Quantum Theory of Many-Body systems in Condensed Matter (4302112) 2020

Prof. Luis Gregório Dias
luisdias@if.usp.br

Today's class: Many-particle quantum systems in $1^{\text {st }}$ quantization.

- N-particle quantum systems (" ${ }^{\text {st }}$ quantization")
- Examples: Two particles in an harmonic oscillator
- Assignment: Helium atom.

N-particle systems ("First quantization")

- Example of an N -particle Hamiltonian:

$$
\hat{H}=\sum_{i=1}^{N}\left(\frac{\left|\vec{p}_{i}\right|^{2}}{2 m_{i}}+U\left(\vec{r}_{i}\right)\right)+\frac{1}{2} \sum_{\substack{\text { Single-particle operators }}}^{N} V\left(\vec{r}_{i}, \vec{r}_{j}\right)
$$

- Schrödinger's equation (Dirac's notation):

$$
i \hbar \frac{\partial|\Psi(t)\rangle}{\partial t}=\hat{H} \underset{\text { "ket" }}{\hat{H}}|\Psi(t)\rangle
$$

$$
(|\Psi(t)\rangle)^{\dagger}=\langle\Psi(t)| \quad \text { "bra" }
$$

$$
\left\langle\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N} \mid \Psi(t)\right\rangle=\Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}, t\right)
$$

$$
\langle\Phi \mid \Psi\rangle=?
$$

$$
\langle\Phi \mid \Psi\rangle=\int d^{3} \vec{r}_{1} d^{3} \vec{r}_{2} \ldots d^{3} \vec{r}_{N} \Phi^{*}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right) \Psi\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N}\right)
$$

N-particle systems: Basis set

- Basis out of single-particle states:

$$
\left\{\left|\Phi_{\alpha}\right\rangle\right\}=\left\{\left|\varphi_{\alpha_{1}}\right\rangle\right\} \otimes\left\{\left|\varphi_{\alpha_{2}}\right\rangle\right\} \otimes \cdots \otimes\left\{\left|\varphi_{\alpha_{N}}\right\rangle\right\}
$$

orthonormal basis (complete set) of the N-particle Hilbert's space

$$
\left\langle\Phi_{\alpha} \mid \Phi_{\beta}\right\rangle=\delta_{\alpha \beta} \quad \text { and }
$$

$$
\sum_{\alpha}\left|\Phi_{\alpha}\right\rangle\left\langle\Phi_{\alpha}\right|=\mathbb{1}
$$

- Any N-particle state can be written in this basis:

$$
|\Psi(t)\rangle=\sum_{\alpha} C_{\alpha}(t)\left|\Phi_{\alpha}\right\rangle \quad \text { with } \quad C_{\alpha}(t)=\left\langle\Phi_{\alpha} \mid \Psi(t)\right\rangle
$$

- We can also use the full spectrum from a N -particle operator as a basis (much harder though!). Example:

$$
\left\{\left|\Psi_{n}\right\rangle\right\}: \hat{H}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

Systems of identical particles

- System of N distinguishable particles: you can differentiate the particles by performing measurements.
Examples: "classical" particles, quantum particles with different mass (electrons and muons) or charge (electrons and protons).
- In a system of N quantum identical particles, they become indistinguishable if the have the same (observable) quantum numbers (mass, charge, spin, etc.).
- In this case, one cannot perform measurements to tell which particle is which.

Examples: system of N electrons with the same spin (spin-polarized or "spinless").

Systems of identical particles

- Thus, the "exchange" of two identical particles cannot be experimentally detected: it should have the same probability density (experimental fact):

$$
\begin{aligned}
& \left|\Psi\left(\vec{r}_{1}, \ldots \vec{r}_{\mathbf{k}}, \ldots \vec{r}_{\mathbf{m}} \ldots \vec{r}_{N}\right)\right|^{2}=\left|\Psi\left(\vec{r}_{1}, \ldots \vec{r}_{\mathbf{m}} \ldots \vec{r}_{\mathbf{k}} \ldots \vec{r}_{N}\right)\right|^{2} \\
& \Psi\left(\vec{r}_{1}, \ldots, \vec{r}_{\mathbf{k}}, \ldots, \vec{r}_{\mathbf{m}}, \ldots \vec{r}_{N}\right)=\begin{array}{r}
\text { e } e^{i \theta} \Psi\left(\vec{r}_{1}, \ldots, \vec{r}_{\mathbf{m}}, \ldots, \vec{r}_{\mathbf{k}}, \ldots \vec{r}_{N}\right) \\
\text { States are the same up to a global phase }
\end{array}
\end{aligned}
$$

- In 3D, it is an experimental fact that a second exchange of the same particles brings the state back to the initial one. Thus:
$e^{2 i \theta}=1 \Rightarrow \begin{cases}\theta=0 & \text { (Bosons) } \Psi\left(\ldots, \vec{r}_{\mathbf{k}}, \ldots, \vec{r}_{\mathrm{m}}, \ldots\right)=+\Psi\left(\ldots, \vec{r}_{\mathrm{m}}, \ldots, \vec{r}_{\mathbf{k}}, \ldots\right) \\ \theta=\pi & \text { (Fermions) } \Psi\left(\ldots, \vec{r}_{\mathbf{k}}, \ldots, \vec{r}_{\mathrm{m}}, \ldots\right)=-\Psi\left(\ldots, \vec{r}_{\mathrm{m}}, \ldots, \vec{r}_{\mathbf{k}}, \ldots\right)\end{cases}$

An example with $\mathrm{N}=2$

- Two (indistinguishable) particles in a harmonic oscillator:

$$
\hat{H}=\left(\frac{\hat{p}_{1}^{2}}{2 m}+\frac{1}{2} m \omega \hat{x}_{1}^{2}\right)+\left(\frac{\hat{p}_{2}^{2}}{2 m}+\frac{1}{2} m \omega \hat{x}_{2}^{2}\right)=\hat{H}^{(1)}+\hat{H}^{(2)}
$$

- Spectrum (complete set): basis for single-particle states.

$$
\hat{H}^{(1)}\left|n_{1}\right\rangle_{1}=E_{n_{1}}\left|n_{1}\right\rangle_{1} \quad \hat{H}^{(2)}\left|n_{2}\right\rangle_{2}=E_{n_{2}}\left|n_{2}\right\rangle_{2}
$$

- Single-particle and two-particle basis states:

$$
\begin{array}{|cc}
|0\rangle_{1} \\
|1\rangle_{1} \\
|2\rangle_{1}
\end{array} \diamond \begin{gathered}
|0\rangle_{2} \\
|1\rangle_{2} \\
|2\rangle_{2}
\end{gathered} \quad \square \quad \begin{aligned}
& \left|\Phi_{0}\right\rangle=|0\rangle_{1} \otimes|0\rangle_{2} \\
& \left|\Phi_{1}\right\rangle=|0\rangle_{1} \otimes|1\rangle_{2} \\
& \left|\Phi_{2}\right\rangle=|1\rangle_{1} \otimes|0\rangle_{2} \\
& \left|\Phi_{3}\right\rangle=|1\rangle_{1} \otimes|1\rangle_{2} \\
& \left|\Phi_{4}\right\rangle=|0\rangle_{1} \otimes|2\rangle_{2}
\end{aligned}
$$

An example with $\mathrm{N}=2$

- Position representation:

$$
\langle x \mid n\rangle=\varphi_{n}(x)
$$

- Two particle states:

$$
\left|\Phi_{\alpha}\right\rangle=\left|n_{1}\right\rangle_{1} \otimes\left|n_{2}\right\rangle_{2} \quad \square
$$

$$
\begin{aligned}
\left\langle x_{1} x_{2} \mid \Phi_{\alpha}\right\rangle & =\left\langle x_{1} \mid n_{1}\right\rangle_{1}\left\langle x_{2} \mid n_{2}\right\rangle_{2} \\
& =\varphi_{n_{1}}\left(x_{1}\right) \varphi_{n_{2}}\left(x_{2}\right) \\
& =\Phi_{\alpha}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

- Is this basis appropriate for indistinguishable particles?

$$
\left\{\begin{array}{cc}
\left|\Phi_{0}\right\rangle=|0\rangle_{1} \otimes|0\rangle_{2} & \text { For example: } \\
\left|\Phi_{1}\right\rangle=|0\rangle_{1} \otimes|1\rangle_{2} & \Phi_{2}\left(x_{1}, x_{2}\right)=? \pm \Phi_{2}\left(x_{2}, x_{1}\right) \\
\left|\Phi_{2}\right\rangle=|1\rangle_{1} \otimes|0\rangle_{2} & \\
\left|\Phi_{3}\right\rangle=|1\rangle_{1} \otimes|1\rangle_{2} & \varphi_{1}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right) \neq \pm \varphi_{1}\left(x_{2}\right) \varphi_{0}\left(x_{1}\right) \\
\left|\Phi_{4}\right\rangle=|0\rangle_{1} \otimes|2\rangle_{2} & \text { No! }
\end{array}\right.
$$

This basis is not appropriate for indistinguishable particles.

Symmetrizing/Antisymmetrizing Bosons and Fermions

Symmetrized Basis (Bosons)

Original basis

$$
\begin{aligned}
\Phi_{1}\left(x_{1}, x_{2}\right) & =\varphi_{0}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right) \\
\Phi_{2}\left(x_{1}, x_{2}\right) & =\varphi_{0}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right) \\
\Phi_{3}\left(x_{1}, x_{2}\right) & =\varphi_{1}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right) \\
\Phi_{4}\left(x_{1}, x_{2}\right) & =\varphi_{1}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right) \\
\Phi_{5}\left(x_{1}, x_{2}\right) & =\varphi_{0}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) \\
\vdots &
\end{aligned}
$$

Now, particle exchange is well-defined!

$$
\begin{aligned}
& \Phi_{1}^{A}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{0}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right)-\varphi_{1}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right)\right) \\
& \Phi_{2}^{A}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{0}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right)-\varphi_{2}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{1}^{S}\left(x_{1}, x_{2}\right)=\varphi_{0}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right) \\
& \Phi_{2}^{S}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{0}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right)+\varphi_{1}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right)\right) \\
& \Phi_{3}^{S}\left(x_{1}, x_{2}\right)=\varphi_{1}\left(x_{1}\right) \varphi_{1}\left(x_{2}\right) \\
& \Phi_{4}^{S}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\varphi_{0}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right)+\varphi_{2}\left(x_{1}\right) \varphi_{0}\left(x_{2}\right)\right) \\
& \vdots \\
& \text { Antisymmetrized Basis (Fermions) }
\end{aligned}
$$

$$
\Phi_{\alpha}^{\dot{S}, A}\left(x_{1}, x_{2}\right)= \pm \Phi_{\alpha}^{S, A}\left(x_{2}, x_{1}\right)
$$

How about spin, etc.?

Sometimes, there are other "good quantum numbers" labeling the singleparticle states. How to account for this?

There are a few of ways to deal with it:

1) Count each single-particle state with a given "set" of quantum numbers as "one single particle state"
Example: $\quad\left|\varphi_{n \ell m \sigma}\right\rangle \rightarrow\left|\varphi_{\alpha}\right\rangle \quad n=0,1,2 \ldots, l=0,1, ., n-1 ; m=-1, .,+1, \sigma=\uparrow, \downarrow$

$$
\left|\varphi_{000 \uparrow}\right\rangle \rightarrow\left|\varphi_{0}\right\rangle,\left|\varphi_{000 \downarrow}\right\rangle \rightarrow\left|\varphi_{1}\right\rangle,\left|\varphi_{100 \uparrow}\right\rangle \rightarrow\left|\varphi_{2}\right\rangle \ldots
$$

2) You can also build many-particle states directly from sum of angular momenta ("multiplets"). This is trickier but useful.

$$
\left|\varphi_{\ell_{1} m_{1} \sigma_{1}}^{(1)}\right\rangle \otimes\left|\varphi_{\ell_{2} m_{2} \sigma_{2}}^{(2)}\right\rangle \rightarrow\left|\Phi_{J M_{J}}\right\rangle
$$

3) ...

Assignment: Helium atom

Consider the Hamiltonian:

$$
\hat{H}=\hat{H}^{(1)}+\hat{H}^{(2)}+\hat{V}_{1,2}
$$

$$
\left\langle\vec{r} \mid \phi_{n}^{(i)}\right\rangle \rightarrow \underset{\substack{\text { eigenstates } \\
\text { (single particle). }}}{\begin{array}{c}
\text { Hydrogen atom }
\end{array} .}
$$

$$
\hat{V}_{1,2}=\frac{\left(e^{2} / 4 \pi \epsilon_{0}\right)}{\left|\vec{r}_{1}-\vec{r}_{2}\right|} \rightarrow \begin{gathered}
\text { Electron- } \\
\text { electron } \\
\text { repulsion } \\
\text { (two-body) }
\end{gathered}
$$

$$
\widehat{H}(i)\left|\phi_{n}^{(i)}\right\rangle=H_{n}^{(i)}\left|\phi_{n}^{(i)}\right\rangle
$$

Table 3.2 Hydrogenic radial wavefunctions

n	l	Orbital	$R_{n l}(r)$
1	0	$1 s$	$(Z / a)^{3 / 2} 2 \mathrm{e}^{-\rho / 2} \quad$
2	0	$2 s$	$(Z / a)^{3 / 2}(1 / 8)^{1 / 2}(2-\rho) \mathrm{e}^{-\rho / 2}$
	1	$2 p$	$(Z / a)^{3 / 2}(1 / 24)^{1 / 2} \rho \mathrm{e}^{-\rho / 2}$

1) Consider first the non-interacting case $\left(\mathrm{V}_{1,2}=0\right)$. Write the two-particle ground-state $\left\langle\vec{r}_{1} \vec{r}_{2} \mid \Phi_{0}^{A}\right\rangle$. What is its energy (in eV)?
2) Write the matrix element $\left\langle\Phi_{0}^{A}\right| \hat{V}_{1,2}\left|\Phi_{0}^{A}\right\rangle$ (no need to solve the integral).

This is the first correction to the ground-state energy for the He atom!
Hint: the table gives the expressions for the radial wavefunctions for the Hydrogen.

