Cálculo Diferencial e Integral II para Economia

Prof. G.Siciliano

Prova - A

Instruções

- Assinale a alternativa correta de cada questão no gabarito abaixo. Deve ser entregue apenas esta página.
- Não podem ser feitas consultas de livros, notas....
- Cada questão tem apenas uma resposta correta. A nota da prova é um número entre 0 e 10:
 - i. cada questão correta vale 1 ponto,
 - ii. cada questão deixada em branco vale 0 ponto
 - iii. cada questão errada implica num desconto de 1/5 de ponto, ou seja -0.2

Nome (legível):		
Número USP: _		
Numero OSF: _		
Assinatura:		

Respostas:

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
a	a	a	a	a	a	a	a	a	a
b	b	b	b	b	b	b	b	b	b
c	c	c	c	c	c	c	c	c	c
d	d	d	d	d	d	d	d	d	d
e	е	е	е	е	е	e	е	е	е

NOTA

Cálculo Diferencial e Integral II para Economia

Prof. G.Siciliano

1. Seja $f(x,y) = x\sqrt[3]{6x + 20y}$. Marque a opção correta.

- (a) se v = (1,1) então $\frac{\partial f}{\partial v}(0,0)$ não existe
- (b) f é diferenciável em (0,0)
- (c) f não possui plano tangente em (0,0)
- (d) $\nabla f(0,0)$ não existe
- (e) nenhuma das outras alternativas

2. Sejam $f(x,y)=y^2+x^2$ e $A=\{(x,y)\in\mathbb{R}^2:x^2+2y^2\leq 1\}$. Então relativamente à A:

- (a) f atinge máximo absoluto em $(0, 1/\sqrt{2})$
- (b) f atinge o mínimo absoluto em $(1/\sqrt{2},0)$
- (c) nenhuma das outras alternativas
- (d) f possui dois pontos de máximo absoluto
- (e) f possui três pontos de máximo absoluto

3. O ângulo θ entre os vetores (1, -1, 2, 0) e (-1, 1, 1, 0) satisfaz

- (a) $\cos \theta = 2/\sqrt{2}$
- (b) $\cos \theta = \sqrt{2}/2$
- (c) $\cos \theta = 1/2$
- (d) $\cos \theta = 2/\sqrt{3}$
- (e) $\sin \theta = 2/\sqrt{2}$

4. O dominio de $f(x,y) = \arctan(\frac{1}{x}) + \sqrt{1 - x^2 - y^2}$

- (a) é aberto
- (b) é fechado
- (c) não é nem aberto nem fechado
- (d) não é limitado
- (e) nenhuma das outras alternativas

5. Considere $f(x,y) = \sin \frac{\pi}{x} + \sin \frac{\pi}{y}$. Então a equação do plano tangente ao gráfico da f no ponto (1,1,0) é:

- (a) f não possui plano tangente em tal ponto
- (b) $z = \pi x + \pi y 2\pi$
- (c) nenhuma das outras alternativas
- (d) $z = \pi(x+y)$
- (e) $z = \pi x \pi y$

- 6. Seja $f(x,y)=2\sin(x+y)\frac{x^2-y^2}{x^2+y^2}$. Então o limite por $(x,y)\to(0,0)$ da f vale:
 - (a) não existe
 - (b) nenhuma das outras alternativas
 - (c) 0
 - (d) 1
 - (e) -1
- 7. Seja $f(x,y) = x^2 + 2y^2 + xy$. A equação da reta normal ao gráfico da f no ponto (1,0,1) pode ser escrita em forma paramétrica como:
 - (a) $x = 1 + 2t, y = 1, z = 1 + t, t \in \mathbb{R}$
 - (b) $x = 1 2t, y = 0, z = 1 t, t \in \mathbb{R}$
 - (c) $x = 1 + 2t, y = 0, z = 1 t, t \in \mathbb{R}$
 - (d) $x = 1 + t, y = 1 + t, z = 2 t, t \in \mathbb{R}$
 - (e) $x = 1 + 2t, y = t, z = 1 t, t \in \mathbb{R}$
- 8. Sejam $f(x,y) = \arctan(x+y^2-1) + xy$ e $A = [0,1] \times [0,1/2]$. Então
 - (a) com respeito à A, f possui mínimo absoluto mas não máximo absoluto
 - (b) com respeito à A, f possui máximo absoluto mas não mínimo absoluto
 - (c) com respeito à A, f não possui nem mínimo absoluto nem máximo absoluto
 - (d) f não está definida em todo A
 - (e) nenhuma das outras alternativas
- 9. Seja $f(x, y, z) = z^2 18x^2 + 6xy 4y^2z$. Então
 - (a) (0,0,0) é ponto de máximo relativo
 - (b) (0,0,0) é ponto de mínimo relativo
 - (c) (0,0,0) é o único ponto crítico
 - (d) (0,0,0) é ponto de sella
 - (e) nenhuma das outras alternativas
- 10. Seja $f(x,y) = \sqrt{1 + x^2 + y^2}$. Então
 - (a) o único ponto crítico da f é máximo relativo
 - (b) o único ponto crítico da f é sella
 - (c) f possui mais que um ponto crítico
 - (d) f não possui pontos críticos
 - (e) nenhuma das outras alternativas

Cálculo Diferencial e Integral II para Economia Prof. G.Siciliano

Prova - A

Instruções

- Assinale a alternativa correta de cada questão no gabarito abaixo. Deve ser entregue **apenas** esta página.
- Não podem ser feitas consultas de livros, notas....
- Cada questão tem apenas uma resposta correta. A nota da prova é um número entre 0 e 10:
 - i. cada questão correta vale 1 ponto,
 - ii. cada questão deixada em branco vale 0 ponto
 - iii. cada questão errada implica num desconto de 1/5 de ponto, ou seja -0.2

Nome (legível):		
Número USP: _		
Assinatura		

Respostas:

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
a	a	a	a	a	a	a	a	a	a
b	b	b	b	b	b	b	b	b	b
c	c	c	c	c	c	c	c	c	c
d	d	d	d	d	d	d	d	d	d
е	e	e	е	e	e	e	е	е	е

NOTA

Answer Key for Exam A

- 1. Seja $f(x,y) = x\sqrt[3]{6x + 20y}$. Marque a opção correta.
 - (a) se v=(1,1) então $\frac{\partial f}{\partial v}(0,0)$ não existe
 - (b) f é diferenciável em (0,0)
 - (c) f não possui plano tangente em (0,0)
 - (d) $\nabla f(0,0)$ não existe
 - (e) nenhuma das outras alternativas
- 2. Sejam $f(x,y)=y^2+x^2$ e $A=\{(x,y)\in\mathbb{R}^2:x^2+2y^2\leq 1\}$. Então relativamente à A:
 - (a) f atinge máximo absoluto em $(0, 1/\sqrt{2})$
 - (b) f atinge o mínimo absoluto em $(1/\sqrt{2}, 0)$
 - (c) nenhuma das outras alternativas
 - (d) f possui dois pontos de máximo absoluto
 - (e) f possui três pontos de máximo absoluto
- 3. O ângulo θ entre os vetores (1,-1,2,0) e (-1,1,1,0) satisfaz
 - (a) $\cos \theta = 2/\sqrt{2}$
 - (b) $\cos \theta = \sqrt{2}/2$
 - (c) $\cos \theta = 1/2$
 - (d) $\cos \theta = 2/\sqrt{3}$
 - (e) $\sin \theta = 2/\sqrt{2}$
- 4. O dominio de $f(x,y) = \arctan(\frac{1}{x}) + \sqrt{1 x^2 y^2}$
 - (a) é aberto
 - (b) é fechado
 - (c) não é nem aberto nem fechado
 - (d) não é limitado
 - (e) nenhuma das outras alternativas
- 5. Considere $f(x,y) = \sin \frac{\pi}{x} + \sin \frac{\pi}{y}$. Então a equação do plano tangente ao gráfico da f no ponto (1,1,0) é:
 - (a) f não possui plano tangente em tal ponto
 - $(b) z = \pi x + \pi y 2\pi$
 - (c) nenhuma das outras alternativas
 - (d) $z = \pi(x+y)$
 - (e) $z = \pi x \pi y$

- 6. Seja $f(x,y)=2\sin(x+y)\frac{x^2-y^2}{x^2+y^2}$. Então o limite por $(x,y)\to(0,0)$ da f vale:
 - (a) não existe
 - (b) nenhuma das outras alternativas
 - (c) (
 - (d) 1
 - (e) -1
- 7. Seja $f(x,y) = x^2 + 2y^2 + xy$. A equação da reta normal ao gráfico da f no ponto (1,0,1) pode ser escrita em forma paramétrica como:
 - (a) $x = 1 + 2t, y = 1, z = 1 + t, t \in \mathbb{R}$
 - (b) $x = 1 2t, y = 0, z = 1 t, t \in \mathbb{R}$
 - (c) $x = 1 + 2t, y = 0, z = 1 t, t \in \mathbb{R}$
 - (d) $x = 1 + t, y = 1 + t, z = 2 t, t \in \mathbb{R}$
 - (e) $x = 1 + 2t, y = t, z = 1 t, t \in \mathbb{R}$
- 8. Sejam $f(x,y) = \arctan(x+y^2-1) + xy$ e $A = [0,1] \times [0,1/2]$. Então
 - (a) com respeito à A, f possui mínimo absoluto mas não máximo absoluto
 - (b) com respeito à A, f possui máximo absoluto mas não mínimo absoluto
 - (c) com respeito à A, f não possui nem mínimo absoluto nem máximo absoluto
 - (d) f não está definida em todo A
 - (e) nenhuma das outras alternativas
- 9. Seja $f(x,y,z)=z^2-18x^2+6xy-4y^2z$. Então
 - (a) (0,0,0) é ponto de máximo relativo
 - (b) (0,0,0) é ponto de mínimo relativo
 - (c) (0,0,0) é o único ponto crítico
 - (d) (0,0,0) é ponto de sella
 - (e) nenhuma das outras alternativas
- 10. Seja $f(x,y) = \sqrt{1 + x^2 + y^2}$. Então
 - (a) o único ponto crítico da f é máximo relativo
 - $\overline{\text{(b)}}$ o único ponto crítico da f é sella
 - (c) f possui mais que um ponto crítico
 - (d) f não possui pontos críticos
 - (e) nenhuma das outras alternativas