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Today’s class: Many-particle quantum systems
in 1% quantization.

* N-particle quantum systems (“1% quantization”)
 Examples: Two particles in an harmonic oscillator
* Assignment: Helium atom.



N-particle systems
(“First quantization”)

. Example of an N- particle Hamiltonian:
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Single-particle operators Two-particle operators
(e.g., interactions)

e Schrddinger’s equation (Dirac’s notation):
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N-particle systems: Basis set

e Basis out of single-particle states:
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orthonormal basis (complete set) of the N-particle Hilbert’s space
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* Any N-particle state can be written in this basis:
(T(1) =D Ca®Pa)  yin  Colt) = (o] U(t))

(8%
 We can also use the full spectrum from a N-particle operator as a basis
(much harder though!). Example:



Systems of identical particles

* System of N distinguishable particles: you can differentiate the particles
by performing measurements.

Examples: “classical’ particles, quantum particles with different mass
(electrons and muons) or charge (electrons and protons).

* |n a system of N quantum identical particles, they become
indistinguishable if the have the same (observable) quantum numbers
(mass, charge, spin, etc.).

* In this case, one cannot perform measurements to tell which particle is
which.

Examples: system of N electrons with the same spin (spin-polarized or
“spinless”).



Systems of identical particles

* Thus, the “exchange” of two identical particles cannot be experimentally
detected: it should have the same probability density (experimental fact):
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States are the same up to a global phase

* In 3D, itis an experimental fact that a second exchange of the same
particles brings the state back to the initial one. Thus:
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An example with N=2

* Two (indistinguishable) particles in a harmonic oscillator:
H = (51 —+ mwx1> < —+ mw332> H® + )

e Spectrum (complete set): basis for single-particle states.

ﬁ(1)|n1>1 = Fn,|n1)a ﬁ(2)|n2>2 — En2|n2>2
* Single-particle and two-particle basis states:
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An example with N=2

* Position representation: (x|n) = pn(x)

 Two particle states:
(x122|Po) =(z1|n1)1(T2|N2)2
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* |s this basis appropriate for indistinguishable particles?
g Do) = [0)1 ® |0)2 For example:
P1) = 1@ |1)2 Ps(x1,x2)="*% Po(x2, x
< b)) = 1)1 ® |0)s 2( 15 2) - — 2( 25 1>
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\— . No!

This basis is not appropriate for indistinguishable particles.



Original basis
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Now, particle exchange is
well-defined!

Symmetrizing/Antisymmetrizing
Bosons and Fermions

Symmetrized Basis (Bosons)

P (x1,22) = @o(x1)po(x2)
O3 (21,22) = 5 (@o(z1)p1(z2) + w1(21)po(22))
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Antisymmetrized Basis (Fermions)
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O (z1,22) = 5 (po(@1)p1(22) — @1(@1)po(22))
O3 (z1,22) = 5 (po(@1)p2(22) — P2(21)po(22))
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How about spin, etc.?

Sometimes, there are other “good quantum numbers” labeling the single-
particle states. How to account for this?

There are a few of ways to deal with it:

1) Count each single-particle state with a given “set” of guantum numbers as
“one single particle state”

Example: |90n€m0'> — |g0a> n=0,1,2...,1=0,1,..,n-1 ; m=-l,..,+l, c=T{

|©0001) — |¥0) 5 |woooy) = |©1) 5 |p100t) = |@2) - ..

2) You can also build many-particle states directly from sum of angular
momenta (“multiplets”). This is trickier but useful.
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Assignment: Helium atom

Consider the Hamiltonian:
H=HY + g® —I—V1,2
Hydrogen atom

<7?| qﬁﬁZ’) > — eigenstates

(single particle).

f/l , = (62/4760) . Electron-
’ ‘7:’1 — 772| electron
repulsion

(two-body)

AO0) = EP|6)

Table 3.2 Hydrogenic radial wavefunctions

n ' Orbital R,7)

1 0 1s (Zia)>22e—#* ®

2 0 2s (Zla)>2(1/8)Y2(2 — p)e~??
1 2p (Zia)>?(1/24) V2 pe~P%

p=(2Zina)r with a =4neoh*/ue”. For an infinitely heavy nucleus, p=m, and
a = ay, the Bohr radius.

1) Con5|der first the non-interacting case (V, ,=0). Write the two-particle ground-state

<7“1 T2 ’(I)O > What is its energy (in eV)?

2) Write the matrix element <<I)64 | V172 ‘(1)64> (no need to solve the integral).

This is the first correction to the ground-state energy for the He atom!

Hint: the table gives the expressions for the radial wavefunctions for the Hydrogen.
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