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Depth-to-bedrock map of China at a 
spatial resolution of 100 meters
Fapeng Yan1,2, Wei Shangguan   1*, Jing Zhang2 & Bifeng Hu   3,4,5

Depth to bedrock influences or controls many of the Earth’s physical and chemical processes. It plays 
important roles in soil science, geology, hydrology, land surface processes, civil engineering, and other 
related fields. However, information about depth to bedrock in China is very deficient, and there is 
no independent map of depth to bedrock in China currently. This paper describes the materials and 
methods to produce high-resolution (100 m) depth-to-bedrock maps of China. For different research and 
application needs, two sets of data are provided for users. One is the prediction by the ensemble of the 
random forests and gradient boosting tree models, and the other is the prediction and the uncertainty 
of prediction based on quantile regression forests model. In comparison with depth-to-bedrock maps 
of China extracted from previous global predictions, our predictions showed higher accuracy and 
more spatial details. These data sets can provide more accurate information for Earth system research 
compared with previous depth-to-bedrock maps.

Background & Summary
Bedrock is the consolidated solid rock underlying unconsolidated surface materials, such as soil or other rego-
lith1. Depth to bedrock (DTB) is equivalent to the total thickness of the solum and weathered rocks. DTB infor-
mation plays an important role in many fields of Earth system science. In soil science, DTB is a key indicator 
of soil resources, because it restricts root penetration of plants. DTB is a key variable provided by global soil 
projects such as GlobalSoilMap (http://www.globalsoilmap.net/) and SoilGrids project (http://soilgrids.org). In 
geology, DBT has been used for applications such as mineral exploration, earthquake modelling, and landslide 
risk assessment2,3. In land surface modelling, DTB is an important input parameter that affects the energy, water, 
and carbon cycles4. DTB information is also indispensable to civil engineering in building homes, roads, railways, 
and bridges5. Furthermore, DTB is of great importance to the study and applications of hydrology, ecology, agri-
culture, and other relevant fields6,7.

Although information about DTB is very important, to date, information about DTB in China is very defi-
cient, and there is no independent map of DTB in China. However, researchers have advanced toward this target. 
Globally, there are several existing maps of DTB covering the area of China. The earliest global distribution of 
DTB was produced by the Food and Agriculture Organization (FAO)8, but the depth was limited to the upper-
most 2 m. This map is produced by assigning a representative sample for each soil type on the FAO soil map with 
the scale of 1:5,000,000. Hengl et al.9 developed a global depth-to-bedrock map at 1-km resolution based on 
zero-inflated models. Pelletier et al.10 produced a global data set of the average thicknesses of soil, intact rego-
lith, and sedimentary deposits at 1-km resolution by geomorphically based models. Shangguan et al.11 produced 
another global map of depth to bedrock based on an ensemble of machine learning (i.e., random forest and 
Gradient Boosting Tree), using soil profile data, borehole data, and pseudo-observations.

Among the above-mentioned maps of DTB, there are still some deficiencies, including coarse resolution, lim-
ited observations, and limited accuracy. Most of them have relatively coarse resolutions (1 km or coarser), except 
that the map produced by Shangguan et al. (2017) is 250 m11. However, several environmental covariates (mainly 
remote sensing data) with high resolution have been produced, which can be used to produce a high-resolution 
DTB map of China. Though remote sensing can only see the very top surface, the surface or subsurface conditions 
such as topography and vegetation may affect how deep is the bedrock. For example, high-slope areas (which can 
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be derived from remote sensing DEM data) often have higher water loss and more severe erosion. After long-term 
development, these areas are more likely to have relatively low DTB. In addition, observations of DTB by the 
FAO8, Shangguan et al.12 and Hengl et al.9 have been based solely on soil data; thus, the predictions are often lim-
ited to soil surfaces with depths limited to several meters. These depths are not consistent with the actual distribu-
tion of DTB. In addition, most samples of Pelletier et al.10 and Shangguan et al.11 were located in North America, 
whereas no samples (Pelletier et al.10) or only a small number of samples (598 for Shangguan et al.11) were located 
in China, which resulted in high uncertainty for predictions in China. However, a large number of borehole logs 
produced by geologists in China provide DTB information and are now available. Both the site observations of 
boreholes and environmental covariates provide the cornerstone for producing a new map of DTB with higher 
accuracy and higher resolution (and thus more spatial details).

Various methods were used as spatial prediction models for mapping, including geostatistical models and 
machine learning. Geostatistical models were widely recognized as primary spatial prediction techniques from 
the 1970s13 and are still in use14,15. Recently, there is an increasing trend of using machine learning methods in 
spatial predictions, especially in the last ten years16–18. In most cases, machine learning techniques have higher 
performance over simpler approaches (including geostatistical methods) as spatial prediction models due to the 
comparison in many studies16,17. In this study, we used three tree-based machine learning algorithms, i.e., random 
forest (RF), gradient boosting tree (GBT) and quantile regression forests (QRF), to produce the DTB maps.

This study developed DTB maps of China at higher spatial resolution and higher accuracy. These maps will 
provide more accurate information of DTB in China for Earth system science related research, such as mineral 
exploration, land surface modelling, hydrology modelling and so on. Figure 1 shows a brief overview of this study.

Methods
Establishment of DTB observation datasets.  A total of 6,382 DTB observations mainly sampled from 
the Chinese National Important Geological Borehole Database (NIGBD: http://zkinfo.cgsi.cn) were used in our 
study. These observations also contain a small part (about 2%) of pseudo-observations of DTB generated from 
expert knowledge.

Observations sampled from the NIGBD.  The DTB of every borehole must be interpreted manually and inter-
preting more than 80 million boreholes logs therefore demands an immense amount of work and has high costs. 
However, many boreholes that are located close to each other have similar DTB and environmental factors. 
Therefore, we developed a sampling scheme (named stratified-additive sampling) to take a fraction of the bore-
hole drillings from the NIGBD as the observation data set in this study. This scheme, which is designed to avoid 
spatial clustering by taking only one observation from each 0.2 × 0.2 arc-degree grid, is described in two parts in 
the following.
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Fig. 1  A brief overview of this study.
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The first part is a sampling scheme similar to stratified sampling. Mapping methods, regardless of methods 
based on spatial autocorrelation or soil environmental correlation, have requirements based on the number, dis-
tribution, and typicality of the samples, which ensure global representation of the samples19. To obtain repre-
sentative samples from these boreholes, we used a sampling scheme similar to stratified sampling to acquire our 
training points from the NIGBD. The stratified sampling scheme includes designation of grid shape (such as a 
square grid, triangular grid, or hexagonal grid) and grid size. A square grid is the easiest and most effective, and is 
most widely used in sampling19. In general, smaller grid size leads to more accurate predictions, but with greater 
sampling costs. Here, we used square grid sampling with a 0.2 × 0.2 arc-degree grid, in consideration of the bal-
ance between representativeness and cost. Usually, one observation or a number of observations are sampled at 
random locations from each grid. However, the locations of boreholes in this study were determined in a previous 
geological survey. Thus, we have taken one borehole randomly from each grid instead of one borehole from a 
random location in stratified sampling. In each 0.2° × 0.2° grid, there may be no observation, one observation or 
multiple observations at different locations. If there is no observation in a grid, it results in vacancy of observa-
tion of this grid. If there is one observation, we use it. If there are multiple observations, we take one observation 
randomly among them. The second part is an additive sampling method. The depths of the boreholes range from 
0 m to more than 1 km. Among these boreholes, we were unable to determine the DTB from a few because of the 
limitations of the records (see details in Sect. 2.1.2). This constraint resulted in vacancies of many grid cells after 
the interpretation of all boreholes from the first sampling. To resolve this problem, we used an additive sampling 
method; that is, additional samplings were taken multiple times until no new observations could be added to the 
sampled data sets. Thus, the latter samplings were aimed at grids without DTB data by interpretation based on 
the previous samplings. After the first sampling, we obtained one borehole profile for each 0.2° × 0.2° grid to the 
extent that was possible. Then, we aimed to interpret all the borehole profiles to determine the DTB value, but we 
were sometimes unable to interpret the DTB. Consequently, some grids still have no DTB observations although 
these grids had more boreholes other than the borehole in the first sampling. In the second sampling, we tried 
to sample another borehole for each of these grids without DTB interpretation. Then, we aimed interpret all the 
new borehole profiles in the second sampling to obtain the DTB values, but we were sometimes still unable to 
interpret the DTB. A third sampling was then taken and so on. After a finite number of additive samplings, the 
borehole logs of the NIGBD were considered efficiently used, and samples from all the samplings were used in 
our study. The spatial distribution and statistics of DTB observations interpreted from boreholes is introduced in 
Data Records section.

Interpretation of borehole records.  Interpreting DTB from borehole profiles sampled from the NIGBD was one 
of the crucial aspects of this study. Borehole profiles, which were previously recorded by geologists, have longitu-
dinal verbal descriptions of soil layers and lithological layers with corresponding depths from the land surface to 
the top and bottom of each layer. A typical simplified borehole profile diagram is shown in Fig. 2.

Each borehole profile has several layers. Generally, the top layer of a borehole profile is pedolith, where ped-
ological processes have destroyed the original bedrock structure, principally through the weathering of primary 
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Fig. 2  A typical borehole log sketch column. A borehole log describes the materials, color, and composition of 
each layer, and provides the depth, dip, and other relevant information. The original logs are in Chinese.

https://doi.org/10.1038/s41597-019-0345-6


4Scientific Data |             (2020) 7:2  | https://doi.org/10.1038/s41597-019-0345-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

bedrock minerals and the formation and re-distribution of secondary materials. Below is saprolite, referring to 
the zone where the bedrock fabric is largely isovolumetrically weathered but primary bedrock structures are 
still recognized. At the bottom is the unweathered bedrock. Because different boreholes were drilled by different 
geological teams at different times, the details of stratification in the profiles often differ, and the lithological 
description of each layer may be detailed or vague. These differences result in inconsistencies or uncertainties 
in the borehole database, which were propagated into our DTB observations. To reduce the error of DTB in the 
process of interpreting borehole profiles as much as possible, we did not use borehole profiles whose lithological 
descriptions were too vague (such as a layer that is composed of bedrock mixed with weathered rocks) to accu-
rately determine the DTB.

To interpret the DTB from a borehole profile in the form of a scanned picture, we manually determined the 
boundary between the regolith and fresh bedrock based on lithological descriptions and the dip angle of the 
borehole. There are four kinds of cases in the interpretation of DTB. In the first case, DTB is reached for most 
boreholes and the dip angle is 90°. Then, the DTB is taken as the boundary depth. In the second case, a minority 
of boreholes have a dip angle less than 90°. Then, the DTB is calculated as the product of the boundary depth 
and the sine of the dip angle. In the third case, some boreholes are too shallow (several meters or less than 1 m) 
to reach the bedrock, and some have lithological records that are unclear, which can make it is very difficult to 
determine the DTB (as described in Sect. 2.1.1). Therefore, we used additive samplings to select another borehole 
from the grid. In the fourth case, because a number of boreholes were drilled to depths of more than 100 m but 
still did not reach the bedrock, we could not obtain accurate DTB data from the borehole profiles. In this case, we 
regarded the depths of those boreholes as approximations of the real DTB value as most research and applications 
focus on relatively shallow depths.

Pseudo-observations.  As shown in Fig. 1, DTB observations interpreted from borehole logs cover an exten-
sive area across China, except for the Qinghai-Tibet Plateau where boreholes are difficult to drill. Any purely 
data-driven model fitted with large gaps in the covariate space is most likely to result in considerable omis-
sions, especially for areas that are often inaccessible or not of interest for soil surveys or geological exploration. 
Therefore, we used pseudo-observations added to training data to fill such gaps, which will avoid extrapolation 
for these areas (e.g., deserts and steep mountainous areas). Deserts consist mainly of sand, and the DTB of such 
areas could be found in some publications. Steep-slope areas without vegetation typically have very shallow or 
zero DTB; that is, rock outcrop. Therefore, we used the following data sources to generate pseudo-observations 
to add to the training points:

	(1)	 The distribution map of deserts in China from the Data Center of Environmental and Ecological Science in 
Western China (http://zgsm.westgis.ac.cn).

	(2)	 Steep, bare surface areas generated using a slope map of China and remote-sensing-based data.
	(3)	 Previously published detailed geological maps reporting DTB or bedrock outcrops.
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Fig. 3  The spatial prediction framework used to fit models and apply spatial prediction of DTB in China at 
100 m resolution.
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We generated a certain number of points in random positions within deserts based on the distribution map of 
China’s deserts. The DTB values of these points were obtained from existing material and previous studies of the 
sand thickness of the deserts. We obtained some information about the thickness of desert and sand dunes from 
websites such as Baidu Encyclopedia (https://baike.baidu.com). Some publications provide information on the pro-
files of China’s deserts, from which we obtained about 40 pseudo-observations. Boreholes logs from Pishan, Moyu, 
and Yutian in the Taklimakan Desert show that the subsurface of this desert is mainly medium to fine-grained sand 
and silt with a thickness less than 200 meters20. The Shashan zone at the south rim of the Taklimakan Desert has a 
thickness of less than 80 m21. Areas where the slope is greater than 60°were extracted from a slope map of China. 
Then, we randomly generated about 100 points and their DTB values were set as 0.01 m. The number of points was 

DTB Number Statistics Value

=0 1026 Min 0

0~2.00 585 Max 1106.9

2.00~10.00 1833 Median 8.2

10.00~50.00 1768 Mean 36.1

50.00~100.00 427 Variance 5189

100.00~300.00 630

>300.00 113

Table 1.  Summary statistics of depth to bedrock in meters.
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Fig. 4  Histogram of depth to bedrock. (a,b) Distribution of original data and after logarithmic transformation 
(values large than 100 m are not shown).
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limited to less than 2% of the total number of observations to avoid adding too many soft observations, and we 
only used points whose values had high credibility based on the information source.

Preparation of environmental covariates.  In our study, a total of 147 related environmental layers, 
which cover five types of factors (climate, topography, living organisms, water dynamics, and parent material) 
and represent the factors of soil formation according to Jenny22, were selected to generate a DTB map of China. 
Although DTB is somewhat different from basic soil properties, it is closely related to soil because bedrock is a 
kind of parent material for soil. Soil is developed based on bedrock or regolith such as deposit via physical, chem-
ical and biological processes. Factors affecting soil development are also related DTB. Therefore, it is reasonable 
to include factors of soil formation in the prediction of DTB. However, DTB is also influenced by geological 
characteristics and processes such as rivers, glaciers, fractures and partings in the rock, moraine, geological age, 
erosion, deposition, periglacial processes and so on23–25. So in this study, the conceptual framework is DTB = f (s, 
c, o, r, g, a, n) improved from S = f (s, c, o, r, p, a, n) proposed by McBratney et al.26, where “g” stands for geological 
factors. The 147 covariates classified as “scorgan” factors included:

	(1)	 Harmonized soil database images: percent coverage of Andosols, Histosols, and dozens of other soil types.
	(2)	 Climatic images: images indicating the values of 8-day MODIS day-time and night-time local standard 

time (LST), long-term and monthly precipitation data, etc.
	(3)	 Land use and land cover images: including vegetation maps, land cover and land use classifications, bio-

mass and yield maps, etc.
	(4)	 Relief data, mainly derived from digital elevation models: slope maps, the topographic wetness index, the 

topographic openness index, physiographic landform units, elevation and secondary terrain attributes, etc. 
These covariates were calculated by R and SAGA-GIS.

	(5)	 Geological and parent material maps: rock type based on the global lithology and geological ages based on 
surface geology.

A complete list of the 147 environmental covariates is given in the covariate list file27. Covariates whose res-
olution are not 100 m are processed into images in 100 m via geographic information system when generating 
predictions. There are three situations where we treat these covariates: (1) for images with a spatial resolution 
coarser than 100 m, we resampled them into images with a resolution of 100 m with identical values for the finer 
cells within an original coarse cell; (2) for attribute images with a resolution finer than 100 m, we aggregate them 
to images with a resolution of 100 m by averaging; (3) for classification images with a resolution finer than 100 m, 
we aggregate them to images with a resolution of 100 m by assigning the majority class.

Spatial prediction model.  The framework of our research is shown in Fig. 3, which is based on the work of 
Hengl et al.28 and Shangguan et al.11. This framework consists of four main processes:

Fig. 5  Distribution of DTB observations interpreted from boreholes.
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	 1.	 Overlaying observations of DTB and covariates to generate a regression matrix for modelling;
	 2.	 Obtaining the best parameters for modeling using cross-validation;
	 3.	 Fitting the prediction models based on the whole regression matrix;
	 4.	 Applying spatial prediction models using covariates and comparing the prediction with existing maps;

Model fitting.  In this study, we overlaid observations of DTB and covariates under the same coordinate refer-
ence to generate a matrix including DTB and covariate columns. The matrix was used as input data for machine 
learning. Then, we separately used RF and GBT to fit the prediction models. Finally, the spatial predictions were 
generated using an ensemble model based on the two models. RF and GBT are decision-tree-based ensemble 
methods whose predictive accuracy are not influenced by collinearity between variables29. The RF model uses 
fully grown decision trees and reduces error by reducing variance30. The parameters after optimaliztion in RF 
model are: mtry = 18, ntree = 1000 and nodesize = 5. The GBT model uses shallow trees and reduces error mainly 
by reducing bias, and to some extent by reducing variance by aggregating the outputs from many models31. We 
used an ensemble of the two models because ensemble predictions of strong learning algorithms have been shown 
to be more effective in producing better results32 and avoid the overshooting effect33. RF and GBT were imple-
mented respectively in the “randomForest” and “xgboost” packages in the R environment. Parallel computing was 
employed to improve data processing efficiency.

Model validation and evaluation.  Ten-fold cross-validation was used to evaluate prediction accuracy. 
Comparison with previously existing DTB maps was then employed to evaluate our results. In cross validation, 
samples were divided into a training set (5,740 samples) and validation set (642 samples). The training set was 
used to fit the models, and the validation set was used to validate model performance. Some widely used indica-
tors such as the coefficient of determination (R2 or the amount of variation explained by the model), mean error 
(ME), relative error (RE), and root mean square error (RMSE) were used to evaluate model performance. Of these 
indicators, the coefficient of determination is calculated by:
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where SSR is the regression sum of squares, SST is the total variation sum of squares, and SSE is the residual sum 
of squares, which is the difference between SST and SSR. The variable yi is the measured target value, ŷ is the 
prediction of each point, ̄y is the average of the measurements, and n is a number of validation points. The value 
of R2 is usually between 0 and 1; a value close to 1 indicates a perfect model, and values near 0 indicate a failed 
model. The RMSE, which is also called standard error, is calculated by:

MSE SSE nRMSE / , (2)= =

where MSE is the mean squared error. RMSE estimates the deviation between predictions and observed values. A 
smaller RMSE indicates a better prediction.

Fig. 6  Final prediction of depth to bedrock based on the ensemble model.
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We used the feature selection of RF and GBT to remove some unimportant covariates and avoided the col-
linearity of variables. We first used all the covariates to fit a model, and then some covariates with low impor-
tance (including covariates with high collinearity) were dropped in the final model. Covariates with no or weak 
relations with DTB may produce noise in fitted models. This noise results in higher errors of predictions. Our 
results based on modeling with different covariates showed that the noise had a certain degree of influence on the 
accuracy of the models, especially for the GBT model. In addition, some of the covariates may have data quality 
and consistency problem, which would introduce error to the prediction. Therefore, we removed some covariates 
with low importance based on the RF and GBT to reduce prediction errors, model complexity and computation 
time (this is called feature selection in machine learning). Because there are some limitations of the importance 
and the importance of correlated covariates is underestimated34, a covariate was removed only when it did not 
make the model without this covariate significantly worse; that is, when the R2 of the model decreased less than 
0.01 or increased. In this way, we kept a balance between model complexity (i.e., number of covariates) and model 
accuracy. In addition, to verify whether our predictions were more accurate than existing DTB maps of China, we 
compared our predictions with existing DTB maps using the validation set.

Model prediction and uncertainty estimation.  The final model was fitted based on all samples with parameters 
selected by cross-validation. The final spatial predictions were generated using an ensemble model based on RF 

Fig. 7  Depth to bedrock maps produced by the quantile regression forests model at three percentiles. (a–c) The 
percentiles are 0.1, 0.5, and 0.9.

Fig. 8  Uncertainty map of prediction of the depth to bedrock.
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and the GBT method. To predict DTB in China at 100-m resolution, we used the available environmental covar-
iates at 100 m resolution.

Because any model for digital soil mapping inevitably suffers from different sources of error18, it is important 
to quantify the uncertainty associated with the produced maps35. Analysis and evaluation of uncertainty help data 
users to understand its existence and can also help to improve decision quality36. In this study, we used quantile 
regression forests (QRF) to estimate the uncertainty of estimations. QRF is a tree-based ensemble algorithm for 
estimation of conditional quantiles. This method is particularly suitable for high-dimensional data. QRF were 
implemented via the R environment in the “quantregForest” package37. We used the same 53 covariates of the final 
RF model for quantile predictions of the QRF model. To estimate the uncertainty of predictions at every location, 
we generated the uncertainty map of predictions by:

=
−. .

.

uncertainty
qp qp

qp
,

(3)
0 9 0 1

0 5

where qp0.9 is the 0.9 quantile prediction of DTB, qp0.1 is the 0.1 quantile prediction of DTB, and qp0.5 is the 0.5 
quantile prediction of DTB.

For different research and application needs, two sets of data are provided for users. One is the prediction 
by the ensemble of the RF and GBT models, and the other is the prediction and the uncertainty based on QRF. 
Because most users do not need an uncertainty map in their applications, it is recommended to use the ensemble 
prediction because it is more robust. In cases where consistent prediction and uncertainty are needed, it is recom-
mended to use the estimation by QRF.

Parallel computing in spatial prediction.  In order to avoid the short of memory caused by high-resolution map-
ping and improve computational efficiency of spatial prediction. We used parallel computing to apply spatial 
prediction.

Firstly, we divided all the covariates into several 1° × 1° block. Based on the final model, covariates in 1° × 1° 
block were used to apply spatial prediction in current block computed by a core. Multicore computing can process 
multiple block in the same time, thus greatly improving the speed of spatial prediction. After obtaining the results 
of all blocks, we used image mosaic to generate the final DTB map of China.

Model R2 RMSE ME RE

Random forests 0.538 49.86 2.12 0.06

Gradient boosting tree 0.537 49.84 0.76 0.02

Ensemble 0.547 49.33 0.68 0.02

Quantile regression 
forests 0.519 51.15 11.77 0.33

Table 2.  Mapping performance for the depth to bedrock. R2 is the coefficient of determination, root mean 
square error (RMSE), ME is mean error, and RE is relative error.
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Fig. 9  Plot showing cross-validation results for depth to bedrock on a logarithmic scale. R2 is calculated using 
Eq. (1).
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Data Records
Model input.  DTB Observations.  DTB observations are in “.csv” format and named “DTB_observations.
csv”. This file is available on Figshare27. Every observation (a row) contains longitudinal and latitudinal coordi-
nates and DTB value.

A summary of the DTB statistics is provided in Table 1. The DTB ranged from 0 to 1,106.91 m, with a mean 
DTB of 36.62 m and a median value of 8.24 m. Figure 4(a) shows a histogram of DTB within 100 m. The DTB after 
logarithmic transformation had a distribution similar to a normal distribution but with many zero values (i.e., 
outcrops) (Fig. 4(b)), which is called zero-inflated distribution. The distribution of DTB observations interpreted 
from boreholes is shown in Fig. 5.

Covariates.  The covariates we used are listed in the covariate list file (“.xlsx” format, named “covariates_list_for_
generating_DTB100_of_China.xlsx”)27. The data sources of these covariates are provided in this file. Topographic 
covariates are obtained based on digital elevation model via R and SAGA (see file “DEM_functions.R” on Github: 
https://github.com/yanfp/DTB100China). The essential information about every covariate are provided in col-
umns. The last three columns show the choice of covariates for the RF, GBT and QRF models, where a value of 
one indicates that the corresponding covariate was used in the final model. The final RF, GBT and QRF model 
used 53, 44 and 53 covariates, respectively, which are marked in the covariate list file.

Prediction results.  The resulting maps are available on Figshare27 and at http://globalchange.bnu.edu.cn/
research/cdtb.jsp. All maps are in “.tif ” format. Two sets of maps are provided: DTB map by ensemble model, 
DTB map and the corresponding uncertainty map by QRF model. These maps were divided into two block by 
the longitude line of 105°E due to the limitation of data capacity on Figshare. Block1 covers the area from the 
westernmost to 105°E, and Block2 covers from 105°E to the easternmost.

Output estimations of DTB by the ensemble model based on RF and GBT at 100-m resolution are shown in 
Fig. 6. Our estimated results reveal that the predicted mean DTB was 42.20 m. High values of DTB were mainly 
distributed in desert areas, the North China Plain (including areas in Hebei province, Henan province, and 
Jiangsu province) and the Northeast China Plain (including areas in Heilongjiang province, Jilin province, and 
Liaoning province). Relatively lower values of DTB were mainly located in hilly and mountainous areas, such as 
Sichuan province, Chongqing city, Guangxi province, and the mountainous areas of Northeast China. The spatial 
pattern of the DTB map of this study is similar to those of the maps produced by Pelletier et al.10 and Shangguan 
et al.11.

In addition to predictions by ensemble model, another dataset including median predictions and uncertainty 
was produced. Estimations of three percentiles (0.1 (Fig. 7(a)), 0.50 (Fig. 7(b), and 0.9 (Fig. 7(c)) were produced 
by the QRF model. The mean values of the estimated DTB for the three percentiles were 3.05 m, 29.16 m, and 

Fig. 10  Extracted maps from global predictions by previous studies. (a,b) Maps by Shangguan et al.11 and 
Pelletier et al.10.

Study r* RMSE ME RE

Ensemble model in this study 0.739 49.86 0.68 0.02

QRF model in the study 0.720 51.15 11.77 0.33

Pellertier et al.10 0.486 81.98 36.52 1.01

Shangguan et al.11 0.475 67.32 14.71 0.41

Table 3.  Statistics between observations and predictions of three studies.
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98.14 m, respectively. The maps (Figs. 6 and 7(b)) show that the spatial pattern of DTB predicted by the QRF 
model was similar to that of the ensemble model based on the RF and GBT methods.

The uncertainty map of the prediction of DTB is shown in Fig. 8. The uncertainty in the predictions in part 
depends on the density of sampling38. In our study, it was low in deserts, sandy areas, the North China Plain, 
and the Northeast China Plain, where the topography is relatively simple and sampling was relatively dense. In 
the Tibetan Plateau and western Inner Mongolia, where sampling was sparse and DTB is low, the uncertainty 
was high. The uncertainty was also relatively high in the Yun-Gui Plateau where the topography is complex with 
widespread karst landforms.

Technical Validation
Estimation accuracy.  The cross-validation summary statistics of interpolation for the models based on RF, 
GBT and QRF are shown in Table 2 and Fig. 9. These statistics show that RF produced more accurate estimations 
than GBT. Our results showed significant overestimation in lower values of DTB, which is a common problem 
in regression, especially when the model is not able to explain >50% of the variability in the target variable11. In 
addition, this overestimation may be related to the zero-inflated distribution of DTB. Hengl et al.28 reported this 
overestimation for other three zero-inflated observation data including soil organic carbon, bulk density and 
coarse fragments. It should be noted that spatial clustering of observation is obvious in Fig. 1. The random selec-
tion of cross validation gives more importance to the locations with dense samples than those with sparse sam-
ples, especially the west part of China. As a result, there is a systematic bias in the way the evaluation is performed.

We have also investigated whether using kriging of residuals can improve predictions of DTB. There is no 
significant spatial autocorrelation structure for residuals, because machine learning models has explained the 
majority of spatial variation. Kriging of residuals for DTB of China does not seem to be necessary nor is it prac-
tical to implement for billions of pixels: it would only marginally improve the accuracy of predictions at high 
computing costs.

Comparison with other maps.  We compared our results with existing maps produced by Pelletier et al.10 
(Fig. 10(a)) and Shangguan et al.11 (Fig. 10(b)). Our results show similar spatial patterns to these maps. DTB val-
ues in deserts, sandy areas, and the North China Plain were relatively high, and values in hilly and mountainous 
areas, such as Chongqing City and Yunnan province, were relatively low in the map of this study and in maps from 
global predictions. The estimated mean DTB was 42.20 m in our study, whereas the mean values predicted by 
Pelletier et al.10 (Fig. 10(a)) and Shangguan et al.11 (Fig. 10(b)) were 11.81 m and 26.64 m. Table 3 shows statistics 
between the 6,328 observations used in this study and the predictions of the three studies. For our map, we used 
10-cross-validation to calculate the statistics (note that the RMSE and ME of our study are the same as in Table 2). 
For the maps by Pelletier et al.10 and Shangguan et al.11, we calculated the statistics between the 6,328 observations 

Fig. 11  Regional maps of three studies. (a–c) This study, Shangguan et al.11, and Pelletier et al.10.
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and the prediction directly, i.e., we used all the observations for the validation. This validation may not be com-
pletely fare. But it is still a pragmatic and good way for the comparison. The correlation coefficients between 
DTB observations and predictions by the ensemble model and QRF model in our study are 0.739 and 0.720 
respectively, which are significantly higher than the estimation results of Pelletier et al.10 and Shangguan et al.11.  
In addition, compared with the prediction results of Pelletier et al.10 and Shangguan et al.11, our estimation results 
had obviously lower RMSE and ME.

In addition, our prediction results show similar spatial patterns to the maps produced by Pelletier et al.10 and 
Shangguan et al.11 but revealed more detailed information than previous predictions. There are more jumping 
points in the map of Shangguan et al.11 than the others, and the map predicted by Pelletier et al.10 shows low con-
tinuity in space with high values and low values in a wide range. From comparison in a typical region in the North 
China Plain (Fig. 11), our map revealed more spatial details, especially in high DTB areas, than did the maps by 
Shangguan et al.11 and Pelletier et al.10 (Fig. 11(a)). In contrast, the map estimated by Pelletier et al.10 shows abrupt 
change between highland and lowland areas (Fig. 11(c)).

Code availability
All code used to generate the predictions is available from the Github (https://github.com/yanfp/DTB100China).

The map products were calculated using R version 3.4.1 and packages “randomForest (4.6–14)”, “xgboost 
(0.71.2)”, “quantregForest (1.3–7)”, “sp (1.3–1)”, “rgdal (1.2–16)”, “raster (2.7–15)”, “pkgmaker (0.27)”, “lattice 
(0.20–35)”, “plotKML (0.5–8)”, “hexbin (1.27.2)” and “ggplot (3.1.0)”.
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