
Introduction to
Embedded Systems

Chapter 10: Input and Output, Interrupts

Edward A. Lee
UC Berkeley
EECS 149/249A
Fall 2016

© 2008-2016: E. A. Lee, A. L. Sangiovanni-Vincentelli, S. A. Seshia.
All rights reserved.

EECS 149/249A, UC Berkeley: 2

Connecting the Analog and Digital Worlds

Semantic mismatch:

Cyber:
•  Digital
•  Discrete in time
•  Sequential

Physical:
•  Continuum
•  Continuous in time
•  Concurrent

EECS 149/249A, UC Berkeley: 3

Practical Issues

•  Analog vs. digital
•  Wired vs. wireless
•  Serial vs. parallel
•  Sampled or event triggered
•  Bit rates
•  Access control, security, authentication
•  Physical connectors
•  Electrical requirements (voltages and currents)

EECS 149/249A, UC Berkeley: 4

A Typical Microcomputer Board
Beaglebone Black from Texas Instruments

This board
has analog
and digital
inputs and
outputs.
What are
they? How
do they
work?

ARM
Cortex-
A8

Power
management

Flash
memory

EECS 149/249A, UC Berkeley: 5

A Typical Microcomputer Board
Beaglebone Black from Texas Instruments

A “cape” is a daughter card that
fits on the board. Arduino
“shields” are similar. This one
provides an accelerometer,
gyro, and magnetometer.

EECS 149/249A, UC Berkeley: 6

A Typical Microcomputer Board
Beaglebone Black from Texas Instruments

More interestingly, this one
provides a protoboard to attach
your own hardware. How to do
that?

EECS 149/249A, UC Berkeley: 7

Beaglebone Black
Header Configuration

One of eight configurations
with SPI buses, analog I/O,
etc.

Many GPIO
pins can be
reconfigured
to be PWM
drivers,
timers, etc.

EECS 149/249A, UC Berkeley: 8

Memory-Mapped
Peripherals on the
“Berkeley Personality”

DIO158_OUT is a C
preprocessor macro defined in a
header file in your IDE project. It
defines the memory address of
this register.

EECS 149/249A, UC Berkeley: 9

Simple Digital I/O: GPIO

Open collector circuits are
often used on GPIO
(general-purpose I/O) pins
of a microcontroller.

The same pin can be used
for input and output. And
multiple users can connect
to the same bus.

Why is the current limited?

GPIO pins configured for
bus output. Any one
controller can pull the bus
voltage down.

EECS 149/249A, UC Berkeley: 10

Example: Turn on an LED

Assume GPIO pins can sink
up to 18 mA. Assume the
LED, when forward biased
(turned on), has a voltage
drop of 2 volts.

What resistor should you
use?

3V VDD

EECS 149/249A, UC Berkeley: 11

Example: Turn on an LED

Ohm’s law:
 V = IR

When LED is on, V = 1 volt.

To limit to 18mA,

 R ≥ 1/0.018 ≈ 56 ohms

3V VDD

EECS 149/249A, UC Berkeley: 12

Wired Connections
Parallel vs. Serial Digital Interfaces

¢  Parallel (one wire per bit)
l  ATA: Advanced Technology Attachment
l  PCI: Peripheral Component Interface
l  SCSI: Small Computer System Interface
l …

¢  Serial (one wire per direction)
l  RS-232
l  SPI: Serial Peripheral Interface bus
l  I2C: Inter-Integrated Circuit
l  USB: Universal Serial Bus
l  SATA: Serial ATA
l …

¢  Mixed (one or more “lanes”)
l  PCIe: PCI Express

PCI

SCSI

USB

RS-232

EECS 149/249A, UC Berkeley: 13

Wired Connections
Parallel vs. Serial Digital Interfaces

Parallel connectors have been largely replaced by serial
ones.

Why?

EECS 149/249A, UC Berkeley: 14

Serial Interfaces

The old but persistent RS-232 standard
supports asynchronous serial
connections (no common clock).
How does it work?

Many uses of RS-232 are
being replaced by USB,
which is electrically simpler
but with a more complex
protocol, or bluetooth, which
is wireless.

Uppercase ASCII "K" character (0x4b)
with 1 start bit, 8 data bits, 1 stop bit.
Image license: Creative Commons
ShareAlike 1.0 License

EECS 149/249A, UC Berkeley: 15

UART: Universal Asynchronous
Receiver-Transmitter

•  Convert serial data to

parallel data, and vice
versa.

•  Uses shift registers to
load store data

•  Can raise interrupt
when data is ready

•  Commonly used with
RS-232 interface

Variant: USART: Universal Synchronous/Asynchronous
Receiver-Transmitter

EECS 149/249A, UC Berkeley: 16

Speed Limitations

RS-232 relies on the clock in the transmitter being close
enough in frequency to the clock on the receiver that upon
detecting the start bit, it can just sample 8 more times and will
see the remaining bits.

USB achieves higher
speeds by beginning
every packet with
synchronization
sequence of 8 bits. The
receiver clock locks to
this for the rest of the
packet.

EECS 149/249A, UC Berkeley: 17

Input/Output Mechanisms in Software

¢  Polling
l  Main loop uses each I/O device periodically.
l  If output is to be produced, produce it.
l  If input is ready, read it.

¢  Interrupts
l  External hardware alerts the processor that input is ready.
l  Processor suspends what it is doing.
l  Processor invokes an interrupt service routine (ISR).
l  ISR interacts with the application concurrently.

EECS 149/249A, UC Berkeley: 18

Polling

Processor Setup Code

Processor checks I/O control register
for status of peripheral 1

Processor services I/O 1

Processor checks I/O control register
for status of peripheral 2

Processor checks I/O control register
for status of peripheral 3

Processor services I/O 2

Processor services I/O 3

Ready

Ready

Ready

Not Ready

Not Ready

Not Ready

EECS 149/249A, UC Berkeley: 19

Example Using a Serial Interface

In an Atmel AVR 8-bit microcontroller, to send a byte over
a serial port, the following C code will do:

 while(!(UCSR0A & 0x20));
 UDR0 = x;

•  x is a variable of type uint8.
• UCSR0A and UDR0 are variables defined in a header.
• They refer to memory-mapped registers in the UART

(Universal Asynchronous Receiver-Transmitter)

EECS 149/249A, UC Berkeley: 20

Send a Sequence of Bytes

for(i = 0; i < 8; i++) {
 while(!(UCSR0A & 0x20));
 UDR0 = x[i];

}
How long will this take to execute? Assume:
•  57600 baud serial speed.
•  8/57600 =139 microseconds.
•  Processor operates at 18 MHz.
Each for loop iteration will consume about 2502 cycles.

EECS 149/249A, UC Berkeley: 21

Receiving via UART

Again, on an Atmel AVR:
 while(!(UCSR0A & 0x80));
 return UDR0;

•  Wait until the UART has received an incoming byte.
•  The programmer must ensure there will be one!
•  If reading a sequence of bytes, how long will this take?

Under the same assumptions as before, it will take about
2502 cycles to receive each byte.

EECS 149/249A, UC Berkeley: 22

Input Mechanisms in Software

¢  Polling
l  Main loop uses each I/O device periodically.
l  If output is to be produced, produce it.
l  If input is ready, read it.

¢  Interrupts
l  External hardware alerts the processor that input is ready.
l  Processor suspends what it is doing.
l  Processor invokes an interrupt service routine (ISR).
l  ISR interacts with the application concurrently.

EECS 149/249A, UC Berkeley: 23

Interrupts

¢  Interrupt Service Routine
Short subroutine that handles the interrupt

Processor Setup Code

Register the Interrupt Service Routine

Processor executes task code Run Interrupt Service Routine

Interrupt!
Context switch

Resume

EECS 149/249A, UC Berkeley: 24

Interrupts

Triggers:
¢  A level change on an interrupt request pin
¢  Writing to an interrupt pin configured as an output (“software

interrupt”) or executing special instruction

Responses:
¢  Disable interrupts.
¢  Push the current program counter onto the stack.
¢  Execute the instruction at a designated address in program memory.

Design of interrupt service routine:
¢  Save and restore any registers it uses.
¢  Re-enable interrupts before returning from interrupt.

Source: ATmega168 Reference Manual

Program memory addresses,
not data memory addresses.

EECS 149/249A, UC Berkeley: 25

Berkeley Microblaze
Personality Memory Map

0xFFFFFFFF

0x0000004F

0x0000FFFF

Unmapped	Area	

ADC	subsystem	

Memory	for	
Instructions	and	Data		

Interrupt	controller	
0x81800000

MicroBlaze	
50MHz	

MEMORY	
DRAM	

UART0	
UART1	

ADC	
Subsystem	

TIMER	

Debugger	

Interrupt	
controller	

0x8180FFFF

Unmapped	Area	

Timer	
0x83C00000

0x83C0FFFF

Unmapped	Area	

UARTs	
Unmapped	Area	

0x84000000

0x8402FFFF

Debugger	
Unmapped	Area	

Unmapped	Area	

0x84400000

0x8440FFFF
0xC2200000

0xC220FFFF

Reset,	interrupt,	…	 0x00000000

EECS 149/249A, UC Berkeley: 26

Microblaze Interrupt Policy

“MicroBlaze supports one external interrupt source (connected
to the Interrupt input port). The processor only reacts to
interrupts if the Interrupt Enable (IE) bit in the Machine Status
Register (MSR) is set to 1. On an interrupt, the instruction in
the execution stage completes while the instruction in the
decode stage is replaced by a branch to the interrupt vector
(address 0x10). The interrupt return address (the PC
associated with the instruction in the decode stage at the time
of the interrupt) is automatically loaded into general purpose
register R14. In addition, the processor also disables future
interrupts by clearing the IE bit in the MSR. The IE bit is
automatically set again when executing the RTID instruction.”
Source: Microblaze datasheet

EECS 149/249A, UC Berkeley: 27

Interrupts are Evil

[I]n one or two respects modern machinery is basically
more difficult to handle than the old machinery. Firstly, we
have got the interrupts, occurring at unpredictable and
irreproducible moments; compared with the old
sequential machine that pretended to be a fully
deterministic automaton, this has been a dramatic
change, and many a systems programmer’s grey hair
bears witness to the fact that we should not talk lightly
about the logical problems created by that feature.

 (Dijkstra, “The humble programmer” 1972)

EECS 149/249A, UC Berkeley: 28

Timed Interrupt

Timer

Update Tick / Sample

When timer expires,
interrupt processor

Reset timer

Processor jumps to ISR

Resumes

Processor Setup

Register Interrupt Service Routine

Initialize Timer

Execute Task Code

EECS 149/249A, UC Berkeley: 29

Example: Set up a timer on an ATmega168 to
trigger an interrupt every 1ms.

¢  TCCR: Timer/Counter Control Register
¢  OCR: output compare register
¢  TIMSK: Timer Interrupt Mask

 The “prescaler” value divides the system
clock to drive the timer.

 Setting a non-zero bit in the timer
interrupt mask causes an interrupt to
occur when the timer resets.

Source: iRobot Command Module Reference Manual v6

EECS 149/249A, UC Berkeley: 30

Setting up the timer interrupt hardware in C

#include <avr/io.h>

int main (void) {

 TCCR1A = 0x00;

 TCCR1B = 0x0C;

 OCR1A = 71;

 TIMSK1 = 0x02;

 ...

}

This code sets the hardware up
to trigger an interrupt every 1ms.
How do we handle the interrupt? Source: ATmega168 Reference Manual

memory-
mapped
register.

But how is this
proper C code?

EECS 149/249A, UC Berkeley: 31

void initialize(void) {
 cli();

 // Set I/O pins
 DDRB = 0x10;
 PORTB = 0xCF;
 …….

 // Set up timer 1 to generate an interrupt every 1 ms
 TCCR1A = 0x00;
 TCCR1B = (_BV(WGM12) | _BV(CS12));
 OCR1A = 71;
 TIMSK1 = _BV(OCIE1A);

 // Set up the serial port with rx interrupt
 …….

 // Turn on interrupts
 sei();
}

// Global variables
volatile uint16_t timer_cnt = 0;
volatile uint8_t timer_on = 0;

// Timer 1 interrupt to time delays in ms
SIGNAL(SIG_OUTPUT_COMPARE1A) {
 if(timer_cnt) {
 timer_cnt--;
 } else {
 timer_on = 0;
 }
}

void delayMs(uint16_t time_ms) {
 timer_on = 1;
 timer_cnt = time_ms;
 while(timer_on) ;
}

//Enable interrupts (interrupt.h)
define sei() __asm__ __volatile__ ("sei" ::)
//Disable interrupts (interrupt.h)
define cli() __asm__ __volatile__ ("cli" ::)
#define SIGNAL(signame) \
void signame (void) __attribute__ ((signal)); \
void signame (void)

#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))
#define _SFR_IO8(io_addr) _MMIO_BYTE((io_addr) + 0x20)
#define _SFR_MEM8(mem_addr) _MMIO_BYTE(mem_addr)
#define _BV(bit) (1 << (bit))

//Timer defines (iomx8.h)
#define TCCR1A _SFR_MEM8 (0x80)
#define TCCR1B _SFR_MEM8 (0x81)
/* TCCR1B */
#define WGM12 3
#define CS12 2

EECS 149/249A, UC Berkeley: 32

void initialize(void) {
 cli();

 // Set I/O pins
 DDRB = 0x10;
 PORTB = 0xCF;
 …….

 // Set up timer 1 to generate an interrupt every 1 ms
 TCCR1A = 0x00;
 TCCR1B = (_BV(WGM12) | _BV(CS12));
 OCR1A = 71;
 TIMSK1 = _BV(OCIE1A);

 // Set up the serial port with rx interrupt
 …….

 // Turn on interrupts
 sei();
}

// Global variables
volatile uint16_t timer_cnt = 0;
volatile uint8_t timer_on = 0;

// Timer 1 interrupt to time delays in ms
SIGNAL(SIG_OUTPUT_COMPARE1A) {
 if(timer_cnt) {
 timer_cnt--;
 } else {
 timer_on = 0;
 }
}

void delayMs(uint16_t time_ms) {
 timer_on = 1;
 timer_cnt = time_ms;
 while(timer_on) ;
}

//Enable interrupts (interrupt.h)
define sei() __asm__ __volatile__ ("sei" ::)
//Disable interrupts (interrupt.h)
define cli() __asm__ __volatile__ ("cli" ::)
#define SIGNAL(signame) \
void signame (void) __attribute__ ((signal)); \
void signame (void)

#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))
#define _SFR_IO8(io_addr) _MMIO_BYTE((io_addr) + 0x20)
#define _SFR_MEM8(mem_addr) _MMIO_BYTE(mem_addr)
#define _BV(bit) (1 << (bit))

//Timer defines (iomx8.h)
#define TCCR1A _SFR_MEM8 (0x80)
#define TCCR1B _SFR_MEM8 (0x81)
/* TCCR1B */
#define WGM12 3
#define CS12 2

EECS 149/249A, UC Berkeley: 33

Setting up the timer interrupt hardware in C

#include <avr/io.h>

int main (void) {

 TCCR1A = 0x00;

 TCCR1B = 0x0C;

 OCR1A = 71;

 TIMSK1 = 0x02;

 ...

}

Source: ATmega168 Reference Manual

(*(volatile uint8_t *) (0x80)) = 0x00;

EECS 149/249A, UC Berkeley: 34

Example 2: Set up a timer on a Luminary Micro
board to trigger an interrupt every 1ms.

// Setup and enable SysTick with interrupt every 1ms

void initTimer(void) {
 SysTickPeriodSet(SysCtlClockGet() / 1000);

 SysTickEnable();

 SysTickIntEnable();

}

// Disable SysTick

void disableTimer(void) {

 SysTickIntDisable();

 SysTickDisable();

}

Source: Stellaris Peripheral Driver Library User’s Guide

Number of cycles per sec.

Start SysTick counter

Enable SysTick timer interrupt

EECS 149/249A, UC Berkeley: 35

volatile uint timer_count;
void ISR(void) {
 timer_count--;
}

int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init (prev slide)
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Example: Do something for 2 seconds then stop

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)
under the control of this program.

static variable: declared outside
main() puts them in statically
allocated memory (not on the
stack)

Interrupt service routine

Registering the ISR to be invoked
on every SysTick interrupt

EECS 149/249A, UC Berkeley: 36

volatile uint timer_count;
void ISR(void) {
 timer_count--;
}

int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Concurrency

concurrent code:
logically runs at the
same time. In this case,
between any two
machine instructions in
main() an interrupt can
occur and the upper
code can execute.

What could go wrong?

EECS 149/249A, UC Berkeley: 37

volatile uint timer_count;
void ISR(void) {
 timer_count--;
}

int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Concurrency

What could go wrong?

what if the interrupt
occurs twice during
the execution of this
code?

EECS 149/249A, UC Berkeley: 38

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Improved Example

EECS 149/249A, UC Berkeley: 39

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Reasoning about concurrent code

can an interrupt
occur here? If it can,
what happens?

EECS 149/249A, UC Berkeley: 40

Issues to Watch For

•  Interrupt service routine execution time
•  Context switch time
•  Nesting of higher priority interrupts
•  Interactions between ISR and the application
•  Interactions between ISRs
•  …

EECS 149/249A, UC Berkeley: 41

A question:

What’s the difference between

Concurrency
and

Parallelism

EECS 149/249A, UC Berkeley: 42

Concurrency and Parallelism

 A program is said to be concurrent if different parts of
the program conceptually execute simultaneously.

 A program is said to be parallel if different parts of the
program physically execute simultaneously on distinct
hardware.

A parallel program is concurrent, but a concurrent
program need not be parallel.

EECS 149/249A, UC Berkeley: 43

Concurrency in Computing

¢  Interrupt Handling
l  Reacting to external events (interrupts)
l  Exception handling (software interrupts)

¢  Processes
l  Creating the illusion of simultaneously running

different programs (multitasking)
¢  Threads

l  How is a thread different from a process?
¢  Multiple processors (multi-cores)
. . .

EECS 149/249A, UC Berkeley: 44

Summary

Interrupts introduce a great deal of nondeterminism into a
computation. Very careful reasoning about the design is
necessary.

