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Abstract
Subsurface soil and rock profiles are commonly interpreted from borehole log datasets. These datasets include three-dimensional
spatial coordinate information, layer information, and standard penetration test results. More reliable spatial distribution of target
physical properties can be obtained from additional testing at locations characterized by outlier observations and geotechnical
uncertainties. At a given site, irregular measurements typically differ significantly from bulk measurements or proximal obser-
vations. In this study, a process for optimizing site-specific geostatistics, which uses geotechnical spatial information and applies
optimum outlier thresholds with a multi-clustering method, is proposed to incorporate site-specific geo-layer uncertainties and
identify their geotechnical value. Optimized geostatistical characteristic information for geological strata boundaries was derived
and verified based on a sequential procedure applied to representative test areas in Seoul, South Korea.
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Introduction

The spatial uncertainty in geotechnical properties associated
with heterogeneous lithologic compositions has been discussed
and reported extensively (Vanmarke 1977; Asaoka and A-
Grivas 1982; Degroot and Baecher 1993; Lacasse and Nadim
1997; Phoon and Kulhawy 1999; Chun et al. 2005; Kim et al.
2012). In particular, it is important that geologic strata bound-
aries and associated geotechnical characteristics are derived for
the proposed development site, e.g., foundation, excavation, or
embankment. Geotechnical uncertainties decrease geotechnical
design reliability, requiring the reduction or removal of measure-
ment errors (over or under the relative design criteria) using
appropriate statistical methods (Grubbs 1969; Barnett and

Lewis 1994; Zhang et al. 2007; Chandola and Kumar 2009;
Orr and Breysse 2008; Phoon 2008). Furthermore, where geo-
technical uncertainty exists, focused testing should identify any
geological or geotechnical outliers. For a given site, irregular
measurements typically differ significantly from other measure-
ments or nearby observations. However, evenwhere sampling is
quite regular, spatial correlations can be weak in locations with
high geological heterogeneity.

Datasets for geotechnical engineering practices are obtain-
ed from a variety of information sources, including in situ
investigations, laboratory tests, field monitoring, and comput-
er analyses, which have inherent errors or uncertainties that
can be transferred to design parameters. To understand the
spatial variability and identify predictable errors, spatial nu-
merical modeling of geotechnical datasets based on appropri-
ate geostatistical or statistical methodologies that consider
spatial uncertainties induced by multiple geospatial datasets
is necessary. Geostatistics is a branch of spatial statistics with a
well-developed mathematical/statistical theoretical frame-
work based on probability theory (Delfiner 1976; Isaaks and
Srivastava 1989). It can be regarded as a collection of numer-
ical techniques that characterize spatial relationships. For ex-
ample, prior work has attempted to obtain the multi-
dimensional distribution of soil properties by analyzing a mul-
titude of one-dimensional borehole data using geostatistical
techniques (Öztürk and Nasuf 2002).
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Most geostatistical studies do not apply uncertainty
measures provided by smoothing methods. Only mapped
smoothed rates and interpolated properties are reported and
used in such analyses. This has disadvantages because all
rate smoothers, including ordinary kriging, cause the loss
of local spatial variation risk details (Goovaerts 2006).
Therefore, to apply smoothing methods using initial
datasets with reduced errors, an optimization framework
for site-specific outlier analysis should be developed for
geospatial datasets from undermined areas with various
spatial correlations. These uncertainties render the geo-
technical design less reliable, and measurement errors must
be reduced or removed with appropriate statistical
methods. Typically, such erratic measurements are numer-
ically distinguishable from the remaining data or deviate
significantly from other proximal observations.

Kim et al. (2012) proposed a framework to detect outlier
data using statistical analyses, a cross-validation-based meth-
od, and generalized extreme-value distribution–basedmethod.
Borehole datasets that include the soil depth distribution in
regions of central Seoul (South Korea) were assessed to vali-
date the aforementioned methods through a comparison be-
tween distribution-based methods and a Moran scatterplot
method (Anselin 2004). The results indicated that outlier
methods that consider spatial correlations facilitate obtaining
more reliable spatial distributions, and with a quantitative
evaluation of local reliability. These outlier methods are
closely related to clustering methods. Lu et al. (2003) defined
a spatial outlier as a spatially referenced object with non-
spatial attribute values significantly different from those of
its neighborhood. Quantitative methods provide tests to dis-
tinguish such spatial outliers from the remaining data in a sub-
cluster. Therefore, to develop geospatial information based on
optimized site-specific borehole datasets, conventional outlier
analysis and spatial interpolation methodologies should be
integrated and optimized while accounting for outlier loca-
tions (Yu et al. 2002).

In this study, a framework for optimizing geostatistics for
geotechnical spatial information is proposed based on apply-
ing a site-specific outlier detection method. The framework
uses clustering to incorporate site-specific uncertainties into
the geo-layer and geotechnical characteristic values.
Sequential optimization phases were designed for the
decision-making procedure based on geographic information
system (GIS) architecture to develop the geotechnical spatial
information grid. Test areas in Seoul, South Korea, were se-
lected to validate the framework. First, the multi-source geo-
layer information was archived and standardized to reflect the
geostatistical characteristics corresponding to the influence of
the geotechnical layer and topological effects. Second, the
geostatistics of the geo-layer information were derived using
a GIS approach involving geostatistical spatial interpolation
and density–topology estimation. Accordingly, a sampling of

representative borehole information, considering local site ef-
fects, was conducted, and the corresponding test areas were
selected. Third, by clustering the borehole information, the
geotechnical spatial information for targets in each test area
was developed and normalized using geostatistical optimum
criteria. The optimum range for zonal clustering was deter-
mined based on a cross-validation method using multi-
circular zonation. Finally, a cross-validation-based outlier de-
tection method was proposed and applied to each optimized
cluster. Here, the relative outlier threshold was determined
based on the density and spatial correlations of boreholes in
each cluster. The geotechnical spatial information grid was
developed without any site-specific outliers. Thus, site classi-
fication criteria for optimum outliers at the study site were
proposed and validated.

Framework for optimizing site-specific
geotechnical spatial information

To determine the geotechnical design variables associated
with specific zones, such as redevelopment areas, it is essen-
tial to estimate reasonable spatial information from the char-
acteristic geotechnical values using surrounding borehole
datasets prior to additional surveying. Therefore, outlier de-
tection for each cluster, within the optimum clustering range,
should be conducted to construct a geotechnical spatial infor-
mation grid using the appropriated geostatistical method. To
determine site-specific outliers, considering the distribution
pattern and spatial correlations of the borehole datasets, a sys-
tematic framework for optimizing geostatistics for geotechni-
cal spatial information is proposed, as illustrated in Fig. 1.

First, multi-source geospatial information, e.g., geotechni-
cal investigation data, geological maps, land cover maps, and
other infrastructure information within the same spatial coor-
dinate system, was collected. Then, geo-modeling and
reprocessing, using GIS toolsets (Davis et al. 2015), was per-
formed to determine the primary relationships between vari-
ous geo-datasets corresponding to the overlying and zonal

Fig. 1 Schematic procedure for evaluating site-specific geotechnical
characteristic values using an outlier analysis based on a GIS platform
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characteristics based on observations. Geo-layer datasets with
similar geotechnical and geostatistical characteristics were
clustered using geostatistical estimates and hot-spot analysis.
Local geotechnical datasets were classified using
geostatistical density analyses to identify clusters with similar
spatial correlations in geo-layer characteristics. The interpo-
lated geo-layer based on kriging, kernel density, and digital
elevation models (DEMs) was assigned as the classification
criteria for local geo-layer properties. Hot-spot clustering of
the classification criteria was conducted to identify represen-
tative areas, considering the site classification of the topolog-
ical surface information based on multiple geo-layers.

Second, to optimize the conditions for random-field as-
sumptions in the kriging methods to incorporate interpolation
and zonation, appropriate geostatistical methods and corre-
sponding variogram models were validated and determined
using a cross-validation-based verification test (Rue and
Follestad 2003). The best-fitting kriging model for depth to
bedrock was selected to construct the geotechnical spatial
grid. Because there are spatial variations in the bedrock
depths, due to heterogeneous geological formations, and spa-
tial density of the borehole measurements, local subsets with
constant areas were selected to determine the optimization
criteria using site-specific spatial correlations.

Third, the range in optimum circular clustering area for
each subset was determined considering the correlation be-
tween the radius of the influencing circle and variogram-
based effective range for bedrock depths. A trial-and-error
approach, by constantly increasing the radius of the circular
cluster, was applied to determine the borehole datasets with
relatively constant correlations. Subsequently, the outer
threshold of each subset was determined using the borehole
datasets within the optimized sub-cluster, thus identifying the
outlier observations outside the optimum threshold. This is
achieved within a more reliable spatial distribution of target
physical properties by reducing or removing data that signif-
icantly deviate from adjacent observations or results from ad-
ditional tests performed at the same location. Site-specific
outliers were determined for each sub-cluster. The borehole
datasets were modified by applying the geostatistical optimum
criteria, and a geotechnical spatial grid was developed using
these optimized borehole datasets.

Based on the proposed framework (Fig. 1), a previously
constructed geospatial database was used as an initial input
dataset for the stage-by-stage procedures using a GIS-based
multi-layer information platform. To build the database, bore-
hole datasets and geospatial information, including geotechni-
cal engineering, geology, and geomorphology data, were col-
lected and standardized. For a more reliable prediction of geo-
technical information in the area of interest, topological sur-
face information was extracted from topographic maps, satel-
lite images, surface geology, and digital elevation models
(DEMs) (Kim et al. 2017).

Geo-spatial analysis and optimization
of geotechnical datasets in Seoul, South
Korea

Evaluating the test area site descriptions

A geospatial database for Seoul was constructed and applied
based on the geodatabase schema in the ArcGIS platform to
assess site-specific geospatial distribution patterns, specifical-
ly the depth to bedrock and local differences between spatial
components in the geospatial database (Fig. 2). The Seoul area
was separated into 100-mmesh areas, yielding 225,835 spatial
grids (interpolation grids), including the extended area of the
Seoul administrative area. Component mesh-unit data were
created for each spatial grid (Kim et al. 2017). The authors
chose the target study area of the entire territory surrounded by
the administrative boundaries of the Seoul metropolitan areas
as the administrative region. The target area is the largest
urban area in Korea. Geospatial information included bore-
hole datasets, a digital elevation model, digital numerical in-
formation (e.g., watershed and administrative boundaries), in-
frastructure information (e.g., roads, buildings, and pipelines),
geological maps, land cover maps, and other geo-proxy-based
map information.

Existing borehole data were gathered, and a geo-
knowledge-based site visit was conducted across the Seoul
area to acquire surface geospatial data, focusing on mountain-
ous or undeveloped areas. Estimates of spatial geotechnical
layers across the extended area were collected from a total of
~ 22,300 existing borehole datasets and ~ 1700 surface geo-
knowledge datasets. To spatially estimate soil layers, the op-
timized site-specific interpolation method was applied to the
Seoul area (53.0 km east–west, 39.0 km north–south).
Figure 2 schematically illustrates the procedure for construct-
ing the multi-source geo-layer information in Seoul based on a
GIS platform. In addition to the digital elevation model, infor-
mation for roads, buildings, and pipelines were collected from
building registers in Seoul and, using the GIS platform, con-
verted into geospatial datasets based on the coordinate infor-
mation at each vertex to provide the overall infrastructure. In
addition, geophysical survey results were collected and con-
structed as tomography information with two- or three-
dimensional coordinates based on the geodatabase.

Geostatistical characterization of geo-layer
information

Generally, there are variations in spatial density of geotechni-
cal datasets because of their collection purpose (Kim et al.
2017). These geotechnical datasets are distributed spatially
as linear or circular clusters focused on urban facility sites
for engineering projects. Accordingly, there are spatial corre-
lations or patterns of spatial interpolation depending on the
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density of a specific cluster in the target area. Thus, geotech-
nical datasets with similar spatial correlations are grouped
together as spatial fields considering the spatial correlations
of unit clusters using conventional geostatistical methods;
then, they are used to assign sequential analysis categories to
determine the appropriate zonation method (Kim et al. 2016).
Hence, the spatial correlations or patterns between geotechni-
cal and infrastructure information have to be estimated using a
geostatistical density analysis before optimizing the geospatial
database and selecting representative areas, which are classi-
fied by various geological and topographic properties in the
Seoul area.

Kernel density is used to calculate the magnitude per unit
area from point or polyline features using a kernel function to
fit a smoothly tapered surface to each point. The kernel den-
sity is a well-established method used to identify spatial pat-
terns that calculates the density of events around each point,
scaled by the distance from the point to each event. The kernel
density describes a smooth and continuous surface map of risk
targets because a discrete pattern is continuously created by
interpolation (Kim et al. 2017). Thus, this method can com-
pensate for any paucity in the data. A general density estima-
tion function is shown as follows:

f xð Þ ¼ 1

nh
∑
n

i¼1

K x−xið Þ
h

; ð1Þ

where xi is the value of the variable x at location i, n signifies
the total number of locations, h denotes the bandwidth or
smoothing parameter, and K represents the kernel function
(Borruso and Schoier 2004).

Using the described spatial analysis method, the
geostatistical spatial information was evaluated using bore-
hole datasets and the local DEM, as shown in Fig. 3. The

average depth to bedrock was calculated as 18.2 m and was
concentrated along the Han River based on the kriging, since
the most of boreholes having thick alluvial layer (more than
10 m) were located along the river. Furthermore, a thick soil
layer, more than 25 m, was confirmed in the downstream area
(west Seoul). The local geotechnical datasets were also clas-
sified using the kernel density method to ensure that the
geostatistical clusters maintained a similar spatial correlation
of geo-layer characteristics. Rather than choosing an arbitrary
interval, it is more appropriate to use the mean nearest-
neighbor distance for different orders of K, which can be cal-
culated using an ArcGIS toolset. Therefore, the geostatistical
estimation was conducted discriminately over large-scale
zones with similar spatial correlations based on specific
groups (or clusters) considering the kernel density (Fig. 3b).
The standard deviation of kernel densities between boreholes
and pipelines at each grid was 3.23. To establish a relationship
between spatial patterns and topological information, a DEM-
based slope was estimated by building a triangular irregular
network (TIN). The DEM-based slope was also extracted at
borehole locations and connected with geo-layer boundaries
to de-trend the effect of sloping layer boundaries and variable
layer thicknesses depending on the topographic variability.

Using the kernel function, the optimized hot-spot analysis
calculates the Getis–Ord statistic for each feature in a dataset to
identify the locations of local clusters for site effect parameters
(Gökkaya 2016). The Getis–Ord Gi* of the target feature is
included in the analysis and indicates the locations of hot spots
(clusters of high values) and cold spots (clusters of low values) in
the area (Getis and Ord 1996; Prasannakumar et al. 2011). This
method works by inspecting each feature within the context of
neighboring features. To be statistically significant, a hot spot or
cold spot should have a significantly high or low value and also
be surrounded by other features with high or low values.

Fig. 2 Schematic procedure for constructing multi-source geo-layer information in Seoul based on a GIS platform
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Fig. 3 Variations in geostatistical
characteristics of the geotechnical
and topology layer. a Bedrock
depth using ordinary kriging, b
kernel density of borehole
datasets, and c slope
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The hot-spot analysis method uses geostatistical character-
istic values from borehole datasets and DEM data to identify
the locations of statistically significant hot spots and cold
spots. To evaluate site-specific concentrations of the dual var-
iables, i.e., borehole-based geo-layer boundary and DEM, op-
timized hot-spot clustering was conducted using the kernel
function. As the geo-layers are normally not strictly horizontal
layers, the trend of sloping geo-layer boundaries should be
removed before the residuals are analyzed by kriging, consid-
ering the correlations between slope and geo-layer boundaries.
In this study, the local point map of correlations between bed-
rock depth and land surface information, elevation, slope, ge-
ology, and land cover was created using a kernel density esti-
mation map (Fig. 4). Based on confidence distributions, the
multivariable clusters were categorized into seven groups:
three Bcold spots^ (with a 90%, 95%, and 99% confidence),
three Bhot spots^ (with a 90%, 95%, and 99% confidence),
and one BNot Significant^ spot. To identify a strong positive
relationship between the density of the depth to bedrock and
slope information, a cluster that is related to the greatest depth
to bedrock and highest kernel density of land surface charac-
teristics (low slope), respectively, was defined as a Bhot spot.^
In contrast, a Bcold spot^ was defined as the cluster with the
lowest depth to bedrock density and lowest kernel density of
land surface characteristics (high slope). The points on the
map with a non-critical relationship between land surface in-
formation were classified as BNot Significant^ spots.

In the Seoul area, a high potential for large depths to bedrock
was determined in the western and east–central urban areas.

Sub-groups (with a focus on Bhot spots^) with a lower potential
for thick alluvium soil were distributed evenly across the entire
area. However, the plains at the mouth of the Han River had a
higher density of borehole datasets. Depending on the geotech-
nical datasets for each group, the construction of 2D geo-layer
information was performed separately, based on the appropriate
variogram method. Specifically, the variograms for each indi-
vidual cluster were modeled for the test areas in Seoul follow-
ing the proposed framework. To de-trend the variable layer
thickness depending on the slope, the borehole datasets classi-
fied as Bcold spots^ with a 95% or 99% confidence were re-
moved before the kriging procedure. Although borehole
datasets were distributed at the same administrative region,
the outlying borehole datasets, which were defined as the Bcold
spots^ with a 95% or 99% confidence, were excluded for
selecting the test area based on hot-spot clustering.

From the geostatistical characteristics from the geotechni-
cal and topology layer (Fig. 3) and hot-spot clustering (Fig. 4),
zonation information commensurate with the administration
borders in Seoul was calculated based on an averaged grid
value in each subset (Fig. 5). Consequently, Barea 1^ and Barea
3,^ having greater bedrock depth and density (i.e., lower
slope), were selected as test areas. These areas were classified
as Bhot spots^ with more than 95% confidence. Barea 2^ was
defined with a shallower bedrock depth (generally classified
as Bcold spot^) and density (otherwise higher slope). For Barea
1,^ Barea 2,^ and Barea 3,^ 4532, 2014, and 3854 borehole
datasets were constructed, respectively, in the GIS database
for site-specific assessment.

Fig. 4 Hot-spot clustering of geo-
layer information considering
correlations between the density
of bedrock depth and slope
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Selecting the best-fitting kriging model

Geostatistical interpolation can provide reliable spatial grid
information for geo-layers (Kim et al. 2016). However, its
efficacy relies on the accuracy of the interpolation method
used to define the spatial variability in soil properties
(Goovaerts 1998, 1999, 2001). The variogram is a mathemat-
ical description of the relationship between the variance of
observation pairs and distance separating these observations
(h) (Olea 1991). The fitted regression curve minimizes the
variance in estimated errors. The variogram model is used to
define the weights in the kriging function (Sun and Kim
2016), and the semi-variance is an autocorrelation statistic,
defined as:

γ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
Z xið Þ−Z xi þ hð Þf g2; ð2Þ

where γ(h) is the semi-variance for interval distance class or
lag interval h, N(h) is the total number of sample couples or
observation pairs separated by distance h, Z (xi) is the mea-
sured sample value at point i, and Z(xi + h) is the measured
sample value at point i + h (Isaaks and Srivastava 1989;
Azpurua and Dos-Ramos 2016). In this study, we considered
the correlated distances within clusters and corresponding
weights for the kriging function. The individual variogram
model was also validated for every clustered geotechnical
dataset using a cross-validation of the best-fitting kriging
model.

If there is a lack of data, the large error in the variogramwill
increase the prediction errors, without it being apparent in the
calculated values. Therefore, the results of the proposed step-
by-step techniques were verified with separate independent
data. The datasets were cross-validated to evaluate the kriging
and zonation models and reduce the statistical uncertainty in
the borehole data (David 1976; Guarascio et al. 1976;
Knudsen and Kim 1978).

Kim et al. (2016) proposed a geostatistical analysis com-
ponent for the optimum geostatistical estimation of soil con-
ditions using conventional kriging methods. This computer-
based framework consists of a step-by-step adaptive optimi-
zation technique, with an independent geostatistical method
(Deutsch and Journel 1972). To determine the optimum inter-
polation method, four representative interpolation methods,
i.e., the inverse distance method (IDW), simple kriging
(SK), ordinary kriging (OK), and empirical Bayesian kriging
(EBK), are used in a cross-validation-based verification test.
Using the database for each of the three test areas, the site-
specific geotechnical spatial datasets were interpolated. Prior
to this interpolation, the geostatistical interpolation conditions
were optimized and standardized using cross-validation-based
verification tests for the geostatistical estimates, considering
the site conditions in the study area. An optimum interpolation

Fig. 5 Zonation information for selecting the test areas according to the
administration borders in Seoul. a Average bedrock depth, b average
kernel density, and c average slope
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method was determined by applying the four aforementioned
representative interpolation methods. Consequently, cross-
validation-based root mean square errors (RMSEs) were esti-
mated for bedrock depths based on a 100-m grid-cell size in
area 1, as shown in Fig. 6.

To estimate the cross-validated residuals based on the
kriging and variogram model, an experimental semi-
variogram was computed and a plausible model was fit.
After excluding the measured target values at a given point,
the sequential value at each sampling point was estimated
using a candidate kriging. The difference between the estimat-
ed and measured values at each sampling point was then cal-
culated. For comparison, the RMSE from the cross-validation
result was the square root of the average squared distance of a
data point from the fitted line, as calculated with the following
equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1
ŷî−yið Þ2

s

; ð3Þ

where yi and ŷi are the measured and estimated values of the
ith data point, respectively, and n is the total number of data
points. As the RMSE approaches 0, the estimate becomes
more accurate. The coefficient of variation is the ratio of the
RMSE to the mean of the dependent variable (Öztürk and
Nasuf 2002). The spatial distribution of the standard deviation
of depth to bedrock was also constructed based on the four
spatial interpolation methods to estimate the spatial grid infor-
mation residuals (ŷi−yi ) (Fig. 7).

By calculating the cross-validated RMSE using the resid-
uals at each spatial grid, the OK method was determined to
have the lowest RMSE, indicating that this technique was the
most optimum geostatistical interpolation method for all target
areas (Fig. 8). Additionally, the appropriate variogram model
for this method was verified with a cross-validation procedure.
To determine the best-fit variogrammodel, four representative
variogram models (exponential model, circular model, spher-
ical model, and Gaussian model) were used in a cross-
validation-based verification test. The result showed that the
exponential model had the lowest RMSE, indicating that the
variogrammodel was the most appropriate model for all target
areas (Fig. 9).

Multi-circular zonal clustering with variogram
modeling and cross-validation

To determine the optimum range of a clustering area, account-
ing for the local variation in borehole data, variogram model-
ing was conducted for each circular cluster. To determine the
need for robust estimation techniques, we fitted three standard
theoretical variogram models (exponential, Gaussian, and
spherical) to the unevenly spaced experimental variograms.
First, each test area was divided into 3 × 3 metrics to define

nine subsets with a constant area (Fig. 10). The effective range
for each subset of an assumed radius (1, 2, 3, 4, 5, 6, 7, and
8 km) was calculated based on a variogram. Then, the corre-
lation between the radius of the influencing circle and
variogram-based effective range for bedrock depth was esti-
mated, and the site-specific circular clustering (optimum sub-
set) for each subset was determined (Fig. 11). The effective
variogram range is the lag distance at which the semi-
variogram reaches a steady value, and is the value at which
the variogram levels off. The effective range increases as the
clustering boundary addition increases, but not at the same
rate in the nine subsets.

The correlation between the radius of the influencing circle
and variogram-based effective range indicates the change in
spatial correlation (spatial coherency) due to the increasing
number of borehole samples in the eight circular clusters.
The best model for the exponential variogram was chosen
by the minimum sum of squares from the fit, which is a con-
ventional measure for the goodness-of-fit in a least-squares
fitting procedure. Similarly, to determine the low variable rate
of correlations (Fig. 9), a regression analysis was conducted
based on the exponential model. The regression point with the
smallest variable for the rate of change (of the correlations),
i.e., there are sufficient borehole datasets with constant spatial
correlations for spatial interpolation, can be defined as an in-
dicator to determine the constant point of optimum radius for
the extended area. Therefore, the optimum radius is assumed
as the statistical inflection point of the determined regression
line, based on the exponential model. The optimum radii for
the nine subsets in area 1 are 0.42, 0.26, 0.53, 0.51, 0.42, 0.62,
1.02, 1.14, and 0.06 km. The geostatistical optimum criteria,
including the clustering area for the three test areas, are listed
in Table 1. Based on the determined optimum clustering radii,
the borehole datasets in each circular cluster were grouped for
site-specific outlier analyses and to construct the geotechnical
spatial grid (Fig. 10).

Site-specific outlier analysis for multi-clustered
borehole datasets

Determining the outlier observations based on optimum
thresholds provides a more reliable spatial distribution of the
target physical property by reducing or removing data that
deviate significantly from proximal observations or by
conducting additional tests at the same location. Site-specific
outliers were determined for each cluster subset. The relative
uncertainties render the geotechnical design less reliable, mak-
ing it necessary to reduce or remove the Berrors^ from the
measurements (Kulhawy et al. 1972). Typically, erratic mea-
surements from engineering practices are numerically distant
from the remaining data or deviate significantly from other
proximal observations. Therefore, the possible outliers from
the collected borehole datasets are regarded as Bre-examinable
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Fig. 6 Example of the spatial distribution of bedrock depth based on the spatial interpolation methods for area 1. a Inverse distance method, b simple
kriging, c ordinary kriging, and d empirical Bayesian kriging
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Fig. 7 Spatial distributions of the standard deviations of the bedrock depth for area 1 based on the spatial interpolation methods. a IDW, b SK, cOK, and
d EBK
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references^ to reconstruct geologic strata, and should be pref-
erentially replaced by new borehole data.

To apply the outlier thresholds, which were determined by
cross-validation, several basic assumptions should be consid-
ered. For example, if the data are normally distributed, with
data points being fairly dense and uniformly distributed, fairly
good estimates can be implemented irrespective of the inter-
polation algorithm. The data locations must fall within a few
clusters with large gaps, which are non-clustered and non-
directional. In addition, almost all interpolation algorithms
underestimate high values and overestimate low values, a
property inherent to averaging. Under these assumptions, the
cross-validation-based outlier threshold determination using
kriging provides the best unbiased linear prediction of relative
residuals between the observed and estimated values.

According to Kim et al. (2012), the outlier thresholds for all
geological layers should be applied equally, such that the

number of outliers constitutes 10% of the entire dataset, irre-
spective of site-specific geotechnical variability. The most
suitable site-specific outlier threshold (optimumoutlier thresh-
old) can be determined using a trial-and-error approach with
cross-validation. In this study, the definition of the optimum
outlier threshold incorporates the spatial correlations between
borehole datasets following these procedures (Kim et al.
2016). The RMSEs with nine assumed outlier thresholds (0,
5, 10, 15, 20, 25, 30, 35, and 40%) were calculated for each
bedrock depth. To determine the site-specific outlier threshold
accounting for the spatial correlations between borehole infor-
mation and land surface conditions, two methods and corre-
sponding criteria for outlier thresholds are proposed.

For a high spatial density of borehole datasets having a
high spatial correlation, the possible outliers should be con-
sidered conservatively, and relatively larger outlying borehole
information should be excluded. For correlations between the
RMSE and assumed outlier thresholds, the lowest RMSE
point is determined, which indicates the optimum outlier
threshold. Alternatively, in the case of a low spatial density
of borehole datasets with a low spatial correlation, most bore-
hole data should be conserved. For correlations between the
RMSE and assumed outlier thresholds, the point at which the
rate of change of correlation is highest is estimated, and two
linear regression lines (dashed lines in Fig. 12) are drawn. The
intersection point of the two regression lines indicates the
optimum outlier threshold. In this study, the criterion for spa-
tial density was set to 200 based on the kernel density.

In area 1, the outlier thresholds for the spatially dense clus-
ters (clusters 1–4), with an estimated kernel density of more
than 200, were estimated as 17.8, 13.1, 14.5, and 18.2%, using
the lowest RMSE method. In contrast, clusters 5–9, with an
estimated kernel density below 200, determined using the
highest rate of change for RMSE correlations, resulted in
threshold values of 15.2, 15.2, 12.5, 8.5, and 11.1%. Based
on the site-specific outlier thresholds, the optimized borehole
datasets were modified by removing the outliers from the
multi-circular clusters, including the three target administra-
tive zones (Fig. 13). The site-specific outliers within each
cluster were determined based on the optimum cluster radius.
After removing the outliers, the bedrock depth spatial infor-
mation was developed based on ordinary kriging with an ex-
ponential variogram and the optimized borehole datasets.

Geotechnical spatial grid information
in the test areas

Correlations between geostatistical optimum criteria

To predict reliable spatial distribution in a geo-layer, quantita-
tive sub-clustering and site-specific outlier analysis should be
conducted based on a trial-and-error approach with sequential
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kriging and cross-validation. Therefore, the optimized bore-
hole datasets, after removing outliers, were applied as initial

datasets to develop a geotechnical spatial grid, classified using
major geo-layers, fill soil, alluvial soil, and weathered soil,

Fig. 10 Optimized circular
clusters for subsets in the test
areas. a Area 1, b area 2, and c
area 3
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Fig. 11 Correlations between the radius of the influencing circle and variogram-based effective range for bedrock depth to determine the site-specific
circular clustering for the nine subsets in area 1. a Subset 1, b subset 2, c subset 3, d subset 4, e subset 5, f subset 6, g subset 7, h subset 8, and i subset 9
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and engineering bedrock. The site-specific geotechnical spa-
tial information that accounts for local uncertainties in the
geo-layers and geostatistical optimum criteria, including ker-
nel density, effective range of variogram, cluster radii, and
outlier threshold for the nine subsets in each of the three test
areas, are summarized in Table 1. Areas 1 and 3, which are
flat-lying regions, have dense borehole datasets compared to
area 2. However, there are spatial variations in the borehole
datasets, with an induced uncertainty observed in the estimat-
ed grid-based geo-layer information for every subset in the
same unit within each test area.

Spatially dense and correlated subsets can be identified by
their kernel density and effective ranges in the variogram.
Some subsets, such as subsets 2 and 5 in area 1; subsets 4,
5, and 6 in area 2; and subsets 1, 3, and 8 in area 3, with a
higher kernel density and smaller effective range, can be cat-
egorized as relatively higher spatially correlated subsets. In
these subsets, there were smaller cluster radii and fewer outlier
thresholds due to the availability of dense borehole datasets
characterized by similar bedrock depths focused at the subset
centers. In contrast, subsets 6, 7, 8, and 9 in area 1; subsets 7,
8, and 9 in area 2; and subsets 6 and 7 in area 3 were identified
as relatively less spatially correlated subsets. In these subsets,
there were larger cluster radii and more outlier thresholds.
Therefore, more outlying borehole datasets were determined
and removed from among the sub-clustered datasets.
Generally, areas 1 and 3, with a greater number of site-specif-
ic, dense, and correlated datasets, had smaller cluster radii and
fewer outlier thresholds compared to area 2.

However, the sequential procedure for each specific region
is a specialization-based, time-consuming process. Therefore,
a representative classification for outlier analysis and cluster-
ing to construct optimum geotechnical spatial information is

recommended based on constructing correlations between
geostatistical characteristics. Using the parameters in
Table 1, correlations between geostatistical optimum criteria
were estimated using a logistical regression model (Fig. 14).
The correlations, cluster radius versus outlier threshold and
kernel density versus outlier threshold, have R2 values greater
than 70%. If the kernel density of borehole datasets in a target
area is acquired using borehole information, the optimum cir-
cular cluster radii and outlier thresholds can be determined
using the correlations. To establish a reliable and universal
classification criterion for Seoul, an additional case study
based on the proposed framework should be conducted.

Comparison of the geotechnical spatial grid
with the optimization framework

By applying the proposed geostatistical optimum criteria pro-
vided in Table 1, geotechnical spatial grids for the three test
areas were developed using ordinary kriging with an exponen-
tial model based on the optimized borehole datasets after re-
moving the outliers. To validate the reliability and perfor-
mance of the proposed method, the original datasets, opti-
mized datasets (after removing outliers using a conventional
10% threshold), and only the clustered datasets were addition-
ally assessed using ordinary kriging (Table 2). The standard-
ized residuals for each spatial grid were evaluated with cross-
validation-based RMSEs. Consequently, the geotechnical spa-
tial grid information obtained by applying the proposed opti-
mization framework results in the smallest RMSE. Especially,
reduction rate (%) in RMSE value for area 1 after excluding
outliers, clustering datasets, and optimizing is considerably
higher than that for area 2 and area 3. The partial borehole
datasets in area 1 have the highest bedrock depth (over 70 m)

Table 1 Geostatistical optimum criteria to construct geotechnical spatial information for the geo-layers in the three test areas, Seoul, South Korea

Test area Geospatial characteristic criteria Subset

1 2 3 4 5 6 7 8 9

Area 1 Kernel density 248 350 242 220 195 192 129 150 209

Effective range (m) 521 345 556 549 385 620 702 688 625

Cluster radius (km) 0.42 0.26 0.53 0.51 0.42 0.62 1.02 1.14 0.66

Outlier threshold (%) 17.8 13.1 14.5 18.2 15.2 15.2 12.5 8.5 11.1

Area 2 Kernel density 98 146 42 108 121 125 50 49 58

Effective range (m) 452 593 204 382 395 346 924 892 775

Cluster radius (km) 0.88 0.69 1.49 0.78 0.82 0.77 1.45 1.88 1.51

Outlier threshold (%) 16.8 17.2 11.9 15.2 15.9 14.0 12.5 7.0 8.2

Area 3 Kernel density 335 308 274 298 320 185 102 290 255

Effective range (m) 245 332 252 528 645 752 850 155 204

Cluster radius (km) 0.35 0.42 0.98 0.33 0.78 1.05 1.22 0.52 0.85

Outlier threshold (%) 16.2 18.0 14.7 18.2 15.3 8.2 9.6 19.5 13.2
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Fig. 12 Examples for
determining relative outlier
thresholds based on the
correlation between sequential
cross-validation-based RMSE
and the outlier thresholds for op-
timized circular clusters in area 1.
aCluster 1, b cluster 2, c cluster 3,
d cluster 4, e cluster 5, f cluster 6,
g cluster 7, h cluster 8, and i
cluster 9
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Fig. 13 Optimized and original
borehole dataset locations for the
nine clusters in the test areas. a
Area 1, b area 2, and c area 3
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and the highest spatial density, and were divided by Han
River, which induce the differential formation and spatial de-
viations of subsurface. Accordingly, in northern subsets of
Han River, the site-specific outliers having relatively higher
bedrock depth (over 45 m) were detected and removed in
accordance with 13.1% and 14.5% outlier threshold.
Therefore, the proposed method provided more reasonable
criteria for developing spatial grid using borehole datasets
with spatial uncertainties within the study area.

Additionally, applying the proposed method significantly
reduced the quantitative and visible variations in the spatial
grid compared to the results from applying the original
datasets. The geotechnical characteristic values decreased
distortions that produced local outliers in the interpolation
results, which can be calculated using optimized borehole
datasets. Furthermore, the smoothing effect applying

kriging with de-trended datasets, obtained by removing
site-specific outliers, produced more improvements than or-
dinary kriging alone. Generally, ordinary kriging estimates
have a serious drawback, well known as the smoothing
effect, in which small values are usually overestimated
and large values are usually underestimated (Yamamoto
2005). To develop characteristic values for geotechnical
design parameters, the depth to bedrock that represents
the local target area needs to be considered in the design
process for construction projects. Additionally, to verify the
influence of each geostatistical criteria corresponding to the
multi-scale land surface and spatial correlations of geo-
layers, an additional application should be conducted for
various regions. The normalized geotechnical characteristic
values can then be applied to developing a geotechnical
design parameter map.

Fig. 14 Correlations of the
geostatistical optimum criteria for
the construction of geotechnical
spatial information for geo-layers.
a Cluster radius versus kernel
density and b outlier threshold
versus the effective range of the
variogram
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Conclusions

In this study, site-specific outliers were determined within a
proposed systematic framework for optimizing geostatistics
for geotechnical spatial information. This process considers
the distribution patterns and spatial correlations of borehole
datasets and incorporates site-specific uncertainties in geo-
layers and geotechnical characteristic values. The sequential
optimization was designed as a decision-making procedure
based on GIS architecture to develop geotechnical spatial grid
information. Test areas were selected for validating the frame-
work in urban Seoul, South Korea.

First, multi-source geospatial information was collected
and a geospatial grid was constructed using geo-modeling
and reprocessing GIS toolsets. Second, to optimize the condi-
tions from random-field assumptions in kriging methods, and
to incorporate interpolation and zonation, appropriate
geostatistical methods and corresponding variogram models
were determined and validated using a cross-validation-based
verification test. Consequently, representative borehole infor-
mation sampling, considering local site effects in Seoul, was
conducted, and the corresponding test areas were identified.
Third, by clustering borehole information, the geotechnical
spatial information for targets in each test area were developed

Table 2 Comparison of geotechnical spatial grids for bedrock depth obtained by applying the original datasets, datasets excluding conventional
outliers, clustered datasets, and optimized datasets within clusters of test areas in Seoul.

Original datasets Datasets Clustered Optimized 

excluding
conventional 

outliers (10%)

datasets datasets within 
clustering

Area 
1

Geotech
-nical 
spatial 
grid

RMSE 
(m)

6.4 3.4 4.6 2.0

Area 
2

Geotech
-nical 
spatial 
grid

RMSE 
(m)

8.3 4.8 6.6 4.2

Area 
3

Geotech
-nical 
spatial 
grid

RMSE 
(m)

6.3 3.9 4.9 3.3
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and normalized using geostatistical optimum criteria. The op-
timum range for zonal clustering was determined based on
cross-validation using multi-circular zonation. Finally, the
outlier threshold for each subset was determined using bore-
hole datasets within the optimized sub-clusters. The relative
outlier threshold was also determined based on the density and
spatial correlations of boreholes in each cluster. The geotech-
nical spatial grid information was also developed without any
site-specific outliers. Thus, the proposed geospatial character-
istic criterion for optimum outliers was validated using the
borehole datasets in the Seoul region.

To build a geotechnical database, borehole datasets or other
satellite datasets have spatial uncertainties and outliers gener-
ated while determining geo-layers and characteristic values.
The site-specific criteria for optimization should therefore be
considered an improved geostatistical and geotechnical meth-
od. Based on the local outlier analysis incorporated within the
optimum sub-clustering, the step-wise residuals and accuracy
of the analyses were identified and considered parameters in
the cross-validation-based optimization. If insufficient bore-
hole datasets are available for application in a target area,
proxy-based parameters based on a geospatial database, in-
cluding topographic maps, satellite images, surface geology,
and a digital elevation models, can supplement the process
based on this proven case study and normalization.
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