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Abstract

An original method has been developed to model geology using the location of the geological 

interfaces and orientation data from structural field. Both types of data are cokriged to interpolate a 

continuous 3D potential-field scalar function describing the geometry of the geology. Geology contact 

locations set the position of reference isovalues while orientation data are the gradients of the scalar 

function. Geometry of geological bodies is achieved by discretising reference isovalues. Faults are 

modelled using the same method by inserting discontinuities in the potential field. Potential fields can 

be combined to model realistic, complex geometry: scalar functions representing separate geological 

series are merged automatically using geological rules to enable fast computation and easy update of 

interpretation. The methodology has been applied to a wide range of geological contexts including 

orogenic domains, basins, intrusive and extrusive environments.
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1. Introduction

The usefulness of 3D geometric models to better understand geology is now well established 

(Houlding 1994; Mallet 2002; Wijns et al.2003; Wu Qiang et al. 2005). Modelling consists in inferring a 

representation of the reality even where few data are available. This representation of the reality can 

be the final goal of modelling. Alternatively, the 3D geological model may be an input to simulations 

used to quantify physical processes. In both cases, inferring the geological formation at any location in 

3D space is fundamental. 

The appropriate methodology to develop a 3D model depends on the complexity of geology and on 

the available data. Existing methods often deal with 3D seismic data and are optimised for basin 

environment. In such a geological context, it may be sufficient to interpolate horizons. Where geology 

is cylindrical, and layered, 2D methods are adapted to construct horizons honouring cross-sections 

(Galera et al. 2003).

It is frequently the case, however, that available geological data are sparse, and nothing is known 

between over-sampled locations such as geological maps, cross-sections or boreholes. Moreover, 

geological bodies may have complex geometries derived from a long history of structural 

deformations. Classical structural measurements made in the field or by interpreting boreholes give 

the location of geological interfaces and the dip of the formations – the latter not necessarily located 

on the geological interface. However, apart from rare exceptions (e.g. de Kemp 2000), contact 

locations and tangency constraints only at contact points are taken into account to model the 

geometry of geology.

An original methodology has been developed to answer the following questions:

(i) How to infer the 3D geometry of geological bodies described only by sparse data?

(ii) How to take into account structural data measured on outcrops or in boreholes?

(iii) How to easily test alternative hypotheses to interpret complex geology?

By taking into account both contact locations and orientation data, coherent 3D models are 

constructed using a potential-field method to interpolate away from the data. Rules derived from the 

rock relationships between formations allow automatic building of the model, and facilitate its 

refinement and updating.
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2. Potential-field interpolation method

The method developed here is based on three simple considerations:

(i) A geological interface delimits two geological formations.

(ii) Some orientation data sampled within geological formations are relevant to model the interfaces 

separating the formations.

(iii) The interfaces to be modelled may be regarded as belonging to an infinite set of surfaces aligned 

with the orientation field.

This situation is reasonably achieved in many geological situations: 

- in sedimentary series, by considering a general parallelism between chronostratigraphic limits and 

stratigraphic planes;

- in igneous rocks, by using internal structures to determine pluton shapes;

- in metamorphic terrains, by assuming that the limit between two units displays a strong parallelism 

with metamorphic foliations.

Actually the method is very close to classical geological thinking in the sense that it attempts to 

reproduce the natural drawing of a geologist simultaneously guided by some observed contact points 

and by the knowledge of orientation field mentally inferred from structural data. This can be applied 

even if data are only known from field observations on topography.

The method can be used when the following two conditions are true:

I. Location of the geology interfaces is known at some places.

II. Orientation data are available. These sample the leading planar anisotropy of geological 

formations (stratification, schistosity or foliation), but are not necessarily located on geological

interfaces. Polarity information is part of the orientation data. For example, in the case of a 

sedimentary series, polarity is the younging direction. For an intrusion, polarity is from the outside 

to the inside of the intrusion.

The basic method is designed to model a single geological interface or a series of subparallel 

interfaces 2,1kl  (Lajaunie et al.1997). Its principle is to summarise the geology by a potential 

field, namely a scalar function  pT of any point  zyxp ,,  in 3D space, designed so that the 

interface kl  corresponds to an isopotential surface, i.e. the set of points p  that satisfies   ktpT   for 
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some unknown value kt  of the potential field. Equivalently, the geological formation encompassed 

between two successive interfaces kl  and kl   is defined by all the points p  whose potential-field 

value lies in the interval defined by kt  and kt  . In figurative terms, in the case of sedimentary deposits,

T  could be seen as the time of deposition of the grain located at p , or at least as a monotonous 

function of that geological time, and an interface as an isochronous surface, similarly to Mallet (2004). 

This figurative interpretation can be adequate in some applications but is not necessary for the 

development of the method.

Figure 1 illustrates this principle in two dimensions.

2.1.Data types

 pT  is modelled with two kinds of data, as shown in Figure 1a:

(i) 3D points belonging to the interfaces ,, 21 ll ; and

(ii) 3D unit vectors belonging to the orientation field of the interfaces and polarised along younging 

direction.

For the interpolation of the potential field, these data are coded as follows:

(i) Since the potential value at 1m  points mppp ,,, 10   sampled on the same interface is not 

known, these data are treated as m increments     pTpT  , m,,1 , each one equal to 

0 . Two classical choices for p  consist in taking either the point 0p  whatever  , or the point 

1p  (the choice has no impact on the result; other choices are possible provided that the 

increments are linearly independent). Since the sampled data may be located on several 

interfaces, let M represent the total number of increments; M  is equal to the total number of 

data points on the interfaces, minus the number of interfaces.

(ii) The polarised unit vector normal to each structural plane is considered as the gradient of the 

potential field. It therefore defines the value of the partial derivative   /T p u   at the 

measurement point p  in any direction u . The structural plane data at p  is then expressed by 

three partial derivatives of the form   /T p u   , where u  alternatively represents the three 

coordinate axes , ,x y z . (Equivalently, another set of partial derivatives in three orthogonal 
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directions can be considered. For example, the polarised unit vector can be expressed by one 

partial derivative equal to 1 in the vector direction, and two partial derivatives equal to 0 in 

directions defining the structural plane.) Let N  denote the total number of data of the 

form   /T p u   ; in practice N  is a multiple of 3  and the p  form triplets of common points. 

Recall that the p  do not necessarily coincide with the p ; the latter are located on the interfaces 

whereas the former can be located anywhere.

2.2. Interpolation of the potential field

The potential field is then only known by discrete or infinitesimal increments. It is thus defined up to an 

arbitrary constant. So an arbitrary origin 0p  is fixed and at any point p  the potential increment 

   0pTpT  is kriged. The estimator is a cokriging of the form

          
 




  p
u

T
pTpTpTpT

NM


 




11
0

** '

where the weights   and  , determined in the cokriging system, are functions of p  (and 0p ). 

One may wonder why the potential increments are introduced to this estimator, given that their 

contribution is nil. The key reason is because the weights   are different from weights based on the 

gradient data alone. These weights are constrained so that the interpolated field has same potential 

value at p  and p , which would not be the case, except by chance, if the potential increment data 

were not taken into account. Conversely, the gradient data also play a key role; because in their 

absence the estimator would be null anywhere.

Cokriging is performed in the framework of a random function model.  .T is assumed to be a random 

function with a polynomial drift

   pfbpm l
L

l
l




0

and a stationary covariance  hK . Since the vertical usually plays a special role, the degree of the 

polynomial drift can be higher vertically than horizontally and the covariance can be anisotropic. For 

example, if we model several subparallel and subhorizontal interfaces, it makes sense to assume a 
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vertical linear drift of the form   zbbpm 10  , i.e. with two basic drift functions   10 pf and 

  zpf 1 . A geological body with the shape of an ellipsoid would correspond to a quadratic drift, i.e. 

to the 10 basic monomial drift functions with degree less than or equal to 2 . Note, however, that the 

drift function   10 pf  shall be forgotten in any case since the potential increments as well as the 

partial derivatives filter 0b .

The use of cokriging requires a sound modelling of the joint spatial variations of the various variables. 

We are here in a favourable situation, since the second type of data — the partial derivatives — derive 

analytically from the potential field. The drift of   /T p u   is therefore simply   /m p u  , i.e. a 

linear combination of the partial derivatives   /f p u   with the same unknown coefficients 


b as for 

 pm , which allows an easy specification of the unbiasedness conditions. The covariances of partial 

derivatives are second-order partial derivatives of  .K , and the cross-covariances of the potential 

field and partial derivatives are partial derivatives of  .K , which enables the expression of the 

estimation variance and therefore its minimization. See section 5.5.2 of Chilès and Delfiner (1999) for 

further explanations.

2.3. Implementation of the cokriging algorithm

To guarantee the spatial continuity of the cokriging estimator, we use a unique neighbourhood, 

effectively including all data in the cokriging of  pT  regardless of p . When we are not interested in 

the cokriging variance, cokriging is implemented in its dual form, which dramatically saves computing 

time (preliminary step: solving of one cokriging system with L M N   equations — typically up to 

several thousand equations — instead of an inversion of the cokriging matrix; cokriging at a target 

point: once the drift functions at the target point and the covariances between the target point and the 

data points have been computed, 2( )L M N   arithmetic operations instead of 22 ( )L M N  ).

   * *
0T p T p can be obtained at any point p . Its sign indicates if p  is located in the older 

formation (negative value), in the younger one (positive value), or on the interface (null value). The 

latter property is used to display 3D views of the geological model with an algorithm generalising the 

marching cube (Lorensen and Cline 1987). It consists in starting from the estimation of    0pTpT 
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at the nodes of a coarse regular grid and then requires intermediate points to be predicted to track the 

desired isopotential surface.

Since the cokriging is performed in unique neighbouring, solving the system in its dual form is the 

critical step for performances. The matrix size is linearly dependant to the square of number of data 

(number of potential increments plus partial derivatives plus drift functions). Lets’ say that with a non-

optimized standard linear system solver and a current PC (single processor, 3 GHz) it takes about one 

second to solve system with 400 data, one minute with 3000 data. So performances are becoming 

critical with amounts of data larger than a few thousands. These could be improved by adapting 

appropriate optimized covariances and solvers.

2.4.Choice of the covariance function and validation of the model

The choice of the covariance function  .K of the potential field is not obvious, because we are unable 

to compute a sample variogram of that potential field, for the simple reason that our sole data are

increments with a zero value. Since we assume implicitly that the gradient exists, we know that 

covariance  .K  is parabolic at the origin. The potential-field method can thus be used with an a priori

covariance of that type. In that case, the interpolator shall be considered as a conventional one and 

cannot claim for optimality (from a geostatistical standpoint). Several checks on actual data sets have 

shown that covariances with a finite range give more sensible models than generalized covariances 

with an infinite range, and that a covariance such as the cubic model, which corresponds to a variable 

with partial derivatives at order 1 but not at order 2, works better than a highly regular covariance such 

as the Gaussian model. The method is therefore often used with a cubic covariance whose range is 

chosen by the user and sill is automatically fixed so that the covariance of the gradient is consistent 

with the experimental variance of the gradient data.

It is possible to do better by analysing the direct and cross variograms of the partial derivatives 

  /T p x  ,   /T p y  , and   /T p z  , which can be experimentally calculated with the gradient 

data. Since the variograms of partial derivatives are second-order partial derivatives of the covariance 

of the potential field, their joint modelling amounts to modelling  .K . This approach has been used by 

Aug (2004) — also see Chilès et al. (2006) — to two data sets in the French Massif Central. In both 

cases the final model was a sum of two or three anisotropic cubic covariances. This confirms the 
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interest in the cubic covariance model and calls for paying more attention to the anisotropy of the 

covariance.

The validation of the model can be done by discarding some data and trying to reconstitute them from 

the other data. It is also possible to apply the usual cross-validation method, which consists in deleting 

in turn one datum and estimating it from neighbouring data. A sound quantitative validation of course 

requires that the covariance model is not a simple a priori choice of the user but results from a fitting 

procedure.

2.5.Example

Sainte-Génis Mountain

The following example illustrates the modelling of a folded structure in the Subalpine chains, S-E

France. The study area, located in the western Baronnies, and known as Sainte-Génis Mountain, is an 

E-W elongated syncline with a core of lower Cretaceous, filling a structural depression. This is a 

typical example of a preliminary model realised using only standard data from field observation and 

geological map (Figure 2). Relevant geological contacts are digitised from the geological map or from 

field observations. Structural dips are also extracted from the map and supplemented with additional 

field measurements in order to achieve a widespread sampling of orientation data. For this model, all 

Mesozoic interfaces are assumed to be nearly parallel at the modelling scale. The Sainte-Génis 

modelling demonstrates the advantage of this approach, whereby a lack of data on some interfaces 

within some areas is compensated by data on other interfaces in other areas.

3. Taking faults into account

There are three aspects regarding the modelling of faults. (i) modelling the fault geometry as a 

surface, (ii) describing how faults terminate in 3D space, and (iii) defining the way in which they impact 

geological interfaces. 

3.1.Fault geometry

Fault interpolation is performed in the same manner as for geological interfaces: one interpolates a 

potential field using fault traces as data points and fault orientation data as gradients. Thus, each fault 
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is determined from its own potential field. The geometry of the fault is defined by the corresponding 

isosurface extracted from the fault potential-field.

A useful query with respect to faults is to know on which side of the fault is a given point p . Using the 

implicit representation of the fault, the answer is straightforward: point p  is either on the foot wall or 

hanging wall depending on whether the value of the fault potential-field at point p  is smaller or larger 

than the fault isovalue. By convention, the hanging wall and foot wall are defined in accordance with 

the orientation of the gradient data. Consequently, it is easy to implement a function determining if a 

fault occurs between two points 1p  and 2p .

3.2.Fault border

Infinite and finite faults 

Faults can be considered as infinite (relative to the study area), or finite. For the latter case we must 

define the extent of the fault. Since it is rare to have actual observations defining the tip line of a fault 

(i.e. the limit where no more displacement occurs), we choose to define this boundary as circular or 

elliptic. We consider that the fault extent are defined by the intersection of the potential-field isosurface 

and a sphere (or an ellipsoid) of given radius centred on the data defining the fault.

Fault network

A fault may also terminate against another fault. A fault network is defined as a set of faults nf  and a 

set of fault-fault relations ( ji ff  ) (Figure 3a). Using the isopotential representations of the various 

faults and taking the fault network relations into account, it is possible to identify the valid and invalid 

portions of (fault) isopotential surfaces, and so achieve a network of fault surfaces that respects the 

fault-fault relations (Figure 3b).

3.3.Fault influence

Taking faults into account for interpolating geological interfaces is achieved by adding discontinuous 

drift functions into the cokriging system. These spatial functions model the shape of the influence of 

the fault. 

For the simplest case of an infinite fault with rigid translation, one assumes a fixed discontinuity of the 

potential field when crossing the fault; the drift function is equal to 0  on one side of the fault and to 1
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on the other side (Figure 4a). The value of this discontinuity is determined automatically by the 

cokriging process using the implicit representation of the fault as explained in 3.1.

In the case of a finite fault, the value of the associated drift function is 1  at the centre-point on one 

side and respectively 1  at the centre on the other side. The amplitude of the drift function then 

progressively decreases to 0 on one side, respectively increases to 0  on the other side, where the 

influence of the fault vanishes (Figure 4b).

Figure 5 illustrates the effect of varying fault ‘radius’ on interface modelling. If fault extents are defined 

in terms of an elliptical shape, the spatial function is computed by applying similar rules with an 

anisotropic distance.

For a fault network the spatial function is designed as follows: each fault has its own function with the 

same rules as for finite or infinite faults, except that it is set to 0 as soon as it crosses a fault against 

which it stops (Figure 4c). Note that each interface has to be known at, at least, one 3D point within 

each fault block.

3.4.Example

Limagne

The Limagne d’Allier basin is located in an area where the temperature at 5 km depth is high. The 

area has been studied for its geothermal potential (Genter et al. 2005).

Located north of Clermont-Ferrand, France (see map on Figure 6 for location), this N-NE to N-S 

oriented Tertiary basin is bounded by regional faults. From Upper Eocene to Oligocene, a graben 

formed due to progressive subsidence resulting from the extension phase affecting the West-

European plate. The Limagne basin is delimited by the Clermont-Ferrand fault in the east and by the 

Aigueperse fault in the north. Both faults have a normal throw of several hundred metres, with a strike 

slip component for the Aigueperse fault. The combination of those two faults creates the deepest part 

of the basin situated around Riom city. Based on seismic lines interpretation, most of the faults inside 

the basin had no activity after the Oligocene. The two main faults, however, do show evidence of later 

movement. 

Figure 6 shows the geometry of the basement built using a fault network and drift functions for the 

faults. Geological contacts and orientation data were determined from field observations, seismic 

sections and boreholes, together with interpretive data for the basement surface derived from 



Page 11 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

gravimetric inversion. The relative displacements of the fault blocks were constrained by basement 

interface location on both sides of each fault.

The Limagne example is further developed in Section 4.3.

4. Generalisation of the modelling method by combining multiple 

potentials

The potential-field interpolation method described in Section 2 assumes that the entire area can be 

modelled as geological interfaces belonging to a series of sub-parallel surfaces aligned with the 

orientation field. This hypothesis implies that interfaces always exist throughout the domain. By 

definition, two consecutive isosurfaces of a potential field can never intersect or tangent each other but 

have a sub-parallel geometric relationship (Figure 1b).

Apart from occasional sedimentary examples, a geological body rarely exists throughout a domain. 

Geological events usually lead to complex topology where formations cut across or onlap onto each 

other as a result of deposition, erosion, intrusion or hiatus. Such geology can be modelled by 

combining multiple potential fields.

4.1.Combination of potential fields

The core of the method consists in using geological rules to combine various potential fields:

R1. Interfaces of geological formations having sub-parallel behaviours are grouped together into 

series. A single potential field is used to model a series.

R2. A chronology defines the time-order of series within the model. 

R3. A relationship is defined for each series to drive its (modelling) behaviour with respect to the 

chronologically older ones. 

Concerning R3, two basic relationships are defined to specify how a series impacts on a model: (i) the 

Erode relation allows series to occur and truncate, or cut across, older ones, (ii) the Onlap relation 

enables the series to be present only where space is available without changing the geometry of the 

older series. Figure 7 describes a synthetic example with 3 series; each one consists of a single 

geological formation. This figure shows the importance of the series chronology and the consequence 

of their relationships on the modelled geometry.
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R1, R2 and R3 define a geological pile: a set of geological formations, chronologically ordered, 

gathered together in interacting series. The knowledge contained in the geological pile defines the 

topology of the model. It enables to automatically merge the various scalar functions interpolating the 

series and thus to achieve the geometry of a coherent complex 3D model.

Let's assume that I series describe the geology of the domain. I  potential fields are used to model 

the series. The corresponding scalar functions IiTi 2,1,   are defined in the whole 3D space and 

I  values      pTpTpT I,,, 21   are associated to a given 3D point  zyxp ,, . The combination 

method consists in partitioning the 3D space in areas where a given scalar function is valid, i.e. in 

identifying, among the iT , the scalar function pT  to consider for p . Finally, the geological formation 

associated to p  is deduced from pT  by using the methodology described in Section 2. The 

comparison method depends on the chronological order of the scalar functions and on the relationship 

Erode or Onlap associated to iT .

4.2.Faults

For the case of multiple potential fields, faults are managed according to the rules described in 

Section 3. Based on field observations of the relationship between geological formations and faults, 

each (geological) potential field has its own faults subset taken among the general set of faults for the 

model. Thus, a fault may affect all geological formations of a series but will have no effect on the

geological formations of another series.

4.3.Example

Limagne

Let's resume the example introduced in Section 3.4.

Overlying the Limagne d’Allier basement, four main sedimentary sequences fill the basin: Middle 

Eocene (S1), Upper Eocene (S2), Rupelian (S3) and Chattian (S4). Each sequence is composed of a 

sedimentary cycle ranging from detrital formations at the base (“Reservoir”), followed by alternating 

layers of detrital and carbonate sediments (“Intermediate”), and capped by formations of marls and 

carbonates at the top (“Top”). In order to model the erosional surfaces that define top of each 

sedimentary cycle, the top of marls and carbonates for each sequence is assigned to an Erode
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relationship in the geological pile (Figure 8). The thickness of each formation varies both spatially and 

temporally. The “Reservoir” formations are thicker along the basin-margins than in the centre of the 

basin. The “Intermediate” formations correspond to a transitional environment, and lacustrine 

carbonate formations are thicker in the central, deeper part of the basin. Since the thickness variability

is not correlated from one formation to another within the same sequence, their interfaces cannot be 

represented by isovalues of a single potential field. Consequently, each formation must be modelled 

with an independent potential field (Figure 8).

The resulting model is illustrated in Figure 9 showing a 3D view of the “Reservoir” formations, the 

boreholes and two orthogonal sections (Figure 9a), and a W-E section of the whole basin (Figure 9b). 

The modelled cross-section demonstrates (i) how the fault network controls the fault system geometry 

(see Section 3.2), (ii) the outcomes of the Onlap or Erode rock relationships (see Section 4.1), and 

(iii) the implications of the relations between faults and series (see Section 4.2).

5. Discussion

The major feature of this original modelling method consists in describing the 3D geological space 

through a continuous potential-field scalar function T  where geological boundaries are reference 

isopotential surfaces and structural dips define gradients of the scalar function. As the method results 

in a continuous model within the domain, the geological formation at any 3D point  zyxp ,, is 

implicitly defined by the value  pT . This fundamental capability is used to explicit — by interrogating 

the potential field — so as to visualise the model in 1D along a borehole or a tunnel, in 2D on a map or 

section and as 3D surface shapes and volumes. This property can be exploited to export the model on 

any wireframe meshes.

The spatial continuity of the potential field is ensured by implementation of the cokriging using a 

unique neighbourhood approach. Although a coherent 3D model is constructed, the dual cokriging

implementation implies that the computing time needed to interpolate at a given point is directly 

proportional to the number of data plus drift functions. Increasing the number of data also increases 

the size of the system to be solved in the preliminary step. This presently limits the number of data to 

several thousand. Such a limit could be avoided (i) by using local neighbourhoods, with a damping 

factor for distant data points in order to maintain the continuity of the interpolator, following an 
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approach developed by Gribov and Krivoruchko (2004) for simple kriging, or (ii) by solving the 

cokriging system more efficiently using covariance tapering to simplify the scalar function matrix 

(Furrer et al. 2006, also in the case of simple kriging).

A particular attention has to be paid to the data and interpretation input in the model. As the work 

presented here is well adapted when only a few data are available, it is far better to input only real 

observation from the field, or from boreholes, and to use the modelling as a help for interpretation. The 

result of such a preliminary model can be discussed and refined by returning in the field to acquire 

new data at strategic places and/or by adding geologist own interpretation. For instance and as far it is 

possible, authors would recommend to use outcrop measurements instead of digitized geological map 

to avoid artefacts from the interpreted map that is already a model. However, input of interpreted data

where observation are missing, e.g. seismic lines, are of a great help in creating the model but can be 

checked and re-interpreted if necessary, depending on their interaction with the model proposed only 

using the observed data.

The way of acquiring data in the field has to be adapted to the scale of the model. Such as for 

geological mapping, a regional scale model, e.g. a few tens of kilometres wide, would not describe 

microstructures observed on the outcrop. As the model will benefits from a regular outcrop sampling

adapted to the model scale, it is important to input measurements even if they are constant. For 

example, the measurements showing a same dip for a given formation on successive outcrops have to 

be used to better constrain the model.

Various orientation data may be measured in the field, e.g. S0, S1, S2, etc. However the ones that are 

taken into account for the model have to be representative of the geological interfaces, either they are 

measured on or outside the contact.

Automatic construction of the model is achieved using the geological knowledge input in the geological 

pile. In that case, multiple series are combined to model geology. One can add new data or update an 

interpretation without consideration of the implications for the geometry of formations since the rules of 

the geological pile automatically manage the result. The interpreter may also revise the geological pile

itself to test alternative interpretations of the chronology of geological events or different rock relation 

between formations. Strictly the same data, but combined to a revised geological pile, will generate a 

different model outcome.
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The basic relationships of the series — Erode and Onlap — can be combined to define other 

relationships to model specific geological bodies, such as an intrusion. In that case, the Intrusion

relationship can be defined as the combination of (i) an Erode sequence using a polarity directed 

toward the inside of the intrusive body in order to erode the existing bedding and (ii) an Onlap

sequence to fill the intrusive body. Figure 10 shows a synthetic example of an intrusive body 

modelling.

The modelling method requires that geological data be managed in a way whereby they represent the 

relevant geological interfaces. For instance, limits between geological formations in boreholes 

(deviated or not) have to be transformed into geological interface points. Note that a boundary 

between two formations is not necessarily assigned to the base or the top of one of the two formations

if an erosion sequence or a hiatus occurred during the geological history. Figure 11 illustrates a case 

where a formation is not encountered in a borehole, either the formation was not deposited, or the 

formation has been eroded and replaced by a younger one. As shown in Figure 11, knowledge of the 

rock relationships defined in the geological pile can be used to unequivocally assign the correct 

geological interface to drilled interval boundaries in a borehole.

The same procedure can be applied to GIS polygons representing a geological map; the curve 

separating two geological formations is not necessarily the base or the top of one of the two 

formations. In similar manner to the borehole case illustrated above, given any two adjacent 

formations observed in geological mapping, the rules contained in the geological pile can be used to 

automatically assign the correct geological interface to the mapped contact, and so to derive a valid 

geological model. 

The potential-field interpolation method with the associated rules of the geological pile has been 

successfully applied to various geological contexts, including:

(i) orogenic domains (Courrioux et al. 2001, Maxelon et al. 2005, Marquer et al. 2006, Putz et al. 

2006, Calcagno et al. 2007);

(ii) intrusive environments (Faure et al. 2001, Martelet et al. 2004, Talbot et al. 2004, Joly 2007);

(iii) basins (Calcagno et al. 2004, Genter et al. 2005);

(iv) mining geology (Burtt et al. 2005, McInerney et al. 2005);

(v) geotechnics (Strzerzynski et al. 2005, Calcagno et al. 2006).
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6. Conclusion

The method presented in this paper is dedicated to 3D geological models building from interface 

points and polarised orientation data. The methodology is designed for cases where the geology is 

only known at sparse locations, e.g. when data are available on the field but not at depth. A wide 

range of geological contexts can be tackle such as orogenic domains, basins, intrusive domains as 

long as the available data are located on map, sections or boreholes. The orientation data, i.e. dip 

measurements, are not necessarily located on the geological interfaces. They can represent 

stratifications or foliations related to the contacts. Data are interpolated through a potential field 

continuously defined in the entire 3D domain. Thus, the model allows to assign the geological 

formation at any 3D point. That property makes possible to export the geometry to various meshes. 

Figure 12 synthesises this methodology for geological modelling. Geological interfaces are particular 

isosurfaces extracted from the potential field. They may have any kind of 3D geometry: multilayer type, 

recumbent folds, complex intrusions, etc. The geometry of faults is computed by applying the same 

method. Faults can be infinite within the 3D domain, interrelated in a fault network or finite.

Geological rules are defined to model complex geology where formations onlap onto or erode another. 

These rules are also used to automatically assign the right geological interface between two 

consecutive formations. That methodology automatically provides the intersections between geological 

bodies; allowing fast modelling and giving the geologist the opportunity to focus on geological 

interpretation. As the geological pile defines the topology of the model, one can modify it without 

changing the data to produce alternative interpretations leading to alternative geometries. This 

capability also make possible to update the model when new data or interpretation is available.

The work presented in this paper is implemented in 3D GeoModeller package designed for geological 

interpretation and development of 3D geological models (http://www.geomodeller.com and 

http://3dweg.brgm.fr).

A complementary methodology has been developed to validate a geological model by forward 

modelling and inversion of geophysical data. This methodology is described in another paper of this 

http://www.geomodeller.com/
http://3dweg.brgm.fr/
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special issue: Geological modelling from field data and geological knowledge, Part II – Modelling 

validation using gravity and magnetic data inversion (Guillen et al.).

Acknowledgements

Dimitri Schreiber did the Sainte-Génis Mountain modelling at Geosciences Azur (Nice, France).

The Limagne model was performed at BRGM by Adrien Dagallier and supervised by Albert Genter.

Thank you all at Intrepid Geophysics (3D GeoModeller software distributor) and especially Phil 

McInerney and Desmond Fitzgerald for their help including the English review of the manuscript.

Authors thank Guillaume Caumon, Cees Passchier and the anonymous reviewer for their fruitful 

comments.

References

Aug, C., 2004. Modélisation géologique 3D et caractérisation des incertitudes par la méthode du 

champ de potentiel. Doctoral thesis, E.N.S. des Mines de Paris, 198 pp.

Burtt, A., Williams, H., Calcagno, P., 2005. Reawakening the Curnamona Province — a 3D 

perspective. South Australian Resources and Energy Investment Conference, Adelaide. 

Calcagno, P., Lazarre, J., Courrioux, G., Ledru, P., 2007. Modélisation 3D d’un domaine  orogénique 

externe : Le massif de Morges, Pelvoux (Alpes occidentales). Bulletin de la Société Géologique de 

France 178, 26 274.

Calcagno, P., Courrioux, G., Guillen, A., Fitzgerald, D., McInerney, P., 2006. How 3D implicit 

geometric modelling helps to understand geology: The 3DGeoModeller methodology. Int. Assoc. for 

Mathematical Geology XIth International Congress, Université de Liège, Belgium.

Calcagno, P., Thinon, I., Courrioux, G., Guillen, A., Guenoc, P., 2004. 3D geometric modelling: A tool 

for margin and basin interpretation illustrated with the eastern Corse case-study (NW Mediterranean

sea). RST, Joint Earth Sciences Meeting, Société Géologique de France — Geologische Vereinigung, 

Strasbourg.



Page 18 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

Chilès, J.P., Aug, C., Guillen, A., Lees, T., 2006. Modelling the geometry of geological units and its 

uncertainty in 3D from structural data: The potential-field method. In Orebody modelling and strategic 

mine planning — Uncertainty and risk management models. Spectrum Series 14, Australasian 

Institute of Mining and Metallurgy, Carlton, Victoria, 329-336.

Chilès, J.P. and Delfiner, P., 1999. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, 

New York, NY.

Courrioux, G., Nullans, S., Guillen, A., Boissonnat, J.D., Repusseau, P., Renaud, X., Thibaut, M., 

2001. 3D volumetric modelling of Cadomian terranes (Northern Brittany, France); An automatic 

method using Voronoi diagrams; The Cadomian crust of Brittany (France); 3D imagery from 

multisource data (GeoFrance 3D). Tectonophysics 331, 181-196.

de Kemp, E.A., 2000. 3-D visualization of structural field data: Examples from the Archean Caopatina 

formation, Abitibi greenstone belt, Quebec, Canada. Computers & Geosciences 26, 509-530.

Faure, M., Charonnat, X., Chauvet, A., Chen, Y., Talbot, J., Martelet, G., Courrioux, G., Monie, P., 

Milesi, J., 2001. Tectonic evolution of the Cevennes para-autochthonous domain of the Hercynian 

French Massif Central and its bearing on ore deposits formation. Bulletin de la Société Géologique de 

France 172, 687-696.

Furrer, R., Genton, M.G., Nychka, D., 2006. Covariance tapering for interpolation of large spatial 

datasets. Journal of Computational and Graphical Statistics 15 (3), 502-523.

Galera, C., Bennis, C., Moretti, I., Mallet, J., 2003. Construction of coherent 3D geological blocks. 

Computers & Geosciences 29, 971-984.

Genter, A., Giot, D., Guillou-Frottier, L., Calcagno, P., Courtois, N., Courrioux, G., Dagallier, A., 

Giraud-Petelet, E., Goyeneche, O., Lieutenant, N., Martelet, G., Negrel, P., Rocher, P., Serra, H., 

Serrano, O., Laplaige, P., 2005. Low to medium temperature geothermal resources in the Limagne 

basin (France). Proceedings World Geothermal Congress 2005. Antalya, Turkey, 24-29 April 2005.

Gribov, A. and Krivoruchko, K., 2004. Geostatistical mapping with continuous moving neighbourhood. 

Mathematical Geology 36, 267-281.



Page 19 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

Guillen, A., Calcagno, P., Courrioux, G., Joly, A., Ledru, P., Geological modelling from field data and 

geological knowledge, Part II – Modelling validation using gravity and magnetic data inversion. This

issue. 

Houlding, S.W., 1994. 3D Geoscience Modeling; Computer Techniques for Geological 

Characterization. Springer-Verlag, Berlin, Germany.

Hurtig, E., Cermak, V., Haenel, R., Zui, V., 1991. Geothermal Atlas of Europe: Hermann Haack 

Verlagsgesellshaft.  156 pp.

Joly, A., 2007. Relations plutons et discontinuités lithosphériques. Approche pluridisciplinaire de la 

mise en place de plutons granitiques le long du Sillon houiller (Massif Central Français). Doctoral 

thesis, Université d’Orléans, 304 pp.

Lajaunie, C., Courrioux, G., Manuel, L., 1997. Foliation fields and 3D cartography in geology; 

principles of a method based on potential interpolation. Mathematical Geology 29, 571-584.

Lorensen, W.E. and Cline, H.E., 1987. Marching Cubes: A high resolution 3D surface construction 

algorithm. Computer Graphics, 21(4), 163-169.

Mallet, J.L., 2004. Space-time mathematical framework for sedimentary geology. Mathematical 

Geology 36, 1-32.

Mallet, J.L., 2002. Geomodeling. Oxford University Press, Oxford, New York.

Marquer, D., Calcagno, P., Barfety, J., Baudin, T., 2006. 3D modeling and kinematics of the external 

zone of the French western Alps (Belledonne and Grand Chatelard massifs, Maurienne valley, 

Savoie). Eclogae Geologicae Helvetiae 99, 211-222.

Martelet, G., Calcagno, P., Gumiaux, C., Truffert, C., Bitri, A., Gapais, D., Brun, J.P., 2004. Integrated 

3D geophysical and geological modelling of the Hercynian suture zone in the Champtoceaux area 

(South Brittany, France). Tectonophysics 382, 117-128.

Maxelon, M. and Mancktelow, N.S., 2005. Three-dimensional geometry and tectonostratigraphy of the 

Pennine zone, central Alps, Switzerland and northern Italy. Earth-Science Reviews 71, 171-227.



Page 20 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

McInerney, P., Guillen, A., Courrioux, G., Calcagno, P., Lees, T., 2005. Building 3D geological models 

directly from the data? A new approach applied to Broken Hill, Australia; Digital Mapping Techniques 

'05; Workshop Proceedings. Open-file report — U.S.Geological Survey OF 2005-1428, 119-130.

Putz, M., Stuwe, K., Jessell, M., Calcagno, P., 2006. Three-dimensional model and late stage warping 

of the Plattengneis shear zone in the eastern Alps. Tectonophysics 412, 87-103.

Strzerzynski, P., Guillot, S., Courrioux, G., Leloup, H., Ledru, P., Darmendrail, X., 2005. Integrative 3D 

geological modelling along the Lyon Turin railway project (internal Briançonnais domain of the western 

Alps). Geoline 2005, Lyon, France. 

Talbot, J.Y., Martelet, G., Courrioux, G., Chen, Y., Faure, M., 2004. Emplacement in an extensional 

setting of the Mont Lozere-Borne granitic complex (SE France) inferred from comprehensive AMS, 

structural and gravity studies. Journal of Structural Geology 26, 11-28.

Wijns, C., Boschetti, F., Moresi, L., 2003. Inverse modelling in geology by interactive evolutionary 

computation. Journal of Structural Geology 25, 1615-1621.

Wu, Q., Xu, H., Zou, X., 2005. An effective method for 3D geological modeling with multi-source data 

integration. Computers & Geosciences 31, 35-43.



Page 21 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

Figures captions

Figure 1.

Principle of the potential-field interpolation method (in 2D).

(a) A geological formation mapped by the position of its interfaces with two other formations (red

points and blue points) and dip measurements (dip symbols).

(b) The geological formation modelled by potential-field method. Red and blue curves represent the 

reference isovalues of the modelled geology contact interfaces. White curves are selected isovalues of 

the potential field; in geological terms these may be ‘trends’ or foliations trajectories. The geological 

interfaces honour both contact points and orientation vectors.

Figure 2.

Sainte-Génis Mountain 3D geological model. The Mesozoic geological interfaces are modelled by 

isovalues of a potential field.

(a) Geology contact data points (crosses linked by segments) and orientation data (dip symbols) 

observed in the field.

(b) 3D view of the geological model, looking S-W.

(c) Modelled geology on section S-N.

Figure 3.

Example of a fault network showing selected faults terminating against other faults.

(a) Table describing the topology of the relations between faults: f1 stops on f2; f1 stops on f4; f3 stops 

on f6; f5 stops on f4; f6 stops on f2.

(b) Geometry of the fault network.

Figure 4.

Graphical depiction of the drift function introduced into the cokriging equations in order to implement 

the effect of offsets to geological formations across faults.

(a) Infinite. The drift function is 1 on one side of the fault and 0  on the other side (transverse profile). 

The longitudinal profile shows that the fault is infinite.
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(b) Finite. The domain of influence is an ellipsoid. The drift function varies from 1 or 1  to 0  when 

moving away from the fault (transverse profile). Along the fault, the drift function decreases from the 

centre to the fault limits (longitudinal profile).

(c) Fault network. A fault network comprised of an infinite (f2) and a semi-infinite fault (f1) which use 

drift functions of the type shown in (a). The network partitions 3D space in fault blocks. The value ( 0

or 1) of the drift function for each bounding fault is noted.

Figure 5.

Geometry of the fault depends on the drift function radius. Red crosses are geology contact points for 

the modelled geological interface. Green crosses are data defining the position of the fault.

(a) Infinite fault.

(b) Finite fault. .500Radius

(c) Finite fault. .400Radius

(d) Finite fault. .300Radius

Figure 6.

View to the N-W of the 3D geological model of the basement below the Limagne basin, illustrating the 

network of faults used to model the basement structure (model dimensions: 30 km x 35 km x 5 km).

The geometry of the basement was modelled by taking into account field geology observations, 

seismic sections and boreholes together with a basement surface derived from gravimetric inversion. 

The location map shows contours of temperature extrapolated to 5 km depth (Hurtig et al. 1991); the 

Limagne basin project (star) is located in an area of anomalously high temperature.

Figure 7.

Complex geology is modelled using different potential-field functions for different geological series. 

These multiple potential fields are managed using Onlap and Erode relations between series. In this 

example each series comprises a single formation.

(a) Interpolated Formation 1 (basement) and data for potential field of Formation 2.

(b) Formation 2 interpolated using an Onlap relation and data for potential field of formation 3.

(c) Formation 3 interpolated using an Erode relation.
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Figure 8.

The geological pile for the 3D model of the Limagne basin project is derived from the broad geological 

knowledge of the basin. Four sedimentary sequences (S1 to S4) are deposited on top of the 

basement. Each sequence is divided into three depositional phases (“Reservoir”, “Intermediate” and 

“Top”). The sequences are separated by erosional surfaces (Erode relation for the top series of the 

four sequences). Each formation is modelled using independent potential fields because the variability 

of thickness is not correlated from a formation to another.

Figure 9. 

View of the Limagne basin geology model (30 km x 35 km x 5 km). See Figure 8 for formations list and 

colour.

(a) 3D view from S-E of the 4 detrital formations (“Reservoir”) volumes in the central part of the model 

along with the boreholes in the area and two cross-sections (S-N and W-E).

(b) W-E section of the whole basin. (1) A fault stopping on another one according to the fault network. 

(2) Onlap deposition of S3_Reservoir_Series on S2_Top_Series (3) Erode relation of S1_Top_Series

makes an erosional surface between sequence S1 and S2. (4) Fault impacts S2_Intermediate_Series. 

(5) S3_Top_Series is not affected by the fault.

Figure 10.

Intrusion modelling presented on a synthetic example. The Intrusion relationship is the combination of 

an Erode sequence eroding the bedding series, followed by an Onlap sequence filling the intrusive 

body. Note that the polarity of the orientation data of the intrusive body is directed towards the inside

of the body.

(a) Data presented on a section.

(b) Geological pile of the model.

(c) The intrusive body visualized in 3D and the bedding displayed on a cross-section.

Figure 11.

How to determine valid geology contacts from borehole intervals?
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(a) Consider three formations A (oldest), B, and C (youngest). B is missing in the central borehole. The 

issue is to define a geological evolution to determine which interface separates A and C.

(b) B is missing because of an erosion episode between B and C deposition. In such a geological 

hypothesis, the historical top of A has been eroded. The boundary between intervals A and C must be 

assigned to an erosion surface. This is also the case for the boundary between B and C in the lateral 

holes. On the other hand, the boundary between intervals A and B corresponds to the historical top of 

A.

(c) B is missing because it was never deposited. For this case, the boundary between intervals A and 

C is a point belonging to the historical top of formation A. In the two other holes, each boundary 

between intervals is also the historical top of the lower interval.

Figure 12.

3D geological modelling methodology.

The 3D geological model is built from contact points and orientation data by using geological rules and 

knowledge. The potential-field interpolation method delivers a model defined continuously in 3D. 

Consequently, the geological formation can be inferred at any 3D point of the studied space. This 

capability facilitates 1D, 2D and 3D visualisation of the model, and export of model maps, surfaces, 

volumes and meshes.
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Figure1

http://ees.elsevier.com/pepi/download.aspx?id=33429&guid=05a39a36-05a5-4106-ad81-ca676f2cd00d&scheme=1
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Figure2

http://ees.elsevier.com/pepi/download.aspx?id=33430&guid=1ff6a0de-6a4d-4ff6-9d18-05f25efe2fbe&scheme=1
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Figure3

http://ees.elsevier.com/pepi/download.aspx?id=33431&guid=986b7eee-7275-481c-ac72-908eb9a97973&scheme=1
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Figure4

http://ees.elsevier.com/pepi/download.aspx?id=33432&guid=6f078f86-8d01-4acb-8472-3446fc18fdb0&scheme=1
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Figure5

http://ees.elsevier.com/pepi/download.aspx?id=33433&guid=3c4da72a-b36e-47ba-8f15-79277c8d27b0&scheme=1
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Figure6

http://ees.elsevier.com/pepi/download.aspx?id=33434&guid=e72049cf-b391-4e87-9717-7b996cb5ee7a&scheme=1
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Figure7

http://ees.elsevier.com/pepi/download.aspx?id=33435&guid=c81ba154-0141-4890-bcc7-705226f09ff3&scheme=1
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Figure8

http://ees.elsevier.com/pepi/download.aspx?id=33436&guid=9821cb07-49a0-4bac-ad53-f348841a4b0d&scheme=1
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Figure9

http://ees.elsevier.com/pepi/download.aspx?id=33437&guid=3c6c6b6c-aff9-494f-963a-ddee86fa3530&scheme=1
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Figure10

http://ees.elsevier.com/pepi/download.aspx?id=33438&guid=ceba7bd6-10de-41ba-ba49-4d9ebf340620&scheme=1
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Figure11

http://ees.elsevier.com/pepi/download.aspx?id=33439&guid=3e27e10f-8e4d-4508-84f2-05af7840d9e9&scheme=1
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Figure12

http://ees.elsevier.com/pepi/download.aspx?id=33440&guid=43351f89-d6cb-42b0-bd0c-707247f3ec83&scheme=1

