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[1] Recent work by Isham et al. and Rodrı̀guez-Iturbe et al. has characterized the space-
time variability of soil moisture through its analytically derived covariance function
which depends on soil properties, vegetation structure, and rainfall patterns typical of a
region. This paper uses such characterization to address the strategies and methodologies
for the sampling of soil moisture fields. The focus is on the estimation of the long-term
mean soil moisture and the daily soil moisture averaged over a given area as a function of
the network geometry, number of stations, number of sampling days and landscape
heterogeneity. It is found that the spatial geometry of the network has a significant impact
on the sampling of the average soil moisture over an area in any particular day, while it is
much less relevant for the sampling of the long-term mean daily soil moisture over the
region. In the latter case, the length of the record is a commanding factor in what
concerns the variance of estimation, specially for soils with shallow rooted vegetation.
Spatial vegetation heterogeneity plays an important role on the variance of estimation of
the soil moisture, being particularly critical for the sampling of the average soil moisture
over an area for a given day.
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1. Introduction

[2] Soil moisture represents a critical component of the
hydrological cycle and is a central factor in climate, soil and
vegetation interactions [e.g., Albertson and Montaldo, 2003;
Porporato et al., 2004; Rodrı́guez-Iturbe and Porporato,
2004]. It affects catchments response [e.g., Eagleson, 1978;
Manfreda et al., 2005] and modulates interactions between
land surface and atmosphere influencing climate and weather
[e.g., Entekhabi et al., 1996; Porporato et al., 2000]. Soil
moisture availability represents a critical control on plant
growth dynamics and ecological patterns in semiarid ecosys-
tems [Rodrı́guez-Iturbe, 2000; Meron et al., 2004; Caylor et
al., 2005; Scanlon et al., 2005] and its space-time variability
is crucial to formulate accurate predictions of the behavior of
hydrologic systems [Western et al., 2002].
[3] One of the most promising strategies for soil moisture

monitoring is through remote sensing techniques [e.g.,
Walker et al., 2001]. These provide estimates of soil
moisture over large areas that need to be calibrated with
ground-based measurements. Land surface models also
require quantitative comparison between simulated soil
moisture maps and field measurements. In this context,
Robock et al. [2003] evaluated land surface model results
from the North American Land Data Assimilation System
(NLDAS) [see Mitchell et al., 2004] using in situ observa-
tions over the southern Great Plains, but without consider-
ing the effects of sampling errors.

[4] An attempt to estimate sampling errors by using
empirically estimated correlation functions is presented by
Vinnikov et al. [1999] evaluating the root-mean-square error
of the soil moisture networks of Illinois and Oklahoma
Mesonet. Using the optimal averaging technique introduced
by Kagan [1979], they show that the Mesonet network does
not provide a significant improvement in the accuracy
respect to the less dense Illinois network. Yoo [2001]
adopted the formalism proposed by North and Nakamoto
[1989] for the estimation of sampling errors in soil moisture
fields using the soil moisture model of Entekhabi and
Rodrı́guez-Iturbe [1994]. The procedure has been applied
to the Washita 1992 data highlighting the inefficiency of
ground-based networks for large-scale observations. Within
the Soil Moisture Experiment 2002 (SMEX02), Jacobs et
al. [2004] found that number of samples to measure the soil
moisture content with a given confidence interval may
change according to the field characteristics and to the soil
moisture content itself. This suggests that further investiga-
tions are necessary to understand the role of spatial hetero-
geneity of the land surface on the sampling of soil moisture
fields.
[5] In the present paper, the sampling errors are estimated

using the space-time soil moisture correlation structures
analytically derived by Isham et al. [2005] and Rodrı́guez-
Iturbe et al. [2006] for a model considered appropriated for
a water-limited ecosystem. The methodology explicitly
accounts for soil characteristics, vegetation patterns, and
rainfall dynamics neglecting topographical effects and the
upper bound due to saturation. The soil moisture model can
be considered representative of a relatively flat landscape
under semiarid climate conditions. Both random sampling
and stratified random sampling, which are the commonly
used schemes over extended areas, are investigated for
the case of homogeneous and heterogeneous vegetation.
The study adopts the analytical framework introduced by
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Rodrı́guez-Iturbe and Mejı́a [1974] for rainfall sampling
that has been extensively used for the design of rainfall
networks [e.g., Bras and Rodrı́guez-Iturbe, 1976].
[6] It is important to point out that this paper will focus

on the estimation of soil moisture integrated over the root
zone of the vegetation. No attempt will be made to estimate
soil moisture values across the depth of the root profile.

2. Space-Time Soil Moisture Dynamics

[7] Soil moisture dynamics is modeled through a water
balance equation driven by stochastic space-time rainfall
forcing as studied by Isham et al. [2005] and Rodrı́guez-
Iturbe et al. [2006]. The rainfall model is the same proposed
by Cox and Isham [1988] where rainfall occurrences are
modeled by a sequence of circular rain cells that occur as a
Poisson process of rate lR in space and time. Each cell is
characterized by random radius, intensity and duration that
are assumed independent of each other and exponentially
distributed in order to keep as a minimum the number of
parameters. The total intensity of the rainfall process, Y(u, t),
is given by the superposition of cells that may overlap at any
spatial location u at time t. Although the use of the term cell is
customary in this type of model, one should be aware that
they are a mathematical construct whose characteristics do
not really match those of the usually identified as rain cells in
different types of precipitation fields.
[8] The water balance is written in the simplified form

nZr
dS u; tð Þ

dt
¼ 1� fð ÞY u; tð Þ � VS u; tð Þ; ð1Þ

where the dimensionless random variable S(u, t) represents
the relative soil moisture at site u and time t, n is the soil
porosity, and Zr is the depth of the root zone. On the right
hand side, the term (1 � f)Y(u, t) is the infiltration rate that
is determined by the precipitation reduced by (1 � f)
representing the vegetation interception. The second term,
VS(u, t), is the loss function given by the sum of
evapotranspiration and leakage assumed to be a linear
function of soil moisture. The water loss coefficient, V,
depends on both vegetation and soil properties and the
factor f depends on the plant species and condition of
vegetation. Typical values of f range between 0.4 and 0.1
according to Lull [1964]. Although continuous in time, all
results from equation (1) need to be interpreted at the daily
timescale since we do not include any dynamics below the
daily level neither in the evapotranspiration losses nor in the
storm structure [Rodrı́guez-Iturbe and Porporato, 2004].
[9] For the purpose of this paper, the use of a linear

approximation for the description of soil water losses is
reasonable especially for nonhumid conditions. Pan et al.
[2003] provide estimates of soil water loss coefficients
obtained from the analysis of ground measurements of the
Monsoon 1990 and Washita 1992 campaigns relating those
values to the soil permeability and the vegetation Leaf Area
Index (LAI) [Pan et al., 2003]. They obtain values of V that
range between 3 and 16 mm d�1.
[10] The soil moisture scheme adopted above does not

account for the presence of an upper bound due to soil
saturation. This limitation was found to be necessary to
obtain closed analytical results for the covariance structure
of soil moisture fields. Isham et al. [2005] show that the

lack of an upper bound is not a restrictive assumption in
terms of its impact on the covariance when dealing with arid
and semiarid environments.
[11] With the above modeling scheme, the expected value

of the relative soil moisture at a point (e.g., the origin) with
given vegetation is

E S 0; tð Þ½ � ¼ b0

a0

2plR

r2Rhb
; ð2Þ

where a0 = [V/(nZr)]0 is the normalized soil water loss, b0 =
[(1 � f)/(nZr)]0 is the normalized net rainfall coefficient,
mR = 1/rR is the mean rain cell radius, mD = 1/h is the mean
storm duration and mX = 1/b is the mean rainfall intensity of
a cell [Isham et al., 2005].
[12] The expression for the space-time covariance func-

tion of the relative soil moisture conditional on the cover of
the points A and B, l apart from each other, is [Rodrı́guez-
Iturbe et al., 2006]

CAB ¼ Cov S 0; tð Þ; S l; t þ hð Þ½ �

¼ 2plR

hb2
bAbB

2he�aBh

aA þ aBð Þ h2 � a2Bð Þ þ
e�hh

aB � hð Þ aA þ hð Þ

� �
� 2

r2R
þ l

2rR

� �
e�rR

l
2; ð3Þ

where the site (B), characterized by the parameters (aB, bB),
is ‘‘attached’’ at the later time and the vegetation cover
controls the value of the pairs (aA, bA) and (aB, bB).
[13] In the case of uniform vegetation, the space-time

covariance function of relative soil moisture becomes

Cov S 0; tð Þ; S l; t þ hð Þ½ �

¼ 2plR

hb2
b2 he�ah � ae�hh
� �
a h2 � a2ð Þ

2

r2R
þ l

2rR

� �
e�rR

l
2 ð4Þ

and the variance

s2S ¼ 4plR

hb2r2R

b2

a hþ að Þ ð5Þ

which have been studied in detail by Isham et al. [2005].
[14] The correlation function of the relative soil moisture

is a separable function in its space and temporal compo-
nents. For the case of uniform vegetation, the space corre-
lation is the same of the rainfall process

r lð Þ ¼ 1þ rRl
4

� �
e�rR

l
2 ð6Þ

and the temporal correlation is

r hð Þ ¼ he�ah � ae�hh

h� a
: ð7Þ

[15] The case of heterogeneous vegetation is modeled by
Rodrı́guez-Iturbe et al. [2006] by a marked point process
that account for the presence of two functionally different
vegetation types in the landscape (e.g., grasses and trees).
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The spatial structure of vegetation is described through a
matrix of grass with trees located according to a Poisson
process in space with rate lT which have random circular
crowns with radii exponentially distributed with parameter
rT. This representation may provide a reasonable approxi-
mation for the vegetation patterns found, for instance, in
savanna ecosystems (further details of the modeling scheme
are reported by Rodrı́guez-Iturbe et al., 2006).
[16] To derive the unconditional space-time soil moisture

covariance, it is necessary to distinguish between points
covered and not covered by a tree crown. The subscript c
will be used for first ones and the subscript u for the
uncovered points.
[17] The probability that a point A is not covered by a tree

is

PAu
¼ e�l0T ; ð8Þ

where l0T = 2plT/rT
2 represents the rate of tree crown

occurrence at any point.
[18] The joint probabilities of occurrence of the different

combinations of vegetation cover at two points A and B at
distance l in space are given by

PAuBc
¼ PAcBu

¼ e�l0
T 1� e�l0

Tþl0T 1þrT l

4ð Þe�
rT l

2

� �
; ð9Þ

PAuBu
¼ exp �2l0

T þ l0
T 1þ rT l

4

� �
e� rT l=2ð Þ

� �
; ð10Þ

PAcBc
¼ 1� 2PAuBc

� PAuBu
: ð11Þ

[19] Using the above probabilities, Rodrı́guez-Iturbe et al.
[2006] give the space-time covariance for the relative soil
moisture between two points as

Cov S 0; tð Þ; S l; t þ hð Þ½ � ¼ CAcBu
PAcBu

þ CAuBc
PAuBc

þ CAuBu
PAuBu

þ CAcBc
PAcBc

þ E2 Su½ �PAuBu
þ 2E Su½ �E Sc½ �PAcBu

þ E2 Sc½ �PAcBc
� E Sc½ �PAc

þ E Su½ �PAu
ð Þ2:

ð12Þ

where point B corresponds to the later time and the
conditional covariances CAB are given by equation (3).
[20] The variance of the relative soil moisture in a

heterogeneous landscape is obtained from equation (12) as

s2S ¼ 4plR

hr2Rb
2

b2u 1� CFð Þ
au hþ auð Þ þ

b2cCF

ac hþ acð Þ

� �
þ 4p2l2

R

h2r4Rb
2

bu

au
� bc

ac

� �2

CF� CF2
� �

; ð13Þ

where CF = 1 � exp(�l0T) represents the tree cover fraction
over the landscape.
[21] Figure 1 shows an example of the correlation func-

tion of the relative soil moisture in a heterogeneous land-
scape. Two characteristic regimes are observed arising from
the strong separation of scales between the rainfall forcing
and the vegetation patterns. The first sharp reduction of
correlation is related to the structure of vegetation and, as
one may observe in Figure 1, to the density of tree coverage
which is 18%, 45%, and 87%, respectively in this particular
example. The second reduction is due to the rainfall forcing
that imposes a large scale structure in the spatial correlation
of the soil moisture field. The control of the atmosphere on
the correlation structure of soil moisture fields at large
spatial scales has been also point out by Vinnikov et al.
[1996] and Entin et al. [2000].
[22] The mean value of the soil moisture in the hetero-

geneous vegetation case may be obtained as the sum of the
means of covered soil and uncovered soil weighted by their
relative probabilities

E S½ � ¼ 2plR

r2Rhb
bc

ac
þ bu

au
� bc

ac

� �
e�l0

T

� �
: ð14Þ

Figure 1. Examples of correlation functions of the relative
soil moisture with different heterogeneous landscape
obtained with rT = 1/8 m�1 and lT equal to (a) 500,
(c) 1500, and (e) 5000 km�2. Tree coverage is (b) 18%,
(d) 45%, (f) and 87%, respectively. Rainfall parameters
are rR = 0.0075 km�1, h = 7.5 d�1, b = 0.013 d mm�1

and lR = 2.9 
 10�6 km�2 d�1, while the remaining
parameters of vegetation are the same of Table 1. In each
plot from top to bottom the lines correspond to h = 1, 10,
25, and 50 days, respectively.
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When the entire landscape is covered by tree or grass, the
mean assumes the same expression of the uniform
vegetation case.

3. Soil Moisture Sampling in Time and Space

[23] Two descriptors of the soil moisture process are
particularly relevant in hydrology: (1) the long-term mean
soil moisture for a given time interval during a given season
(e.g., daily soil moisture during month of June) at any point
of a statistically homogeneous region, mS, and (2) the mean
soil moisture over an area SA = 1

A

R
A
S(xi)da, where S(xi) is

the soil moisture at a site xi and represents a realization of
the soil moisture process over a region assumed statistically
homogeneous. S(xi) may represent an instantaneous value or
an average value over a particular time interval (e.g., mean
soil moisture for a given day). The last one may be used for
water resources management and ecohydrological analyzes.
The first one is important for the calibration of remote
sensing techniques and global circulation model (GCM).
The estimation of mS is described in the following, while
that of SA is presented in section 3.3. In both cases we will
assume that daily soil moisture is the point variable one
wishes to estimate either in a long-term basis or integrated
over an area for a particular day.
[24] Assuming N sample points in space operating during

T days of the same statistically homogeneous season, mS is
estimated through �S as given by

�S ¼ 1

NT

XT
t¼1

XN
i¼1

S xi; tð Þ: ð15Þ

[25] It is assumed that the individual samples, S(xi, t),
adequately represent the average daily soil moisture at site xi
and day t. The goodness of the estimation is measured
through the variance of �S,

Var �S½ � ¼ 1

N 2T 2
E
XT
t¼1

XN
i¼1

S xi; tð Þ � mSð Þ
" #2

: ð16Þ

Equation (16) is a measures of the magnitude of the
estimation errors, �S � mS, that are random variables with
zero mean. The variance of the estimate of mS is equivalent
to the point variance, sS

2, if there is only one sample in space
and time (T = 1, N = 1). Any additional samples have the
effect of reducing this variance, and the degree of that
reduction is a subject of this paper.
[26] The variance of �S is a function of the space-time

correlation function of the process, the number of sampling
points, the geometry of the sampling scheme and the length
of operation of the stations. Following Rodrı́guez-Iturbe
and Mejı́a [1974], the variance of �S can be written as

Var �S½ � ¼ 1

N 2T 2
E
XT
t¼1

XN
i¼1

XN
i0¼1

f xi; tð Þf xi0 ; tð Þ
"

þ2
XT�1

t¼1

XT
t0¼tþ1

XN
i¼1

XN
i0¼1

f xi; tð Þf xi0 ; tð Þ
#
; ð17Þ

where f(xi, t) = (S(xi, t) � mS).

[27] Equation (17) may be written as the product of two
reduction factors affecting the variance of the daily soil
moisture at a point, sS

2,

Var �S½ � ¼ s2SF1 Tð ÞF2 Nð Þ: ð18Þ

The time-dependent factor, F1(T), is given by

F1 Tð Þ ¼ 1

T 2

XT
t¼1

1þ 2
XT�1

t¼1

XT
t0¼tþ1

r t0 � tð Þ
" #

¼ 1

T
þ 2

T 2

XT�1

t¼1

XT
t0¼tþ1

r t0 � tð Þ; ð19Þ

and the space-dependent factor, F2(N), is

F2 Nð Þ ¼ 1

N 2

XN
i¼1

XN
i0¼1

r xi � xi0ð Þ
" #

¼ 1

N
þ 2

N 2

XN�1

i¼1

XN
i0¼iþ1

r xi � xi0ð Þ;

ð20Þ

where r(t) represents the correlation function in time and
r(x) in space [Rodrı́guez-Iturbe and Mejı́a, 1974].
[28] The reduction factor F1(T) can be derived explicitly

from equation (19) for the case of uniform vegetation using
the correlation function given in equation (7),

F1 Tð Þ ¼ 1

T
þ 2

T 2 h� að Þ
h

ea � 1
T � 1� e�a � e�aT

1� e�a

� ��
� a

eh � 1
T � 1� e�h � e�hT

1� e�h

� ��
: ð21Þ

In this case, the temporal reduction factor, F1(T), depends
on the parameters h and a that are related to the physical
characteristics of the soil (a) and the dynamics of rainfall
(h). The inverse of each of these parameters represents a
characteristics timescale; the former is the characteristic
time of drying, equal to nZr/V, while the latter represents the
mean storm duration, or the characteristic time of wetting.
When h � a, the temporal correlation function of soil
moisture may be simplified to exp(�ah), implying that the
second term in the parenthesis on the right hand side of
equation (21) becomes negligible. It is important to remark
here that the lack of dependence of the correlation structure
on the frequency of storm arrivals is due to the assumption
of a Poisson process for rainfall occurrences.
[29] Figure 2 shows two examples of the reduction factor

F1(T) as a function of the number of days of sampling, T,
ranging from 1 to 200 days. Although the duration of a
season through which the atmospheric forcing may be
considered statistically homogeneous is likely to be less
than 90 days, one could always sample repeatedly over that
season throughout many years as long as the initial condi-
tion at the beginning of the season is not too close to
saturation. In such a case, we should account for the
saturation bound and the actual model cannot be applied.
The graphs show the improvement in the estimation of mS

achieved by increasing the number of sampling days, T, for
different values of nZr and h. Figure 2a shows that the
increase of daily measurements drastically improves the
estimation of mS. Shallow root soils that are more suscep-
tible to temporal fluctuations induced by rainfall and soil
losses will quickly benefit from the temporal sampling and
100 days of measurements will accomplish a dramatic
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reduction of the variance of the long-term mean daily soil
moisture with respect to the point variance of the process.
On the other hand, soils with deeper roots require much
longer daily data to approach comparable reductions in the
variance of the long-term mean daily soil moisture. One can
also observe that F1(T) is not sensitive to the changes on the
mean duration of the rain cells (see Figure 2b).
[30] With regard to the spatial factor, F2(N), its calcula-

tion depends on the spatial geometry of the sampling
scheme. The two cases considered herein (random spatial
sampling and stratified spatial random sampling) are dis-
cussed in the following.

3.1. Spatial Random Sampling

[31] In this case F2(N) (equation (20)) is the only reduc-
tion factor playing a role and it is further derived by
Rodrı́guez-Iturbe and Mejı́a [1974] as

F2 Nð Þ ¼ 1

N 2
N þ N N � 1ð ÞE r xi � xi0ð ÞjA½ �ð Þ; ð22Þ

where E[r(xi � xi0)jA] is the expected value of the
correlation between two points randomly located in the
area considered. For the case of a rectangular region,
Rodrı́guez-Iturbe and Mejı́a [1974] obtain E[r(xi � xi0)jA]
as

E r xi � xi0ð ÞjA½ � ¼
Z R

0

r lð Þf lð Þdl; ð23Þ

where f(l) is the probability density function of the
distance between two randomly chosen points in the
region (see Appendix A) and R represents the diagonal of
the rectangular area. For the results of this paper we will
assume the areas of interest are approximated by a square
region.
[32] Since the spatial correlation of the relative soil mois-

ture in the case of homogeneous vegetation (equation (6))
is solely a function of the dimensionless product lrR, one
can obtain the factor F2(N) as function only of ArR

2 as
shown in Figure 3 where it is plotted for different values
of N. F2(N) decreases monotonically with N and ArR

2. The
decrease in F2(N) is more pronounced for increases in N
when the number of stations is still small (e.g., from 1 to 5
stations). Also depending on the values of ArR

2 one may
obtain a relatively small or a very large decrease of F2(N)
when increasing the number of stations. From a practical
point of view, the scales of greater interest for hydrologists
are frequently those with ArR

2 
 1 (see Figure 3 inset). A
value ArR

2 = 1 generally implies an area of less than 104 km2

given that typical values of rR range between 10�1 and
10�2 km�1. At those scales, we observe relatively minor
changes in the function F2(N) whose role is clearly less
important that the one played by the temporal reduction
factor F1(T). Thus for the estimation of the long-term
mean daily soil moisture in a region with homogeneous
vegetation the length of operation of the network appears
to be the commanding factor and trade of time versus space

Figure 3. Variance reduction factor due to the spatial
sampling, F2(N), for the case of the long-term mean daily
soil moisture as function of ArR

2 with homogeneous
vegetation. Both spatial random sampling (solid line) and
stratified sampling (dotted line) area are shown.

Figure 2. Variance reduction factor due to the temporal
sampling, F1(T), for the case of the long-term mean daily
soil moisture with homogeneous vegetation as a function of
the number of days of measurement (a) for different value of
nZr with fixed V = 7 mm d�1 and h�1 = 0.16 days and
(b) for different values of h with fixed V = 7 mm d�1 and
nZr = 50 mm.
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using more stations over a shorter period of measurements is
not a realistic option.

3.2. Stratified Spatial Random Sampling

[33] The variance reduction factor due to spatial sam-
pling, F2(N), is now obtained by dividing the area A in non
overlapping strata of area a. Following Rodrı́guez-Iturbe
and Mejı́a [1974], F2(N) may be written as

F2 Nð Þ ¼ 1

N2
N þ A2 E r xi � xi0ð ÞjA½ �

a2
� NE r xi � xi0ð Þj A=Nð Þ½ �

� �
:

ð24Þ

[34] When there is only one station for each stratum
F2(N) is

F2 Nð Þ ¼ 1

N 2
N þ N 2E r xi � xi0ð ÞjA½ � � NE r xi � xi0ð Þj A=Nð Þ½ �
� �

:

ð25Þ

Equation (25) is plotted with a dotted line in Figure 3 where
it can be observed that the use of stratified spatial random
sampling does not provide significant improvements for the
estimation of mS respect to those obtained through a simple
random sampling.

3.3. Mean Soil Moisture Over an Area for
Any Given Day

[35] Estimates of the daily soil moisture averaged over a
given area, SA, are required in numerous cases like those
aimed to provide input or validation of land surface models.
Moreover, the use of remotely sensed images provides
spatial and temporal description of soil moisture fields,
but such techniques also need to be calibrated with ground
based approaches.
[36] Following Rodrı́guez-Iturbe and Mejı́a [1974], in the

case of a spatial random sampling, the performance of a
network for the estimation of SA = 1

A

R
A
S(xi)da may be

described by the variance of the sample mean, bS, using N
points in space as

E bS � SA


 �2� �
¼ s2S

1� E r xi � xi0ð ÞjA½ �ð Þ
N

¼ s2SF2 Nð Þ; ð26Þ

while in the case of stratified random sampling with the
assumption of one station per strata, the variance reduction
factor due to the spatial sampling is

F2 Nð Þ ¼ f1� E r xi � xi0ð ÞðA=NÞ½ �g
N

: ð27Þ

[37] In contrast to mS, the variance of the estimate of SA
will only be as large as the point variance, sS

2, if one has a
single sample over an infinitely large area. Thus, for smaller
areas (e.g., especially areas smaller than the correlation
scale of the rain cells), the variance of the estimate will
be less than the point variance. If the area is very small (i.e.,
smaller than the vegetation and rainfall correlation scales),
then a single measurement will be adequate to determine the
spatial average. Also, if the averaging area is very large
(much larger than any correlation scales), then the variance
of the estimate of SA decreases as 1/N as confirmed by
Figure 4.
[38] Figure 4 shows the reduction factor F2(N) computed

using equations (26) and (27) with the correlation function
of soil moisture for the case of a region with homogeneous
vegetation. It is seen that the stratified random sampling
may produce significant reductions on the errors of estima-
tion of the areal soil moisture with respect to those occur-
ring with a random design. The difference between the two
sampling schemes becomes more significant with the in-
crease of N. For cases where ArR

2 
 1, the reduction factor
F2(N) assumes relatively small values even with only few
stations located in the region.

3.4. Soil Moisture Fields With
Heterogeneous Vegetation

[39] The effects of vegetation heterogeneity on the soil
moisture sampling are now addressed analyzing the impact
of different vegetation covers resulting from varying the rate
of occurrence of tree centers in space (lT).
[40] We will deal first with the estimation of the long-

term mean soil moisture, mS. In the case of heterogeneous
vegetation cover, the algebraic expression for F1(T) is more
complex and is not reported herein, but its numerical
computation is straightforward using the correlation struc-
ture obtained from equations (12) and (13) in equation (19).
Some examples are reported in Figure 5 that shows the
variance reduction factor due to temporal sampling, F1(T),
for different heterogeneous vegetation cover and with
rainfall parameters estimated, during the period May/Au-
gust, using a data set of 18 stations belonging to the state of
Oklahoma (USA). In this graph, the solid lines represent the
two extreme cases one with uniform grass vegetation (e.g.,
lT = 0) and the other for full coverage of trees. In general,
the presence of a heterogeneous vegetation tends to increase
the values of F1(T) with respect to those corresponding to a
homogeneous cover. In the other hand, spatial sampling, as
will be explained in the following, provides a stronger
reduction of the variance of estimation than that obtained
in the homogeneous vegetation case under comparable

Figure 4. Variance reduction factor due to the spatial
sampling, F2(N), for the case of the mean soil moisture over
an area for a particular day with homogeneous vegetation
cover. Both spatial random sampling (solid line) and
stratified sampling (dotted line) area are shown.
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conditions. A larger value of F1(T) and a smaller F2(N)
make trade of time versus space more appealing for the case
of heterogeneous vegetation than for an homogeneous
vegetation cover when estimating the long-term mean daily
soil moisture over a region.
[41] Figure 6 shows an example of variance reduction

factor due to the spatial sampling, F2(N), as a function of the
dimensionless parameter ArR

2 and for different values of N.
The graph displays F2(N) for two types of sampling designs
and for a region with a heterogeneous vegetation cover with

the parameters given in Table 1. This example shows the
effect of heterogeneous vegetation on the parameter F2(N)
that specially for the small values of ArR

2 (see inset of
Figure 6) is considerably smaller than F2(N) for the case of
homogeneous vegetation shown in Figure 3. Similar to
what was obtained for F2(N) for the case of the long-term
mean daily soil moisture in a region with homogeneous
vegetation, the stratified random sampling offers little
advantage over the simple random sampling.
[42] The impact of vegetation heterogeneity on the esti-

mation of the long-term mean daily soil moisture over a
region is more clear in Figure 7, where the variance
reduction factor, F2(N), for the case of N = 10 is given
for different cases of vegetation structure. The results are a
direct consequence of the characteristic shape of the corre-
lation function of relative soil moisture (Figure 1). In
particular, the presence of vegetation heterogeneity at small
scales produces a reduction of the factor F2(N) for small
values of ArR

2 which is not present for the cases when lT is
either very small or very large.
[43] We now address the impact of heterogeneous vege-

tation in the estimation of the mean soil moisture over an
area for a particular day (SA). Figure 8 shows the variance
reduction factor, F2(N), for random and stratified random
geometries. The subdivision of the domain in strata pro-
vides substantial improvement in the mean soil moisture
estimation as the product ArR

2 becomes smaller. The pres-
ence of an heterogenous vegetation cover leads to larger
values of F2(N) relative to those obtained for the homoge-
neous vegetation case (Figure 4). This implies an increase in
the number of stations in order to maintain comparable
reduction factor. To evaluate the goodness of estimation,
one needs to multiply the reduction factor times the variance
of the soil moisture process, sS

2, as in equation (26). The
value of sS

2 is larger for the heterogeneous vegetation case
than for homogeneous vegetation case for comparable
rainfall and soil conditions. The impact of heterogenous
cover is now the opposite of the one found in F2(N) for the
estimation of the long-term daily soil moisture over a
region. This is particularly evident in Figure 9 where
F2(N = 10) is shown for different values of the parameter lT.

4. Conclusions

[44] The space-time sampling of soil moisture fields has
been quantitatively explored using a stochastic soil moisture

Figure 6. Variance reduction factor due to spatial
sampling, F2(N), for the case of the long-term mean daily
soil moisture in a region with heterogeneous vegetation.
The solid line corresponds to random sampling and the
dotted line to stratified random sampling. The parameters of
vegetation are given in Table 1, and parameters of rainfall
are the same as Figure 5.

Figure 5. Variance reduction factor due to temporal
sampling, F1(T), for the case of the long-term mean daily
soil moisture in a region with heterogeneous vegetation for
different values of the rate of tree occurrence, lT.
Remaining parameters of vegetation are given in Table 1,
and rainfall parameters are rR = 0.0075 km�1; h = 7.5 d�1;
b = 0.013 d mm�1, and lR = 2.9 
 10�6 km�2 d�1.

Table 1. Parameters Adopted to Characterize the Two Function-

ally Different Vegetation Typesa

Vegetation Parameter Value

Tree
nZr,t [mm] 400
fT [dimensionless] 0.2
VT [mm d�1] 7.0
lT [km�2] 1500
rT

�1 [km] 0.0080

Grass
nZr,g [mm] 100
fG [dimensionless] 0.05
VG [mm d�1] 4.0

aThe percentage of tree cover is 45% in this case.
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model dependent on rainfall characteristics, soil properties
and vegetation structure. The parameter a = V/(nZr) has
been identified as a key factor controlling of the temporal
correlation function of the soil moisture process. Thus it
strongly affects the sampling of the long-term mean soil
moisture. In particular, an increase of a leads to a higher
variability of the soil moisture dynamics and, as shown in
Figure 2, for small values of nZr leads to a drastic decrease
in the value of the variance reduction factor due to temporal

sampling. This implies that networks with relatively short
period of measurements will nevertheless provide signifi-
cant reductions in the variance of estimation of the long-
term mean daily soil moisture in soils with shallow roots,
high permeability and high evapotranspiration rates.
[45] One may also notice, from equation (5), that the

variance of the soil moisture is proportional to (1 � f)2/
(nZrVh) when h � a. Thus, if from one side the variance
reduction factor is smaller with smaller nZr, from the other
side the actual variance is larger. On the contrary, the
increase of the soil water losses, described through the
parameter V, leads to a decrease of both the variance and
F1(T). Consequently, the estimate of the long-term mean
daily soil moisture will be more accurate in soils with high
permeability and high evapotranspiration rates.
[46] In the case of heterogeneous vegetation cover the

role of F1(T) is less commanding than in the homogeneous
case but temporal sampling still remains a very important
consideration for the estimation of the long-term mean daily
soil moisture. The impact of the number of stations in the
network depends heavily on the values of the parameter ArR

2.
In the case of homogeneous vegetation cover for ArR

2 
 1,
F2(N) plays a minor role in the estimation of the long-term
mean daily soil moisture and there is little to gain with
sizable increases in the number of stations in the network.
This is not the case for regions with heterogeneous cover
where F2(N) plays a more important role even for small
values of ArR

2. For both types of cover it is only important to
go beyond N = 5 for cases when ArR

2 > 100 showing that the
greatest gain in information for the estimation of the long-
term mean daily soil moisture in a region is obtained with
an initial, relatively small, number of stations.
[47] The number of stations plays a crucial role, as

expected, in the estimation of the average soil moisture over

Figure 8. Variance reduction factor due to spatial
sampling, F2(N) for the case of the mean soil moisture
over an area for a particular day with heterogeneous
vegetation cover. The solid line corresponds to random
sampling, and the dotted line corresponds to stratified
random sampling. The parameters of vegetation are the
same of Table 1, and parameters of rainfall are the same as
Figure 5.

Figure 9. Variance reduction factor due to spatial
sampling, F2(N = 10) for the case of the mean soil moisture
over an area for a particular day with heterogeneous
vegetation cover as a function of the parameter ArR

2. The
graph shows the effect of different vegetation patterns
obtained assuming rT

�1 = 0.0080 km and varying the
parameter lT. Other vegetation parameters are as given in
Table 1, and parameters of rainfall are the same as Figure 5.
The sampling geometry corresponds to random sampling
with N = 10.

Figure 7. Variance reduction factor due to spatial
sampling, F2(N = 10) for the case of the long-term mean
daily soil moisture in a region with heterogeneous
vegetation and different values of tree coverage. The
scheme adopted is a random sampling with 10 stations.
Remaining vegetation parameters are the same as in Table 1,
and parameters of rainfall are the same as Figure 5.
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a region for a given day. This role is relatively more effective
for the case of an homogeneous vegetation cover which
yields values of F2(N) smaller than those obtained for the
heterogeneous case in otherwise comparable conditions. This
implies the need for a larger number of sampling stations over
the region with heterogeneous cover to obtain a value of
F2(N) similar to that of the homogeneous vegetation case.
[48] It is important to point out that although our dis-

cussion has been carried out in terms of the variance
reduction factors F1(T) and F2(N), the variance of estima-
tion of, both, the long-term mean daily soil moisture and the
average soil moisture over an area in any particular day, are
given by the decrease that F1(T) and F2(N) have over the
point variance of the process (e.g., equations (18) and (26)).
Moreover, the variance reduction factors are the only ones
controlled by the length of operation and the spatial geom-
etry of the sampling scheme, while the point variance of the
process is not affected by those characteristics. The good-
ness of a sampling network for soil moisture fields should
be judged by the values of the variance of S and bS which are
a function of the point variance sS

2 and which itself depends
on the climate, soil, and vegetation characteristics of the
area under consideration.
[49] The network design has been analyzed considering two

different sampling schemes: the random sampling and the
stratified random sampling. It was found that the role of the
network geometry is a secondary one in the estimation of
the long-term mean daily soil moisture, while it is significant
when one is interested on average soilmoisture over an area for
a particular day. The first goal is a common one in water
resources management and ecohydrological studies while the
second estimation is particularly useful to calibrate remote
sensing techniques for soil moisture estimates and toward
the validation of large-scale models (e.g., global circulation
models) in the description of soil moisture dynamics.

Appendix A: Distribution of Distance of
Random Points in a Given Area

[50] The probability density function (PDF) of the dis-
tance, l, between two randomly chosen points in a rectan-
gular area has been derived by Ghosh [1951]. Given a
rectangular area (A = c 
 d) with sides c and d with (c > d),
the PDF of l has the expression

f lð Þ ¼ 4l

c2d2
y lð Þ; ðA1Þ

where

y lð Þ ¼

1

2
pcd � l cþ dð Þ þ l2

2
0 
 l 
 d;

cd sin�1 d

l

� �
þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � d2

p
� cl � d2

2
d 
 l 
 c;

cd sin�1 d

l

� �
� cos�1 c

l


 �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � d2

p

d
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � c2

p

c

 !
� l2 þ c2 þ d2

2
c 
 l 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p
:

8>>>>>>>><>>>>>>>>:
For a square area of side d, which is the case used in the this
paper, the expression simplifies to

f lð Þ ¼ 4l

d4
y1 lð Þ; ðA3Þ

where

y1 lð Þ ¼
1

2
pd2 � 2ld þ l2

2
0 
 l 
 d

d2 sin�1 d

l

� �
� cos�1 d

l

� �� �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � d2

p
þ l2 � 2d2

2
d 
 l 


ffiffiffi
2

p
d:

8>><>>:

More details on this topic and on the approximation of real
regions with rectangular or squared shapes are given by
Rodrı́guez-Iturbe and Mejı́a [1974].

Notation

a = V/(nZr) normalized soil water loss coefficient
[d�1].

b = (1 � f)/(nZr) normalized net rainfall coefficient that
describes the effects of the vegetation
interception [mm�1].

c and d sides of a rectangular area [km].
F1(T) variance reduction factor due to the

temporal sampling [dimensionless].
F2(N) variance reduction factor due to the

spatial sampling [dimensionless].
h temporal lag [days].
l distance between two points [km].

mS long-term mean soil moisture for a
given time interval during a given
season, [dimensionless].

n soil porosity [dimensionless].
R cell radius [km].
�S estimator for the long-term mean soil

moisture mS [dimensionless].bS estimator for the averaged soil moist-
ure over an area in a given day
[dimensionless].

SA mean soil moisture over an area in
given day [dimensionless].

S(t) relative soil moisture at time t [dimen-
sionless].

V water soil loss coefficient [mm d�1].
Zr depth of the root zone [mm].
lR rate of rain cells per unit time and unit

area [d�1 km�2].
lT rate of tree canopy per unit area [km�2].
rT
�1 mean value of the canopy radius

[km�1].
mD mean value of rainstorm duration (h =

1/mD) [km].

mR mean cell radius (rR = 1/mR) [km].
mX mean rainfall intensity (b = 1/mX) [mm

d�1].
f interception coefficient [dimension-

less].

(A2)

(A4)
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