Mecânica I – PME3100

Comentários Iniciais

Professor:

Ronaldo Carrion — rcarrion@usp.br

Programa do Curso e Cronograma (2º sem. 2020)

Critério de avaliação

Bibliografia

sites.poli.usp.br/d/pme3100

Comentários com acesso ao site

Horário das aulas

segunda-feira 07:30 às 10:10 quarta-feira 07:30 às 10:10 Sala: *on line*

Horário de atendimento

Fórum do Moodle

Antes de começarmos:

William Glasser

Born: May 11, 1925 – Cleveland, Ohio Died: August 23, 2013 – Los Angeles, California (88 anos)

BS (Bachelor of Science) in chemical engineering
MA (Master of Arts) in clinical

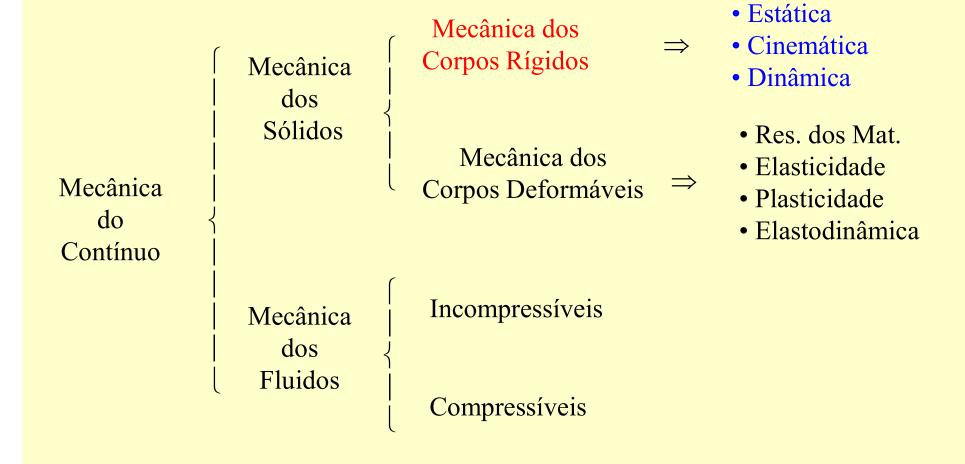
psychology

MD (Medicinae Doctor) in psychiatry

-----Prof. Ronaldo 4

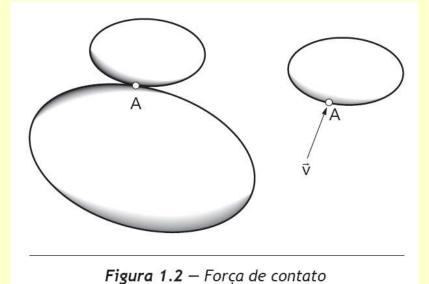
Mecânica I – PME3100

Aula 1 Capítulo 1 – Introdução à Mecânica Clássica



Grandezas
Fundamentais da
Mecânica
Newtoniana

- Comprimento
- Tempo
- Massa
- Força (vetor) \Rightarrow (\bar{v}, A)



 $A \rightarrow$ ponto de aplicação

Fonte: França, L. N. F. e Matsumura, A. Z. 2011, *Mecânica Geral*, 3ª edição, Editora Edgard Blücher Ltda.

Mecânica I – PME3100

Aula 1 Capítulo 2 – Forças e Vetores Aplicados

		1			
Ca	m	m	ш	In	,
	L	ш	u	w	

- 2.2 Momentos de um sistema de forças
 - 2.2.1 Momento em relação a um ponto
 - 2.2.2 Fórmula de mudança de polo
 - 2.2.3 Momento em relação a um eixo
 - 2.2.4 Binário

- 2.3 Sistemas equivalentes e redução de um sistema de forças
 - 2.3.1 Redução de um sistema de forças

2.1 Sistema de forças

Para um sistema de forças (\overline{F}_i, P_i) i = 1, 2, ..., n

chama-se resultante do sistema

$$\bar{R} = \sum_{i=1}^{n} \bar{F}_i$$

2.1 Sistema de forças

- 2.2 Momentos de um sistema de forças
 - 2.2.1 Momento em relação a um ponto
 - 2.2.2 Fórmula de mudança de polo
 - 2.2.3 Momento em relação a um eixo
 - 2.2.4 Binário

- 2.3 Sistemas equivalentes e redução de um sistema de forças
 - 2.3.1 Redução de um sistema de forças
 - 2.3.2 Eixo central

Escolhido um sistema ortogonal de coordenadas $(0, \bar{\iota}, \bar{\jmath}, \bar{k})$

 (X_i, Y_i, Z_i) componentes de \overline{F}_i

Obtém-se para as componentes de \bar{R} , os escalares

$$X = \sum_{i=1}^{n} X_i$$

$$Y = \sum_{i=1}^{n} Y_i$$

$$Z = \sum_{i=1}^{n} Z_i$$

2.1 Sistema de forças

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução de um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

Momento da força \overline{F} (aplicada em P) em relação ao ponto O, é o vetor

definido por:

$$\bar{M}_o = (P - O) \wedge \bar{F}$$

ponto
$$\mathbf{0} \Rightarrow \text{polo}$$

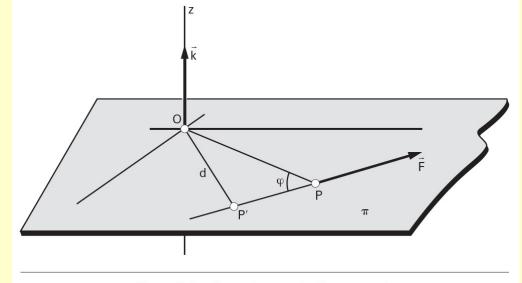


Figura 2.1 — Momento em relação a um ponto

			,			×		
C	21	n	П	п	П	ı	n	•
	a	μ	ш	U	и	1	v	_

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução de um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

módulo de
$$\overline{M}_o$$
 \Rightarrow $|\overline{M}_o| = |P - O| \cdot |\overline{F}| sen \phi = |\overline{F}| \cdot d$

O momento não se altera aplicando a força em qualquer ponto da sua linha de ação

Voltar na figura do slide anterior

2.1 Sistema de forças

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução de um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

Por definição, momento do sistema de forças (\bar{F}_i, P_i) em relação ao ponto $\mathbf{0}$, é o vetor

$$\bar{M}_o = \sum_i (P_i - O) \wedge \bar{F}_i$$

2.1 Sistema de forças

Aula 1

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução de um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

Teorema de Varignon:

O momento de um sistema de forças concorrentes ...

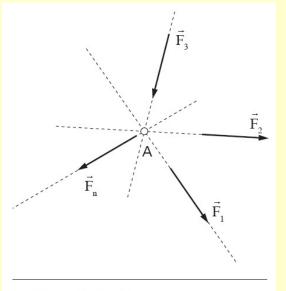


Figura 2.2 — Forças concorrentes

~			11	1		
•	0	n	11			2
	a	IJ	IL	u.	U	4

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução de um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

Teorema de Varignon:

O momento de um sistema de forças concorrentes, em relação a um polo *O* qualquer, é igual ao momento, em relação a *O*, da resultante do sistema, suposta aplicada no ponto de concurso das forças.

Sejam as forças (\bar{F}_i, A)

$$\bar{M}_o = \sum_i (A - O) \wedge \bar{F}_i = (A - O) \wedge \sum_i \bar{F}_i = (A - O) \wedge \bar{R}$$

Prof. Ronaldo

	pítulo	
1 '0	nitula	• ,
1		

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução do um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

2.2.2 Fórmula de mudança de polo

O momento de um sistema (\overline{F}_i, P_i) geralmente varia com o polo

Sendo O e O' dois polos, tem-se

$$\bar{M}_o = \sum_i (P_i - O) \wedge \bar{F}_i \qquad \qquad \bar{M}_{o'} = \sum_i (P_i - O') \wedge \bar{F}_i$$

Subtraindo membro a membro

2.1 Sistema de forças

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução de um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

$$\bar{M}_{o'} - \bar{M}_{o} = \sum_{i} (P_{i} - O') \wedge \bar{F}_{i} - (P_{i} - O) \wedge \bar{F}_{i} =$$

$$= \sum_{i} [(P_{i} - O') - (P_{i} - O)] \wedge \bar{F}_{i} = \sum_{i} (O - O') \wedge \bar{F}_{i} = (O - O') \wedge \sum_{i} \bar{F}_{i}$$

$$\bar{M}_{o'} = \bar{M}_o + (O - O') \wedge \bar{R}$$

Fórmula de mudança de polo (de *O* para *O'*)

2.1 Sistema de forças

2.2 Momentos de um sistema de forças

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

2.3 Sistemas equivalentes e redução de um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

Dessa fórmula conclui-se:

$$\bar{M}_{o'} = \bar{M}_o + (O - O') \wedge \bar{R}$$

- 1) Se $\overline{R} = \overline{0}$, o momento independe do polo escolhido
- 2) Se $\bar{R} \neq \bar{0}$, será $\bar{M}_{o'} = \bar{M}_o$ se e somente se $({\bf 0} {\bf 0}')$ for paralelo a \bar{R}
- 3) Se $\overline{M}_{o'} = \overline{M}_o$, qualquer que seja O', resulta $(O O') \wedge \overline{R} = \overline{0}$, para qualquer O', o que implica $\overline{R} = \overline{0}$
- 4) A relação $\overline{M}_{o'} \cdot \overline{R} = \overline{M}_o \cdot \overline{R}$, isto é, a projeção do momento do sistema sobre a direção da resultante é invariante para mudança de polos. O escalar $I = \overline{M}_o \cdot \overline{R}$ é chamado invariante escalar do sistema.

2.1 Sistema de forcas

2.2 Momentos de um sistema de forcas

2.2.1 Momento em relação a um ponto

2.2.2 Fórmula de mudança de polo

2.2.3 Momento em relação a um eixo

2.2.4 Binário

um sistema de forças

2.3.1 Redução de um sistema de forças

2.3.2 Eixo central

Exemplo 2.5 do livro texto

Os momentos de um sistema de vetores aplicados são:

$$\overline{M}_A = \overline{i} + 2\overline{k}$$
 no polo $A(1,2,0)$

$$\overline{M}_{B} = \overline{i} - 3\overline{j} - 4\overline{k}$$
 no polo $B(2,0,1)$

Achar sua resultante sabendo que ela é da forma: $\overline{R} = \overline{i} + R_{\nu}\overline{j} + R_{z}\overline{k}$

Resposta:
$$R_y = 4, R_z = -2$$

Prof. Ronaldo 19

PERGUNTAS?

