OD trips. The applicability of the proposed model is verified
by the spatial and temporal distributions of trips get from
local and national surveys. Using complete daily set of smart
card data from London Metro and iBus vehicle location
system, Gordon [114] derives the boarding and alighting
times of every passenger, and transfer information is derived
from passenger trips belong to different public transportation
modes. The full journey matrices are established from the
data, and are validated by traditional O-D matrices. The
approach is efficient enough to be performed daily and provide
the transportation operators travel behavior of their services.
The Big Data analytics results in these works can help the
emerging intelligent traffic management applications generate
proactive, coordinated traffic information provision. Tao [115]
investigate the temporal and spatial dynamics of Bus Rapid
Transit (BRT) trips against non-BRT trips during five typical
calendar events. The smart card data is first pre-processed
to build OD flow matrices and bus trip route for BRT and
non-BRT trips respectively. Service management department
can identify important implications for evidence-based BRT
policies. In [116], operational Big Data from Automated Fare
Collection (AFC) systems is used for transportation planning
management in Istanbul, Turkey. Works in MIT [117] shows
the potential value of London AFC data in rail transportation
planning and operations. The applications developed in their
work provide rail transportation operators and planner an
easy-to-update management tool that evaluates rail service in
several aspects at near real-time. Toole et al. [118] use mobile
phone data from open source data repositories to implement
a travel demand model. Routable road networks, validated
OD matrices and trip tables can be extract from the Call
Data Record (CDR) data with the model. Their work serve as
universal guide to help the transportation operators perform
public transportation planning.

D. Personal Travel Route Planning
The transportation Apps start with great vision. Report
suggests that only telling passengers the arriving time of
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the next bus could make them more satisfied with the bus
service [119]. Based on the data from smart phones and vehicle
GPS data, some transportation APPs provide riders with real
time traffic information [120], others provide most suitable
driving routes with minimum travel time [121]. Combined
with public transportation data with information from users
through their smart phones, transportation APPs can even
provide riders with real time public transportation journey
planning [122]. Fully integrated Apps even let people plan
trips that move from trains to buses and private cars or bicycles
at the ends [123].

Big Data analytics in these transportation APPs generates
huge economic benefits by reducing travel time, traffic conges-
tion, pollution, and greenhouse-gas emissions. For example,
opening up Transportation for London (TfL) data has been val-
ued at 15-58 million pounds per year and has resulted in over
200 travel Apps being developed by private companies [124].

E. Rail Transportation Management and Control

Rail transportation systems have been transformed with
advanced IT technology. They are the main beneficiary of Big
Data analytics. This is because that Rail transportation systems
are generally closed systems that carry out sophisticated
processing of large volumes of data, such as real time train
speed and position, train departure and arrival time of a certain
station, and passenger OD information. Big Data analytics can
make the rail transportation operators be better at train control
and improve the rail transportation system operation efficiency.

In industry, Big Data analytics is starting to play an
important role in rail transportation system. As a typical
public rail transportation system, the Bay Area Rapid Tran-
sit (BART) maintains supervision over all phases of its system,
including train operations, passenger services, power delivery,
and wayside facilities. Big Data analytics is a key element
within all of these functions. Schultz in [125] point out that
the critical role of BART’s operational analytics is ensuring
schedule reliability. Using Markov chain model, a multi-
modal transportation network in London is developed with
better information clusters for transportation efficiency [126].
In [127], Big Data analytics is applied in Utrecht, Netherlands
to predict the traffic and improve operations with data from
mobile phones, smart cards and computers.

In academia, substantial work has been done about using
Big Data analytics in rail transportation management and
control. Using the passenger OD information of Shanghai
rail transportation line 1, Jiang et al. [128] evaluate the
train timetable efficiency. This method is verified in a real
rail transportation system that involves more than 1 million
passenger trips and 600 trains. Yin et al. [129] present a smart
train operation (STO) method which combines the advantages
of automatic train operation (ATO) and manual driving. The
fusion of expert knowledge and data mining algorithm is
applied in STO method. The results suggest that in energy
consumption and riding comfort, this proposed method is
better than ATO, and in punctuality and parking accuracy, it is
also better than manual driving. Chen et al. [130] propose two
simplified models about the relationship between train stop
error and the train control parameters by using train speed data,
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time data and distance data before stopping, and introduce
one online learning algorithm - polynomial adaline algorithm
to increase the parking accuracy. The results show that the
proposed simplified models and the online learning algorithms
are effective in reducing the parking error and correct the
bias of train stop error distribution. Zhou [131] apply two
typical machine learning algorithms Gaussian processes and
Boosting to improve train stop accuracy by utilizing a number
of the initial velocity data and distance data before stopping,
the results show that Gaussian process regression algorithm
gets the best performance. Hou et al. [132] propose three train
stop control algorithms which chooses initial braking position
data, braking force data and their combined data as control
input. Based on terminal iterative learning control (TILC),
these algorithms use the stop position error in previous braking
process to improve train stop accuracy. Chen et al. [133]
use a new machine learning technique and propose novel
online learning control algorithms to realize train automatic
stop control. The algorithm includes heuristic online learning
algorithm (HOA), gradient-descent based online learning algo-
rithm (GOA), and RL-based online learning algorithm (RLA).
The required parameters come from the track-side balises. The
results suggest that this method can limit the stopping errors
in the range of +0.30m under regular interferences.

F. Asset Maintenance

In ITS, there are substantial asset that is dependent on
large amounts of data to operate and maintain. Proper asset
maintenance approach is very important for protecting ITS
capital and reduce maintenance costs. Big Data analytics
can help identify problems more quickly and accurately, and
minimize maintenance costs. A typical framework of using Big
Data analytics for asset maintenance decision making [134] is
shown in Fig. 5. Onboard and Infrastructure data is collected
from different sensors. Physical failure data such as pave-
ment degradation, ballast aging, track geometry etc. can be
used directly. Text data such as experience based information
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and maintenance report, symbolic description etc., can be
processed to extract important information. Infrastructure and
vehicle state data such as temperature, humidity, etc. can be
processed with data driven method, and obtain the condition
indicators. The results from the three process methods is
integrated and get the accurate diagnosis of asset condition
and determine the remaining useful life of asset, which can be
used for end users to make maintenance or operation decisions.

One example of Big Data analytics based maintenance
is conducted by Dutch railways on Axle Box Accelera-
tion (ABA). With one Terabyte of track degradation data,
a self-learning and adapted mechanisms is performed [135].
Thaduri et al. [134] introduce a hybrid modelling approach to
provide accurate diagnosis asset condition so as to determine
the remaining useful life of asset. The proposed method gives
an insight in providing maintenance decision making for end
users. Based on semantic data models, a railway asset moni-
toring system is implemented in [136] and prove to be more
capable for data integration, extensibility, and compatibility
compared with traditional approaches. Using data collected by
multiple inspection vehicles in 330,000 km of railroad track,
Zarembski [137] introduce the procedure of data collection,
storage and plan the rail track maintenance with Big Data
analytics so as to optimize its capital infrastructure and keep
costs under control. Using the data from smart phones and
GPS co-ordinates, Network Rail in UK successfully improve
the track defect position from 1 mile to 5 meters, which signif-
icantly reduce the time to fix the rail track [138]. Using huge
amount of historical system state data, in combination with
train type data, maintenance action data, inspection schedule
data, and system failure data, Li er al. [139] explore several
machine learning based analytical methods to automatically
learn regulations and construct failure estimation models.
The models can use the real-time data to estimate if the
current conditions will lead to system failure. A bilevel feature
extraction-based text mining method is proposed in [140],
where features extracted at semantic and syntax levels are
used. The proposed method significantly improves the fault
diagnosis precision for all fault classes.

VI. BiG DATA PLATFORMS IN ITS

Big Data analytics in ITS have been evolving with the help
from advanced Big Data platforms. The Big Data platform
leverages distributed file system and parallel computing capa-
bility to enable fast data process. It is capable of making
sense of Big Data as well as supporting large-scale system
optimization.

Apache Hadoop is the most popular open source software
framework for distributed process and storage of large amount
of data sets. Hadoop is a universal Big Data process platform,
where various kinds data process or data analytical operations
can be carried out. The distributed process capability makes
Hadoop well-suited for analyzing the data in ITS, such as
smart card data, diverse sensors, social media, GPS data etc.
Apache Spark is the latest open-source platform for large
amount of data sets processing that peculiarly adapts to
machine learning tasks [141]. Spark adopts the same dis-
tributed storage technology as Hadoop, and it allows user
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Fig. 6. A typical framework of using Apache Spark platform in ITS.

programs to load data into a clusters memory and query
it repeatedly. Spark is well-suited to machine learning
approaches. The Big Data analytics approaches we introduced
in the last subsection are machine learning based, and they can
definitely be performed in both Hadoop and Spark platforms.
The Big Data platform with the data analytics approaches
running on it, will play a huge role in Big Data analytics
in ITS.

A typical framework of using Spark platform in ITS is
shown in Fig. 6. Data from different sources are collected by
HBase (Hadoop Database) APIs, and they are sent to the data
center. Spark Streaming processes the data in real time. Some
real time tasks, such as vehicle speed detection, vehicle identi-
fication, real time warning etc. can be implemented. HBase is
a distributed open source database. It will perform high level
feature extraction, and create index for massive data sets, so as
to improve the effectiveness and efficiency of data retrieval.
Spark Core is the foundation of spark system, and it can
carry out off-line tasks with distributed computation capability.
Critical tasks such as traffic management and control, accident
analysis etc. can be conducted under Spark Core engine.

Different from the general-purpose Big Data platform,
in transportation area, several platforms have been proposed
to process the transportation data.

Mian et al. [142] propose a platform with multiple
engines to support various types of analytic for traffic data.
Zareian et al. [143] propose a monitor system named K-Feed
for performance analysis of applications deployed on cloud.
Shtern et al. [144] propose a conceptual architecture for a
data engine, Godzilla, to perform real-time traffic data process
and support analytical operation over transportation data. They
design a multi-cluster approach to handle large amount of
growing data under various kind of workloads and different
number of users. Khazaei et al. [145], propose a platform
to perform analytical operation on urban transportation data.
The platform can be used by traffic-related software devel-
opers or directly by traffic engineers and researchers to gain
insights of traffic patterns. Chaolong et al. [146] study the
development trend of the virtual data center and its technical
advantages, proposes a scheme of virtual system of smart
transportation data center based on VMware vSphere. A Big
Data simulation platform is proposed in [147] for Greater
Toronto Area. The platform enables Big Data transportation
applications to run in real time.
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Real time data streaming process function is a necessary part
of Big Data process platform in ITS. Because there are many
real-time applications such as traffic monitor and control, and
public transportation schedule. Based on the tradition Big Data
process system, substantial real-time data streaming systems
have been proposed in ITS. Guerreiro et al. [148] propose an
ETL (extract, transform and load) architecture for intelligent
transportation systems, addressing an application scenario on
dynamic toll charging for highways. The proposed architecture
is capable of handling real-time and historical data using Big
Data technologies such as Spark on Hadoop and MongoDB.
A data stream processing platform is proposed in [149], which
supports a mechanism for sharing multiparty data sources,
software components, and even intermediate results. They
give an example of using this platform to conduct traffic
management. A comprehensive and flexible architecture based
on distributed computing platform for real-time traffic control
is proposed in [150]. They have partly realized the architecture
in a prototype platform that employs Kafka, a state-of-the-
art Big Data tool for building data pipelines and stream
processing.

Data injection is another critical part of Big Data process
system. It is used to transfer data between Big Data process
system and relational databases or mainframes. As a popular
data injection system, Apache Sqoop has been widely adopted
in ITS. For example, Sqoop is used with Hadoop in traffic
management system in [151]. It has also been deployed to
process vehicle diagnostics data and deliver useful outcomes
that can be used by actors in automotive ecosystems [152].
In [153], Apache Sqoop is used to ingest ITS relational data.
Apache Flume is another popular data injection system that
processes unstructured data, and it has been adopted to process
log data in ITS [154].

VII. OPEN CHALLENGES

Although Big Data analytics has made great achievements
in ITS, there are still substantial open challenges have not been
fully studied. They need to be tackled in future works. This
section introduce the main open challenges of using Big Data
analytics in ITS as follows.

« Data collection: Due to the frequent movement of vehi-
cles and pedestrians, data collected in transportation may
be inaccurate, incomplete or unreliable in particular loca-
tions or at certain times. For instance, not all vehicles
are embedded with the techniques needed to provide
real-time location data, and road traffic data from road
sensors can be missing. One possible way to tackle the
challenger is to invest new data collection technologies
and improve the data collection capability. With the devel-
opment [oT, new sensor techniques are invented annually,
which can help improve data collection and data quality.
In addition, the adoption of data capturing automation
to minimize manual data entry is also essential to data
quality improvement.

o Data privacy: In the era of Big Data, the most challenging
and concerned problem is privacy [155]. Personal privacy
may be leaked during data transmission, storage and
usage [156]. Data collected from transportation systems
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used to be non-personal data, such as vehicle location,
traffic flow data. However, privacy problems have been
concerned since personal data collection by the pub-
lic and private sectors grows over time. For example,
the location of individuals and vehicles can be easily
collected. If these data are not strictly protected, people
who steal these data would harm the owner of the data.
Therefore, privacy protection is an important thing for
Big Data applications in ITS. To prevent unauthorized
disclosure of the personal private information, govern-
ments should develop complete data privacy laws which
include what data can be published, the scope of the
data publishing and using, the basic principles of data
distribution, data availability and other areas [157]. The
transportation departments should strictly regulate the
personal data definition, strengthen the management of
data security certification, and use more advanced algo-
rithms to improve the data security level.

Data storage: Currently, the data volume has jumped from
TB level to PB level, and the growth in data storage
capacity is far behind the data growth. Especially in
ITS, it will produce a variety of data from the various
sensors every day. Traditional data storage infrastruc-
ture and database tools have been unable to cope with
the increasingly large and complex mass data [158].
Therefore, designing the most reasonable data storage
architecture has become a key challenge. The main public
cloud storage providers, such as Google and Microsoft,
continue to improve their services with integrated Big
Data capabilities, and multi-cloud storage and hybrid
storage are emerging as key areas for Big Data storage.
Their compute bursting capabilities have advantages in
many forms of compute-intensive analytics workloads.
In addition, combining intelligence with storage is also
a good solution. Enterprises are looking for smart man-
agement tools which can provide integrated analytics
within storage. This enables them to conduct resource
monitoring and make full use of storage infrastructure.
Data processing: Timeliness is crucial to Big Data appli-
cations in ITS, these applications include traffic data
preprocessing, traffic state recognition, real-time traffic
control, dynamic route guidance and real-time bus
scheduling. Traffic data which contain different formats
from diverse sources, must be compared with the histor-
ical data, then processed within a short time [159]. The
data processing system must be able to process more
complicated and increasingly expanding data. How to
guarantee the process timeliness with so large and fast
data is a big challenge. Many general Big Data frame-
works that handle real time data sources, such as Apache
Storm, Apache Flink, Apache Samza, Apache Spark
Streaming and Kafka Streams, have appeared recently.
In addition, dedicated Big Data processing frameworks
for ITS have also been developed, such as platform
for real-time traffic control, and estimating the average
speed and the congested sections of a highway. These
processing framework provide good solutions to real time
data processing.
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« Data opening: To enable transportation service users and
App developers to find and re-use data effectively, data
need to be archived and made publicly accessible in good
quality. Data quality refers to its accuracy, completeness,
reliability, and consistency [160], [161]. Without good
data quality, Big Data will be misleading to decision-
making and even produce harmful results. However,
opening up data with good quality might require time
and money. There is a trade-off between opening up
data quickly at low cost and making high quality data
available at high costs, which makes opening up good
quality data one more big challenge. Effective solutions
include the adoption of automatic data capturing and/or
utilization of artificial intelligence to verify the data.
Additionally, the transportation departments should have
a data management process enacted to ensure pristine and
accurate data.

VIII. CONCLUSIONS

In this paper, we presented the development of Big Data and
the relevant knowledge of ITS. The framework of conducting
Big Data analytics in ITS was discussed. We summarized the
data source and collection methods, data analytics methods
and platforms, and Big Data analytics application categories
in ITS. We presented several applications of Big Data ana-
Iytics in ITS, including asset maintenance, road traffic flow
prediction, road traffic accidents analysis, public transportation
service planning, personal travel route planning and rail trans-
portation management and control. Several open challenges
of using Big Data analytics in ITS were discussed in this
paper, including data collection, data privacy, data storage, data
processing, and data opening. Big Data analytics will have
profound impacts on the design of intelligent transportation
system, and make it safer, more efficient and profitable.
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