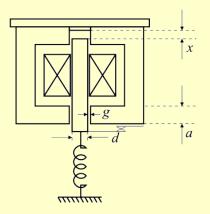
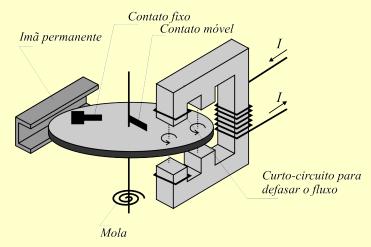
# Proteção e Automação de Sistemas Elétricos de Potência I

Proteção eletromecânica

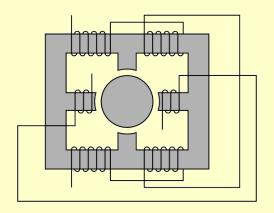
Giovanni Manassero Junior


Depto. de Engenharia de Energia e Automação Elétricas Escola Politécnica da USP

11 de setembro de 2017


#### Introdução

- Os relés de proteção eletromecânicos podem ser divididos conforme os seguintes tipos:
  - Relés de Atração Eletromagnética Plunger: os relés de atração eletromagnética são baseados no Princípio da mínima relutância;
  - Relés de Indução (Disco de Indução ou Copo): os relés de indução são baseados no princípio de interação de fluxos magnéticos para produção de força e conjugado mecânico. É o mesmo princípio dos motores elétricos de indução.
    - Disco de indução: temporizado;
    - Copo: instantâneo.


## Relés de Atração Eletromagnética – *Plunger*



### Relés de Indução - Disco de Indução



### Relés de Indução - Copo



### Princípio de funcionamento do Relé de Indução

- Quando a bobina de operação é energizada aparece torque no disco/copo, que o acelera até atingir rapidamente a velocidade de regime;
- A velocidade de regime é função do torque motor produzido pela grandeza de atuação, do torque resistente da mola e do torque resistente produzido pelo freio magnético;
- A estrutura do Relé de Indução é bastante versátil, portanto, pode ser utilizado em relés de uma única grandeza (sobre e sub) ou duas grandezas (direcionais de corrente, potência, distância, diferencial, etc.).

## Princípio de funcionamento do Relé de Indução

Relés de uma única grandeza (p. ex. sobrecorrente):

$$T = K_1 K_2 I^2 - T_{mola} - T_{freio}$$

- Relés de duas grandezas:
  - Relés corrente x corrente:

$$T = KI_1I_2\cos(\theta - \tau) - T_{mola} - T_{freio}$$

Relés corrente x tensão:

$$T = KIV \cos(\theta - \tau) - T_{mola} - T_{freio}$$

## Princípio de funcionamento do Relé de Indução

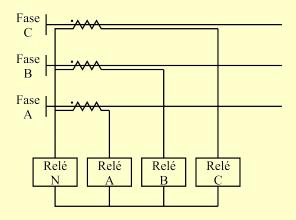
 Os relés de duas grandezas podem ser constituídos de forma que incluam qualquer combinação dos dois tipos de relés (1 ou 2 grandezas). Desta forma, resula a seguinte equação universal:

$$T = K_1 I^2 + K_2 V^2 + K_3 IV \cos(\theta - \tau) - T_{mola} - T_{freio}$$

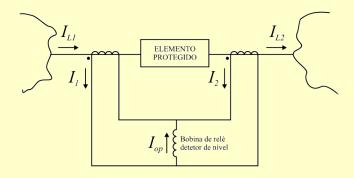
Onde:

$$T_{mola} + T_{freio} = K_4$$

Portanto:


$$T = K_1 I^2 + K_2 V^2 + K_3 IV \cos(\theta - \tau) - K_4$$

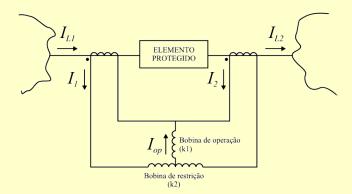
• Para um relé em particular, basta fazer um ou mais  $K_i$  iguais a zero.


## Funções de proteção

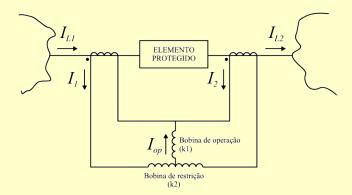
- Os relés eletromecânicos podem utilizados para implementar as seguintes funções:
  - Detetores de nível (p. ex. sobrecorrente);
  - Proteção diferencial (amperimétrica e percentual);
  - Comparação de ângulo de fase (Direcional);
  - Proteção de distância.

## Detetores de nível – Proteção de sobrecorrente




## Proteção diferencial




## Proteção diferencial

- Este tipo de relé diferencial é denominado Relé Diferencial Amperimétrico. Entretanto, erros sistemáticos na proteção diferencial inviabilizam a utilização deste tipo de relé:
  - Casamento imperfeito dos TC's;
  - Existência de componente contínua da corrente de curto-circuito, não nula em pelo menos duas fases;
  - Erro próprio dos TC's;
- Desta forma, para tornar a proteção diferencial mais segura podem ser utilizados dois enrolamentos de restrição em série com ambos os TC's.

## Proteção diferencial percentual



## Proteção diferencial percentual



### Comparação de ângulo de fase (Direcional)

- Os relés direcionais eletromecânicos são relés de duas grandezas. A grandeza de operação geralmente é uma corrente e a grandeza de polarização pode ser uma tensão ou uma corrente;
- Os relés direcionais são utilizados na Proteção Direcional de Potência ou na Proteção de Sobrecorrente Direcional (de fase e de neutro);
- No caso da Proteção Direcional de Potência são escolhidas características no relé, tal que o conjugado máximo ocorra para cargas com fator de potência unitário;
- No caso da Proteção de Sobrecorrente Direcional são escolhidas características no relé, tal que o conjugado máximo ocorra para correntes de falta atrasadas em relação à tensão.

## Comparação de ângulo de fase (Direcional)

- Com relação ao conjugado máximo, existem alguns tipos de configurações típicas, denominadas unidades:
  - Unidade  $0^{\circ}$  Conjugado máximo quando  $\tau = 0^{\circ}$ ;
  - Unidade  $30^{\circ}$  Conjugado máximo quando  $\tau = 30^{\circ}$ ;
  - Unidade  $45^{\circ}$  Conjugado máximo quando  $\tau = 45^{\circ}$ ;
  - Unidade  $60^{\circ}$  Conjugado máximo quando  $\tau = -60^{\circ}$ ;
- Apesar de existir um grande número de conexões, na prática existem apenas algumas conexões usuais entre as grandezas de polarização e operação. Estas conexões são conhecidas como:
  - Quadratura (90°);
  - Adjacente (30°);
  - 60° na ligação estrela e na ligação triângulo.

## Comparação de ângulo de fase - Proteção de Sobrecorrente Direcional

| Tipo de | Tipo de | Fase             |                | Fase              |             | Fase              |                | Máximo              |
|---------|---------|------------------|----------------|-------------------|-------------|-------------------|----------------|---------------------|
| Conexão | Unidade | A                |                | В                 |             | С                 |                | torque <sup>1</sup> |
| 90°     | 30°     | V <sub>BC</sub>  | I <sub>A</sub> | V <sub>CA</sub>   | IB          | V <sub>AB</sub>   | I <sub>C</sub> | Atrasadas<br>de 60° |
| 90°     | 45°     | V <sub>BC</sub>  | I <sub>A</sub> | V <sub>CA</sub>   | IB          | V <sub>AB</sub>   | I <sub>C</sub> | Atrasadas<br>de 45° |
| 30°     | 0°      | V <sub>AC</sub>  | I <sub>A</sub> | V <sub>BA</sub>   | IB          | V <sub>CB</sub>   | I <sub>C</sub> | Atrasadas<br>de 30° |
| 60°−Y   | 0°      | -V <sub>CN</sub> | I <sub>A</sub> | - V <sub>AN</sub> | IB          | - V <sub>BN</sub> | I <sub>C</sub> | Atrasadas<br>de 60° |
| 60°-∆   | 0°      | V <sub>AC</sub>  | $I_A - I_B$    | V <sub>BA</sub>   | $I_B - I_C$ | V <sub>CB</sub>   | $I_C - I_A$    | Atrasadas<br>de 60° |

Posição das grandezas de operação em relação às de polarização

## Comparação de ângulo de fase - Proteção de Sobrecorrente Direcional de Terra

- Polarização por tensão com unidade 60°:
  - Grandeza de operação: 31<sub>0</sub>;
  - Grandeza de polarização: -V<sub>0</sub>.
- Polarização por corrente com unidade 0°:
  - Grandeza de operação: 3l<sub>0</sub>;
  - Grandeza de polarização: I<sub>N</sub>.

## Comparação de ângulo de fase - Proteção Direcional de Potência Reativa

- Potência Ativa Unidade 0°:
  - Grandeza de operação: I<sub>A</sub> ou I<sub>AB</sub> (se não houver o neutro);
  - Grandeza de polarização:  $V_{AN}$  ou  $V_{AB}$  (se não houver o neutro).
- Potência Ativa Unidade 30°:
  - Grandeza de operação: I<sub>A</sub>;
  - Grandeza de polarização: V<sub>AC</sub>.

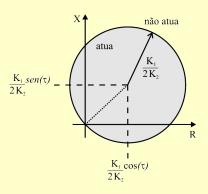
## Comparação de ângulo de fase - Proteção Direcional de Potência Ativa

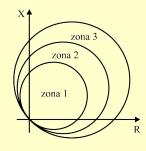
- Potência Reativa Unidade 0°:
  - Grandeza de operação: I<sub>A</sub>;
  - Grandeza de polarização: V<sub>BC</sub>.
- Potência Reativa Unidade 30°:
  - Grandeza de operação: I<sub>A</sub>;
  - Grandeza de polarização: V<sub>BN</sub>.

#### Relé de distância

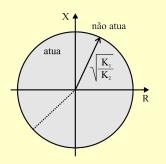
- A partir da equação universal dos relés eletromecânicos, pode-se obter a família dos relés de distância:
  - Relé Mho Tipo admitância:

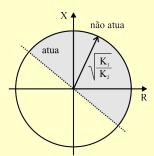
$$T = K_1 V I \cos(\theta - \tau) - K_2 V^2 - K_3$$


• Relé de distancia - Tipo impedância:

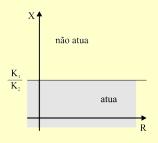

$$T = K_1 I^2 - K_2 V^2 - K_3$$

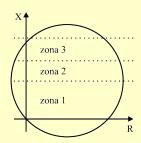
• Relé de distancia - Tipo reatância:


$$T = K_1 I^2 - K_2 VI \cos(\theta - \tau) - K_3$$


## Relé de distância tipo Mho







## Relé de distância tipo Impedância





### Relé de distância tipo Reatância



