Quantum Theory of Many-Body systems in Condensed Matter (4302112) 2020

Prof. Luis Gregório Dias
luisdias@if.usp.br

Today's class: Review of Quantum Mechanics

- Single-particle quantum systems
- Example: Harmonic oscillator
- Assigments: Ladder operators.

Single-particle systems ("First quantization")

- Single-particle Hamiltonian:

$$
\hat{H}=\frac{(\vec{p}-q \vec{A})^{2}}{2 m^{*}}+U(\vec{r})
$$

Non-relativistic particle under a pontential $U(\vec{r})$ and magnetic field $\vec{B}=\nabla \times \vec{A}$

- Schrödinger's equation (Dirac's notation):

$$
i \hbar \frac{\partial|\psi(t)\rangle}{\partial t}=\hat{H}|\psi(t)\rangle \begin{aligned}
& (|\psi(t)\rangle)^{\dagger}=\langle\psi(t)| \\
& \langle\vec{r} \mid \psi(t)\rangle=\psi(\vec{r}, t) \\
& \langle\phi \mid \psi\rangle=\int d^{3} \vec{r} \phi^{*}(\vec{r}) \psi(\vec{r})
\end{aligned}
$$

Basis in the Hilbert space

$$
\begin{aligned}
& \left\{\left|\varphi_{\alpha}\right\rangle\right\} \rightarrow \begin{array}{l}
\text { orthonormal basis (complete set) of the } \\
\text { single-paticle Hilbert's space. }
\end{array} \\
& \left\langle\varphi_{\alpha} \mid \varphi_{\beta}\right\rangle=\delta_{\alpha \beta} \quad \text { and } \quad \sum_{\alpha}\left|\varphi_{\alpha}\right\rangle\left\langle\varphi_{\alpha}\right|=\mathbb{1}
\end{aligned}
$$

We can write: $\quad|\psi(t)\rangle=\sum_{\alpha} C_{\alpha}(t)\left|\varphi_{\alpha}\right\rangle$ with $\quad C_{\alpha}(t)=\left\langle\varphi_{\alpha} \mid \psi(t)\right\rangle$

Operators!

$$
\begin{aligned}
& \hat{A}|\psi\rangle=|\phi\rangle \quad \text { Representation in the }\left\{\left|\varphi_{\alpha}\right\rangle\right\} \text { basis: }
\end{aligned}
$$

$$
\begin{aligned}
& A_{\alpha \beta}=\left\langle\varphi_{\alpha}\right| \hat{A}\left|\varphi_{\beta}\right\rangle=\left\langle\varphi_{\alpha}\right|\left(\hat{A}\left|\varphi_{\beta}\right\rangle\right) \\
& A_{\beta \alpha}^{*}=\left\langle\varphi_{\beta}\right| \hat{A}^{\dagger}\left|\varphi_{\alpha}\right\rangle=\left(\left\langle\varphi_{\beta}\right| \hat{A}^{\dagger}\right)\left|\varphi_{\alpha}\right\rangle
\end{aligned}
$$

Observables (Hermitian operators)

$$
\hat{A}=\hat{A}^{\dagger} \rightarrow \text { Hermitian operator. }
$$

$$
\hat{A}\left|\varphi_{a}\right\rangle=a\left|\varphi_{a}\right\rangle \rightarrow a \in \mathbb{R} \quad \text { Real eigenvalues (Physical observable). }
$$

$$
P_{\psi}(a) \equiv\left|\left\langle\varphi_{a} \mid \psi\right\rangle\right|^{2} \rightarrow \begin{aligned}
& \text { Probability of measuring the value a for the } \\
& \text { observable } \hat{A} \text { if the particle is in state }|\psi\rangle
\end{aligned}
$$

Obs: if the spectrum is continuous, this becomes a probability density.
Example: position operator:

$$
d P_{\psi}(\vec{r}) \equiv|\langle\vec{r} \mid \psi(t)\rangle|^{2} d^{3} \vec{r}=|\psi(\vec{r}, t)|^{2} d^{3} \vec{r}
$$

Probability of the particle in state $|\psi(t)\rangle$ being in a volume $d^{3} \vec{r}$ around position \vec{r} at a time t.

Example: 1D Harmonic oscillator

Hamiltonian:

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \quad \text { with } \quad[\hat{x}, \hat{p}]=i \hbar
$$

Position rep.

$$
\langle\vec{r}| \hat{p}|\psi(t)\rangle=\frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x, t)
$$

Let us define:

$$
\begin{aligned}
& \hat{X}=\sqrt{\frac{m \omega}{\hbar}} \hat{x} \\
& \hat{P}=\frac{1}{\sqrt{m \hbar \omega}} \hat{p} \\
& \hat{a}=\frac{1}{\sqrt{2}}(\hat{X}+i \hat{P}) \\
& \hat{a}^{\dagger}=\frac{1}{\sqrt{2}}(\hat{X}-i \hat{P})
\end{aligned} \Longleftrightarrow \frac{\hbar \omega}{2}\left(\hat{P}^{2}+\hat{X}^{2}\right)
$$

and

Example: 1D Harmonic oscillator

Let us show that: $\quad[\hat{X}, \hat{P}]=i \quad$ and $\quad\left[\hat{a}, \hat{a}^{\dagger}\right]=1$
Also: $\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \quad \begin{gathered}\text { You will show (Assignment) that: } \\ {[\hat{a}, \hat{a}]=\left[\hat{a}^{\dagger}, \hat{a}^{\dagger}\right]=0}\end{gathered}$
Defining: $\quad \hat{N} \equiv \hat{a}^{\dagger} \hat{a} \quad$ (Show it commutes with H (Assignment))
and its eigenstates: $\quad \hat{N}|n\rangle=n|n\rangle \quad$ where n is an integer (Show).
It follows that:

$$
\begin{aligned}
& \hat{H}|n\rangle=E_{n}|n\rangle \\
& a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle \\
& a|n\rangle=\sqrt{n}|n-1\rangle
\end{aligned}
$$

(Show)

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) n=0,1, \ldots
$$

$$
|n\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle
$$

Single-particle spectrum

$$
\hat{H}|n\rangle=E_{n}|n\rangle
$$

$$
\begin{array}{ll}
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \quad n=0,1, \ldots \quad E_{0}=\hbar \omega
\end{array}
$$

$$
\{|n\rangle\} \rightarrow \begin{aligned}
& \text { orthonormal basis of the } \\
& \text { (single-particle) Hibert's space }
\end{aligned}
$$

$$
\left\langle n \mid n^{\prime}\right\rangle=\delta_{n n^{\prime}} \quad \text { and }
$$

$$
\sum_{n}|n\rangle\langle n|=\mathbb{1}
$$

Single-particle state:

$$
|\psi(t)\rangle=\sum_{n} C_{n}(t)|n\rangle \text { with }
$$

$$
C_{n}(t)=\langle n \mid \psi(t)\rangle
$$

$$
P_{\psi}(n) \equiv|\langle n \mid \psi\rangle|^{2} \rightarrow \begin{aligned}
& \text { Probabiity of measuring the value } E_{\text {f }} \text { for the } \\
& \text { energy if the particle is in state }|\psi\rangle
\end{aligned}
$$

Assignments: Ladder operators

Problem 1

Consider the 1D harmonic oscillator Hamiltonian $H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$ and the operators \hat{a} e \hat{a}^{\dagger} discussed in class.

1. Show that $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$ and that $[\hat{a}, \hat{a}]=\left[\hat{a}^{\dagger}, \hat{a}^{\dagger}\right]=0$.
2. Show that $\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$ comutes with H.
3. Show that, if $\hat{N}|\lambda\rangle=\lambda|\lambda\rangle$ then $\boldsymbol{\lambda}$ is a positive integer. Suggestion: show that $\hat{a}|\lambda\rangle$ is also an eigenstate of \hat{N} and that $\hat{a}|0\rangle=0$.
4. If $\hat{N}|n\rangle=n|n\rangle$, show that $|n\rangle \propto\left(\hat{a}^{\dagger}\right)^{n}|0\rangle$ where " $|0\rangle$ " is such that $\hat{a}|0\rangle=0$.
5. Show that:

$$
\begin{aligned}
& \hat{a}|n\rangle=\sqrt{n}|n-1\rangle \\
& \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
\end{aligned}
$$

6. Show that:
$\hat{a} \hat{a}^{\dagger}\left(\hat{a}^{\dagger}\right)^{p-1}|0\rangle=p\left(\hat{a}^{\dagger}\right)^{p-1}|0\rangle$.
(p is an integer)

Problem 2

Consider the single particle Hamiltonian:
$H=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\hbar \omega_{0}\left(\hat{a}^{\dagger}+\hat{a}\right)$,
where $\hat{\boldsymbol{a}}$ and $\hat{\boldsymbol{a}}^{\dagger}$ are (bosonic) ladder operators satisfying $\left[\hat{\boldsymbol{a}}, \hat{\boldsymbol{a}}^{\dagger}\right]=1$ and ω and ω_{0} are positive constants.

1. Discuss the physical origin of the second term in H, by comparing it with the harmonic oscillator
2. Diagonalize H and find its eigenenergies. Suggestion: introduce an operator $\hat{\alpha}=\hat{a}+\omega_{0} / \omega$.
