

RTMAP REGOLITH DATABASE

FIELD BOOK AND USERS GUIDE

(Second Edition)

Colin Pain, Roslyn Chan, Michael Craig, David Gibson Penny Ursem, and John Wilford

CRC LEME Report 138

June 2000

DRAFT – Not to be cited without permission

CRC LEME is an unincorporated joint venture between the Australian National University, University of Canberra, Australian Geological Survey Organisation and CSIRO Exploration and Mining. Headquarters:- CRC LEME c/o CSIRO Exploration and Mining, Private Bag, P.O. Wembley, Western Australia, 6014.

Address and affiliation of authors

Colin Pain, Roslyn Chan, Michael Craig, David Gibson, Penny Ursem, John Wilford,

Cooperative Research Centre for Landscape Evolution and Mineral Exploration c/- Australian Geological Survey Organisation PO Box 378 Canberra ACT 2601 Australia

> © Cooperative Research Centre for Landscape Evolution and Mineral Exploration 2000

PREFACE

This handbook was first released as BMR Record 1991/29 (Pain et al. 1991). One of the objectives of CRC LEME has been to produce a glossary and classification of regolith terminology, and a second edition of this handbook. The glossary of regolith terminology has already been released in draft form (Eggleton 2000), and this is the second edition of the mapping handbook.

We have updated the attribute lists and other details to take account of changes to the RTMAP database structure. We have also changed some definitions to be consistent with the glossary. Otherwise, very little change has been made to the text.

The archival RTMAP database resides in the AGSO Corporate Database, in the Oracle Database Management System (see Hazell et al, 1995 for details). Some details, including authority tables, can also be found on the AGSO World Wide Web site, at http://www.agso.gov.au under Quick Find/Data Standards. There is currently work under way to enable users to enter data from remote locations via the World Wide Web. This facility will be advertised on both the CRC LEME and AGSO web pages when it is available.

Colin Pain Assistant Director, CRC LEME AGSO PO Box 378 Canberra ACT 2601 Australia

CONTENTS

	Regolith and Regolith Mapping	
1.1	What is Regolith?	1
1.2	Regolith Research	1
	Mapping Regolith	
2. N	Iapping Procedures	6
	Before Field Work	
	Field Work	
	Data Entry and Map Production	
3. D	Database Fields	19
	Regolith Landform Unit Fields	
	Landform Unit Fields	
	Regolith Type Fields	
	Field Observations (Sites)	
	Field Observations (Rtsite)	
	Field Observations (Zone Details)	
	Field Observations (Zone Data)	
4. A	Attribute Definitions	61
4.1		
4.2	Landform Definitions	
	Environmental Hazard Definitions	
	Drainage Definitions	
	Geomorphic Process Definitions	
	Weathering Process Definitions	
	Regolith Definitions	
5. R	leferences	95

1. **REGOLITH AND REGOLITH MAPPING**

This chapter introduces regolith concepts and mapping techniques, and forms a theoretical basis for later chapters that introduce the database, list the terms used, and provide definitions.

1.1 What is Regolith?

There are a number of definitions of regolith to be found in various journals and books. The word itself was introduced by Merrill in 1897 and has been in use since then. The term comes from the Greek rhegos = blanket and *lithos* = stone, in other words, the blanket over the rock.

Four similar definitions are presented here, which give the general idea of what we mean by the term *regolith*.

- The entire unconsolidated or secondarily re-cemented cover that overlies more coherent bedrock, that has been formed by weathering, erosion, transport and/or deposition of the older material. The regolith thus includes fractured and weathered basement rocks, saprolites, soils, organic accumulations, glacial deposits, colluvium, alluvium, evaporitic sediments, aeolian deposits and ground water (Eggleton 2000).
- A general term for the layer or mantle of fragmented and unconsolidated rock material, whether residual or transported, that nearly everywhere forms the surface of the land and overlies or covers bedrock (Chan *et al.* 1986).
- The mantle of materials, including weathered rocks and sediments, altered or formed by land surface processes (Speight & Isbell 1990).
- The weathered and/or transported material, the upper part of which is called soil, overlying or covering bedrock.

Regolith includes rock debris of all kinds, including weathered rock in place, alluvium, colluvium, aeolian deposits, volcanic ash, and glacial till. It is commonly called "soil" by engineers, but for our purposes, soil is organically influenced regolith that is at the surface. These points have been emphasised in earlier work by AGSO (then BMR) (Ollier & Joyce 1986, Chan 1988, Chan *et al.* 1988).

The underlying zone of rocks formed or altered by deep-seated crustal processes is the bedrock. Regolith and bedrock are thus characterised by different processes, rather than different materials. Regolith is bedrock that has been altered by processes at or near the surface including weathering, erosion, transportation, and terrestrial sedimentation. This includes induration of regolith by cementation to form, for example, duricrusts. Thus some regolith is not unconsolidated, but is very hard.

1.2 Regolith Research

The regolith problem can be approached in a number of ways. These include detailed mineralogical and geochemical studies, mapping of small areas, and regional mapping. The mineral exploration industry needs answers to such questions as, is the regolith at a site transported or *in situ* and, what is the nature of weathering? Information about the regolith can also assist with the interpretation of (see Chan 1989):

• geological maps

• airborne geophysical surveys

• soil geochemical surveys

- drilling
- stream sediment geochemical surveys

How do we get the information? There seem to be two general approaches. One is to map the regolith, and try to work out the stratigraphic details of regolith materials. The second is to study the mineralogy and geochemistry of the regolith in an attempt to explain its origins and associations.

Mapping the regolith requires considerable fieldwork. Moreover, much of this mapping must rely on observations of mine pits, road cuttings, stream banks and other exposures. These exposures give us information that drill cores can never give us. It is often impossible to identify regolith types from drill holes. A core or hand specimen of sand or clay gives little clue to its origin. We need to know about the three dimensional characteristics of the regolith to make a positive identification. This is not so true of hard rocks, where identifications can often be made on the basis of drill cores or even chips of rock.

We are thus seeking information not only about the regolith, but also about the landscape relationships of the regolith. We are not simply revising the stratigraphy of the upper part of the stratigraphic column. We are documenting the regolith and its landscape relationships in a way that will allow prediction of results from one area to another.

A considerable amount of research has been carried out on the mineralogy and particularly the geochemistry of regolith in Australia (eg Bird and Chivas 1989, Butt 1987). This research is concerned with weathering changes in the regolith, and the pathways of elements through the regolith. Much of it has concentrated on the regolith of small areas, and there is little published on the relationships between geochemistry and landscape position (see, however, Butt & Zeegers 1989). The two approaches are thus rather different in the kinds of information produced, and there is a great need to integrate them to give a fuller picture of regolith cover.

1.3 Mapping Regolith

1.3.1 General Approach

In designing an approach to mapping regolith we must keep in mind the purpose of the mapping program, and the users of our map products. Regolith mapping at AGSO was initiated to answer questions raised by the mineral exploration industry, but recent trends suggest that we shall be answering landuse questions as well.

These two purposes are rather different. At the regional level of our activities, the mining industry would like to know about the genesis and history of various regolith types, and correlations between various regolith units across the landscape. They would also like to know the relationships between regolith type and mineral deposits, and the distribution of various regolith types with economic potential (Chan 1989).

People with interests in landuse, on the other hand, will be concerned not only with those things that interest the mining industry, but also with those aspects of the regolith that have a bearing on land suitability for various uses, as well as degradation and environmental fragility.

1.3.2 Regolith Landform Units¹

Regolith is not easily mapped. Even soils, the upper "skin" of the regolith, generate much argument about their mapping, and soil maps do not indicate the characteristics of the regolith at depth. It is possible to look at the regolith at any point in the landscape, but there is a practical limit to doing this. The only land features that can be mapped with speed and accuracy are surface features, or landforms. We must therefore establish the relationships between regolith and landforms. Moreover, this must be done for each locality, because the systematic study of the regolith is in its infancy, and there are as yet no universal laws that relate regolith to landforms.

¹ "Regolith landform units" were called "regolith terrain units" until 1993, when a joint working group changed the name to better reflect the nature of the mapping unit (Craig et al. 1993).

Regolith contrasts with hard rock bodies in several important ways that influence the way we can study it (see Pain and Ollier, 1995, for a more detailed discussion of regolith stratigraphy).

- Regolith is generally much thinner than hard rock units. It occurs as a thin, sometimes discontinuous, layer over the hard rock. Hard rock mapping techniques are therefore inappropriate for mapping regolith.
- Individual units of sedimentary regolith are usually discontinuous. They may occur as accumulations of sediment in the lower parts of the landscape (eg fluvial sediments in valley floors). Because of this discontinuity it is generally inappropriate to give formal rock unit names to bodies of terrestrial sediments. With few exceptions there is no reason to suppose that these bodies can be correlated from one drainage basin to the next, let alone across much wider regions.
- Weathered regolith occurs as "skins" of various kinds, differing with age of landsurface, and underlying rock. Despite attempts to show that particular weathering patterns, such as duricrusts, can be used to correlate different land surfaces, it is becoming clear that this cannot be done with any degree of confidence (eg Ollier & Galloway 1990, Pain & Ollier 1992). Duricrusts are an obvious part of the regolith, and of the landscape, but they have been over-represented in much of the work carried out on landscapes in Australia. In a sense they are "red herrings", because their influence can often be shown to be only minor.
- Similarly, it seems unrealistic to speak of "periods of weathering" in anything but a very broad sense. Weathering continues from the moment a land surface is exposed until it is destroyed either by erosion or burial. Deep weathering is primarily a product of a long period of stability in a landscape.
- At a local scale, in a particular landform type for example, there is commonly a strong relationship between the present land form and regolith cover. This expresses itself in the phenomenon known to soil scientists as a toposequence. Toposequences are systematic variations in soil morphology with position in a landscape. This concept fits regolith very well, and can be used in a predictive sense once the toposequence relationships are worked out.

What surface feature or features do we use to map regolith? Regolith is an integrated expression of geology, climate, landforms, geomorphic processes, and landscape evolution. It will be clear from the very close relationship between regolith and landforms that landforms are the most important of these factors. This is because they are expressed on the surface, and they reflect many of the other attributes listed above. Moreover, regolith type is closely associated with landforms and with geomorphic processes. This means that, as a first approximation, we may use landforms as a surrogate for regolith (Chan 1988). In this respect, our mapping methodology has its origins in techniques developed for mapping landforms and soil (Stewart & Perry 1953, Ollier 1977). However, we are concerned with the characteristics and distribution of the regolith rather than landforms *per se*.

AGSO, and CRC LEME, thus map Regolith Landform Units. Chan (1988) notes that a Regolith Landform Unit:

consists of one, or more usually, several recurring landscape elements and their associated underlying regolith packages which together form a distinct regolith landform entity.

A more general definition is:

A land area characterised by similar landform and regolith attributes; it refers to an area of land of any size that can be isolated at the scale of mapping.

Note that the second definition makes the Regolith Landform Units independent of scale.

A survey of Regolith Landform Units delineates the Regolith Landform Unit pattern of an area and characterises each kind of Regolith Landform Unit in a way that can be used as a basis for prediction.

This prediction can take the form of identifying similar regolith and landform types elsewhere in the study area, or more specifically the prediction of mineral prospectivity (Chan 1989). The survey is carried out in a scientific way that provides base information of general application. This eliminates the need for a resurvey whenever a new problem arises. The survey supplies information that can be combined, analysed, or amplified for many practical purposes, but the purpose should not be allowed to modify the method of the regional regolith survey in any fundamental way.

In the context of mapping within AGSO, the techniques of Regolith Landform Unit mapping are different from those employed for mapping of rock stratigraphic units. Regolith Landform Units are units of land, using the term in its broadest sense. The methods used to map them have more similarities to mapping of soils and land systems than stratigraphic units. At a more detailed level, it may be possible to map units that are essentially composed of similar regolith materials, and the methods used for this more detailed mapping would be similar to those used for stratigraphic units. However, at the level of Regolith Landform Units, we are for all practical purposes mapping land units rather than units of material. In what follows, we consider the problems associated with mapping Regolith Landform Units.

The fundamental basis for mapping Regolith Landform Units is landforms. Reconnaissance surveys of soils, land systems, and Regolith Landform Units will in all likelihood produce very similar boundaries. This is because landforms are used as a surrogate for the attributes we are really attempting to map. Landforms are usually related genetically to soils and to regolith in a way that is not true for hard rock stratigraphic units. Landforms and regolith are formed at the same time, and once we understand the interrelationships between regolith and landforms, we can use landforms to predict regolith patterns.

Initial boundaries are drawn on the basis of landforms, and the resulting map polygons are described in terms of regolith types and landforms. In many cases these will be the final boundaries. However, if it is warranted, subdivision of these landform-based units into Regolith Landform Units can be carried out on the basis of regolith type. For each Regolith Landform Unit we record a wide range of attributes. These attributes are listed below in the chapter on the database tables.

Regolith Landform Unit grouping is loosely hierarchical, and open, and identification of units proceeds from the highest levels of landform and regolith type through a number of choices to the lowest level. If any of the choices for subdivision cannot be made with the available information, the unit is not further subdivided. In practice the level reached in the hierarchy of landform and regolith classifications depends on the scale of mapping.

In producing regolith landform maps, a major distinction is made between areas dominated by in situ regolith, and sediment dominated areas. These basic subdivisions are largely a result of landform evolution, and reflect the relationships between weathering and erosion.

1.3.3 Classification versus Mapping Units

The arrangement of regolith materials in a classification is based on logical and hierarchical relationships between the different kinds of regolith landforms. However, such an arrangement has little in common with the spatial arrangement of these materials in a landscape. Similarly, the arrangement of landforms in a landform classification has little in common with the association of various landforms in a landscape. The arrangement of regolith and landform in a landscape depends on the geomorphic development and character of the area. There is thus a fundamental difference between regolith and landform classifications and regolith landform mapping units.

Classification units consist of regolith or landform units that are defined in terms of various regolith or landform characteristics. They are ideal or conceptual units that can be precisely defined. They are used as a medium for the transfer of knowledge, and can be grouped in various ways for particular purposes. In traditional geology an equivalent is lithologic units, for example, granite and sandstone.

Mapping units are real regolith landform units that can be conveniently mapped, and their definition will therefore depend to some extent on the scale of the map. The more detailed the map scale, the

more pure the regolith landform mapping units will be. A mapping unit will almost always include regolith materials and landform types that do not belong to the appropriate classification unit. These different regolith or landform types occur in areas that are too small to appear on the map; for example, narrow sedimentary areas in floodplains in dominantly erosional landforms with deeply weathered saprolite. An equivalent in traditional geology is the various named rock units that are shown on a standard geology map.

2. MAPPING PROCEDURES

In this chapter we set out some of the details of producing regolith landform maps. Most of the material set out here is well known to workers concerned with land surveys but may be of value to more traditional geologists. Other aspects of survey procedure are included to make the details of our methodology as complete as possible.

An understanding of landform mapping is very important for regolith landform mapping. This is true for the following reasons:

- 1. Regolith landform units are based on landforms, so it is important to be able to recognise different landform types.
- 2. Landforms tell us something about the underlying rock types. At its simplest, for example, low gently sloping landforms are often found on softer rocks, while steep mountains are often found on harder rocks.

An important aspect of mapping landforms and regolith landform units is that the study of small sample areas that are representative of larger areas allows us to transfer our knowledge from the sample areas to the larger areas. This is extrapolation and is an important part of regolith landform unit surveying. It is also important to understand that extrapolation from landforms to regolith landform units requires valid conceptual models of landform and regolith evolution. The equivalent in bedrock geology is subsurface extrapolation from outcrops.

There are several ways we can get information about landforms. Landform types can be recognised on maps, especially topographic maps. Contour lines and spot heights give us landform information, especially elevations, relief and dissection, and drainage patterns. Geology maps help explain landform distributions by giving the distribution of different kinds of rocks. Soil maps may also be useful, particularly where the soil type descriptions include information about their parent materials.

Landforms are easily recognised from remotely sensed images such as aerial photographs, Landsat and SPOT images and airborne and spaceborne radar images.

Field interpretation of landscapes is also important. Fieldwork is carried out to confirm and characterise the relationships between regolith and landforms.

2.1 Before Field Work

Collect as much information as possible about the survey area before fieldwork. This should include a literature survey to find out what has been done in the area before the current survey, and a study of the available maps and images of the area. Here we consider only maps and images, although any drill hole, geochemical and geophysical data available should also be examined.

2.1.1 Information From Maps

Two major kinds of information can be obtained from maps. Geological and soil maps provide you with information about subsurface materials, while topographic maps give you information about landform shape and elevations.

2.1.1.1 Geology Maps

Most commonly the legend of a bedrock geology map is presented on the basis of the age of the rocks. The rocks in the map area are classified according to the geological period in which they were formed. Unfortunately, this is often not much use to someone interested in landform, or regolith landform mapping. It is therefore necessary to interpret the legend in a way that is meaningful for regolith landform units. There are two aspects to this, the recognition of lithologic types, and the grouping of geology map units to give a map of lithologic types.

2.1.1.2 Soil Maps

Soil maps vary a great deal in the amount of useful information they contain about the regolith. Most soil maps, irrespective of the classification system used, contain information about the parent materials of the various soil units mapped. On more detailed maps, the soil mapping units may be grouped to reflect the parent materials. However, at a reconnaissance scale, soil maps are usually prepared using landforms as a surrogate for soils, so the information they contain about the regolith is less useful. Never the less, the boundaries on such maps will often be very similar to those of Regolith Landform units. The major difference between a soil map and a regolith landform map is that the latter describes the regolith, of which the soil is only the uppermost layer.

2.1.1.3 Topographic Maps

Topographic maps contain a great deal of information about the nature and distribution of landforms. Contours and spot heights give elevation information. Spot heights give simple elevation for a point. Contours, on the other hand, give more information than just that relating to elevation. They give information about land slope, and it is therefore possible to prepare a map of landforms from a suitable topographic map. The accuracy of the map will depend on the contour interval. Contours also give information about the degree and depth of dissection. Moreover, it is possible to obtain numerical values for these features. The contour values give the depth of dissection, while measurements or estimates of relative areas of interfluves and incised valleys give the degree of dissection. The following definitions will help with this:

Depth of dissection is a measure of the depth to which rivers have cut down below some general level. It is assumed that the rivers began cutting down from the same general level.

Degree of dissection is an indication of the amount of the original surface that is left. A slightly dissected surface has only a few valleys cut into it, while a highly dissected surface may have only a small part of the original surface left.

In areas where there is nothing left of the original surface, it is unrealistic to use the term *degree of dissection*. These areas are completely dissected, and should be described in terms of their relative relief and drainage density. Relative relief is another important feature that can be obtained from contours, and is a measure of the average difference in elevation between the highest and lowest parts of the area under study. It is a relative measure, and is not related to absolute altitude, which is height above sea level.

Most topographic maps show the rivers and streams of the area covered by the map. If you have a spare copy of the map, it is useful to go over all the rivers and streams with a dark pencil so that the drainage lines and patterns stand out against the rest of the map. In this way, particular drainage patterns and densities will be clearly visible.

The following definitions should be remembered when using drainage lines on maps to obtain information about landforms:

Drainage density is a measure of the amount of drainage lines in an area, and is usually calculated as length of drainage channel per unit area (e.g. km/km²). It is an indication of the amount of surface water flowing in channels in the study area. All channels that carry water, whether permanent or intermittent, are counted.

Channel spacing is another way of measuring the amount of drainage. This is obtained by drawing a straight line of a given length across a mapping unit, and counting the number of channels the line crosses. Speight (1990) discusses this measure, and gives a formula for converting channel spacing to drainage density. Channel spacing is used in RTMAP.

Drainage patterns are the plan shapes made by the drainage lines. Examples of drainage patterns are "dendritic" and "rectangular".

Channel patterns are the plan shapes of individual channels. Examples of channel patterns are "meandering" and "braided".

2.1.2 Information from Images

Traditionally aerial photographs have played an essential role in landform mapping. Photo scales of 1:10,000 to more than 1:100,000 have been used successfully for many years in landform mapping. The advent of images acquired from satellite platforms since the early 1970s has provided us with a new data source, with images covering much wider areas than aerial photographs. In the next few sections we first look at different image types, and then at the information that can be obtained from them.

2.1.2.1 Image Types Used for landform Mapping

In this section we consider very briefly the different types of images used for landform mapping, particularly from the point of view of the different information they contain. This is not the place to give a review of the use of images for regolith landform mapping.

Aerial photographs are the traditional tools for landform mapping. Boundaries between landform types are easily drawn on the photographs under a stereoscope, and then transferred to a map.

Satellite scanners such as Landsat TM and SPOT are well known sources of images for landform mapping. An important difference lies in the range of radiation that is captured by the scanner sensors. With photographs, the images usually cover a wide range of visible light, although infrared photographs also cover the near infrared. Scanners, on the other hand, receive radiation over a wide range of wavelengths, but in a number of bands with a restricted range. In particular, some information is received in narrow wavelength bands in the near infrared. These bands are less affected by atmospheric interference, and so tend to contain more landform information than the visible wavelengths.

Initially these images were not stereoscopic. However, we now have stereoscopic imagery from SPOT covering large areas at a suitable scale and resolution to be useful for mapping landforms at scales ranging upwards from 1:50,000.

Other image types that are of value are digital elevation models (DEMs), and radiometric images. DEM images are derived from elevation data and so give direct information about landforms, including shaded images that are a picture of the landforms. Radiometric images, on the other hand, give surface chemical data that can be used directly for mapping surface regolith.

2.1.2.2 Image Features that Contain Landform Information

When mapping landforms from imagery of any kind, it is important to know which characteristics of the images we are using to obtain information about landforms. The standard image characteristics for interpretation are tone (colour on colour images), lines, texture, and shape. Of these, colour or grey tone result from ground cover rather than landforms and are therefore of less interest to us than the other three characteristics.

For landform mapping we can therefore choose wavelength bands which are least affected by atmospheric interference, because we are not looking for specific colours or grey tones. In practice this means use of near infrared bands such as Landsat TM bands 5 and 7, and SPOT band 3. Normally one band is enough, because we are not usually interested in colour composite images, which tell us more about ground cover than landforms. However, we may make use of multi-band data, and process it to highlight landform features. For example, the first principal component of a number of bands often contains a great deal of landform information.

Whatever the type of image we have to work with, there are routine procedures to be followed for landform mapping, in particular the use of the image features discussed in the next three sub-sections (Pain 1985).

Lines

Three kinds of line observable on images are used in landform mapping. These are structural lineaments, ridges and rivers. Structural lineaments are easily seen on most images, especially Landsat and SPOT, and are a useful way of telling the difference between landforms with strong structural control and those that have no structural control. It is necessary to take care, however, because not all straight lines on images result from rock structure.

Because structural lineaments are almost always revealed in the landscape by erosional processes, it is reasonable to place areas with obvious lineaments in the major category of erosional landforms.

Ridges and rivers, or valley floors, can be considered together, because together they make up most of the landscape. We can recognise four major categories on images:

Distinct ridges and rivers Rivers without ridges Ridges without rivers Neither ridges nor rivers.

These major categories can be illustrated as profile forms (Figure 2.1). Where stereoscopic imagery is available, there is no problem distinguishing many more different profile types. Where there is no stereoscopic imagery, recognition of the four types noted above can be very useful. However, it can often be difficult telling the difference between flat and gently rounded landforms on such imagery, and also seeing small drainage channels that are less than the ground resolution of the available imagery. Under these circumstances discriminating ridges and valley bottoms on images may be very difficult. Moreover, because of the lack of elevation data, it may not be possible to distinguish between low plains and high plateau. For this reason it is important to use images in conjunction with maps.



Figure 2.1. Possible combinations of valley and interfluve profile shapes (Ollier 1967). These shapes can be recognised in large part on images.

Texture

Texture can be used to distinguish between areas that have different densities of dissection (drainage densities), or repetitive landform features. A simple classification might be smooth, fine and coarse texture, but often imagery will allow more classes. Areas with smooth textures usually indicate low relief and very little change. Coarse textures indicate low drainage densities, and fine textures may indicate high drainage density.

Shape

Shape is important mainly because of the direct evidence it gives for particular landform types. Shape provides information that can be used with other features in classifying land units. For example, volcanos usually have a distinct shape, as do beach ridges.

2.1.2.3 Recognition of Land Units on Images

The only way to learn how to recognise landform units, or any other sort of units, on images, is by practice. However, there are a few simple rules that can be followed.

- 1. Keep in mind the features listed above when viewing the images.
- 2. Remember that you are looking for landform features. Vegetation or land cover dominates features on many images. Do not let these features confuse you in your interpretation of landform units.
- 3. As you draw boundaries, make notes about the characteristics of the areas inside the boundaries. In this way you can see why you are drawing boundaries. Always complete your boundaries. Do not leave lines hanging.

2.1.3 Regolith Information

There are abundant data available from drill holes and geochemical and seismic surveys for many parts of Australia. Find out what is available for your project area, and see how it fits in with the preliminary boundaries you have drawn.

2.1.4 Preparation of the Pre-field Map

The landform unit boundaries derived from the images should be compiled onto a map. For a 1:250,000 scale final map, the pre-field maps should be at 1:100,000. This is a convenient scale for mapping in the field, and topographic maps are readily available at this scale for much of Australia.

At least 2 copies of each 1:100,000 map sheet should be available. One should be kept flat and clean in the home office, for digitising any base data required, and for reference. The second can be taken in the field, and used as necessary. Regolith landform unit boundaries can be transferred onto this field map before going into the field. A copy of the regolith landform unit boundaries should also be made on stable film. This copy can be amended as necessary in the light of field results.

Preliminary regolith landform unit data sheets should also be completed for each mapped regolith landform unit on the pre-field map.

2.2 Field Work

Fieldwork is an essential step in mapping regolith landform units. This is when you confirm or change the impressions gained from the images and maps, and see for yourself what the landscape and regolith really looks like. It is also important to check the relationships between the landform characteristics of the different regolith landform units, and the geology, regolith and soils that cannot be directly observed on the images.

In addition to completing field site forms, always make notes about everything of relevance to the mapping exercise. This is important. When you are in the field you will already have done your image and map interpretation, and you will also be able to see the landscape in front of you. You have all the information you are ever going to have about the area with you! Make full and complete notes, on the assumption that you will never return to the area for further checking.

2.2.1 Reconnaissance Checking

The first step in fieldwork should be a reconnaissance of the area of study. This can be made by driving through a representative part of the study area, or that part of the study area near your base. It is good practice to get to the higher points in the landscape so you can see more than one regolith landform unit. If possible, a survey flight over the project area is also valuable. This overview gives a good idea of the general features of the landscape, and also allows you to place the different regolith landform units in context. The reconnaissance should also be used to check the general relationships between regolith landform units and geology.

2.2.2 Selection of Sites

Wherever possible, sites should be selected on or near roads and paths. This will make fieldwork efficient, and less time consuming, while still allowing good field observations. Before going into the field, note the location of the different land units in relation to transport routes, and make your field plans accordingly. Remember that one of the essential reasons for mapping land units in the first place is to allow extrapolation from known areas to unknown areas. In most cases it is possible to extrapolate your observations from accessible areas into areas that are far from roads or paths.

Wherever possible, use road cuttings, riverbanks, or other exposures for your observations of rock types and regolith.

2.2.3 Landscape Observations

Observations of the landscape (in its broadest sense) can give a lot of detail that is not available from maps and images. For regolith landform mapping, remember that the map has at least two uses, mineral exploration and land assessment. For the first use you should be looking for any relationships between landforms, regolith, and mineral deposits. For the second, a thorough inventory of land resources is needed. In both cases it is essential to look for explanations of the landscape - its origins, active and relict geomorphic and weathering processes, and any information that will allow extrapolation to areas you will not be able to visit.

2.2.3.1 Landform Characteristics

The images give a general idea of landform characteristics, but field observations give the opportunity to get information about the details of landforms. Note whether the slopes are smooth, undulating or irregular, and whether there is any obvious control by underlying rocks.

2.2.3.2 Geomorphic Processes

Make a note of the types of geomorphic processes within regolith landform unit boundaries. Landslides can easily be recognised. Surface wash and other types of geomorphic processes can also be recognised with practice. Note both active processes, and evidence for prior processes that led to the formation of the regolith landform units as they are at present.

2.2.3.3 Dissection

As we have seen, dissection can easily be observed on images of suitable scales. However, it is important to supplement the information obtained from images with field observations. Depending on the scale of the images, you may have missed the detail of dissection of individual slopes. This can include gullies that are cut into slope materials. The nature of the dissection can also be noted in the field in a way that is not possible with images.

2.2.3.4 Rock Types

During the reconnaissance trip you will have noted something of the lithologies, and how they relate to regolith landform units, and to the mapping units on the geology map. At the detailed site observations, note the lithologies not only at the site itself, but also in the surrounding area. It is often

useful to find contacts between different rock types. This will allow you to compare rocks on both sides of the contact, and also to note any changes in regolith and landforms that may occur from one side of the contact to the other.

2.2.3.5 Surficial Regolith and Soils

In common with other observations you make about the regolith landform units, do not confine yourself to the specific sites chosen for detailed description and sample collection. Look at the general features of the regolith in road cuttings and other exposures. Make notes about any variations you see along the roads you travel on. Note the relationships between regolith and other physical features such as rock type, slope angles, landform types, erosion types, and vegetation or landuse.

2.2.4 Regolith Profile Observations

2.2.4.1 Methods of Profile Observation

Obtaining information about the regolith at depth can be a problem. Deep exposures, especially those more than 2 m deep, should be studied wherever possible. Examples of such exposures are road cuttings, stream banks, gullies, and mine pits. Alternatively, drilling may be used, and some information can be obtained from shallow seismic data. Ground penetrating radar offers a new and as yet largely untried source of data about the regolith.

In recent years Airborne Electromagnetic (AEM) surveys are providing data that show great promise for assessing regolith distribution and characteristics down to depths in excess of 100 metres. Worrall et al. (1999) give good recent examples.

Deep exposures are by far the best source of information about the third dimension of regolith. Core or loose samples from drill holes can only be identified with difficulty as a particular regolith type. However, much of the Australian continent has a very low relief, and drill holes are often the only way of assessing geophysical techniques such as AEM. It is therefore important to be familiar with material from drill holes.

2.2.4.2 Site Data Entry

The RTMAP database has a series of entry screens for this site data, and we have produced a summary data form for field use (Figure 2.2). Site data forms can be printed and bound into a convenient field notebook.

The first page of the site data form is for information about the site as a whole. The second page is for individual layers, or zones, at the site. Where there are several zones at a single site, a new form is used for each zone. However, site data need be entered only once.

We are currently working on developing the tools for digital field data entry.

Details about completing the site data are given in Chapters 3 and 4.

2.3 Data Entry and Map Production

2.3.1 Entering Regolith Landform Unit Data

If possible the regolith landform unit data should be completed before you leave the field, either on cards or entered into the computer. The reason for this is very simple. When you are in the field, you have all the available information, and especially the landscape, with you in a way you can never have when you return to the office. Any decisions about location of boundaries, and inclusion or exclusion of areas in various units, must be made in the field camps and preferably as soon as possible following the observations. It is no good thinking that extra time will allow better decisions on these things. It won't! The only thing that will happen is you will forget essential details. Do it immediately, while you still have all the information on hand.

2.3.2 Preparation of Map

The same rules apply here. You should do as much as possible to finalise the draft map before leaving the field camps. It is much more difficult to check problem areas once you have returned to the central office.

Once back at the office, all data should be entered into RTMAP, and checked for accuracy. Data entry is explained in Chapter 3. The draft map should be finished, and entered into the GIS. Details of final map preparation on the GIS will be dealt with in another report.

2.3.3 Map Legends

The current list of AGSO regolith landform map symbols is given in Tables 2.1 and 2.2.

ORIG[] SITE ID[] DATE [] STATE []
REGION [] LO	C DESCR []
[1
] AMGNORTH []
LOC METHOD [] ABS ACC [] AIRPHOTO[]
EXPOSUREC[] SLOPE[]] ASPECT []
] GEOMORPH1 []
] STRATUNIT[]
] LITHNAME[]
SOIL[
[
VEG[
HAZARDS[
РНОТО[]
ABSTRACT [
[]
ZONE [] THICKNESS [] DE	PTH TO LOWER BOUNDARY []
FRESH BEDROCK BELOW [] REGOL	ITH []
DEGREE OF WEATHERING [] DESCR	[]
[]

SKETCH

Figure 2.2. Pages from RTMAP field notebook.

I II I	TYPE	SUB-TYPI	E DESCRIPTION
I I I	[]	_][]	[]
I I I	[]	_][]	.[]
I I I			
I I I	[]	_][]	.[]
I I I			
I I I	[]	_][]	.[]
I I I I I I			
I I I I I I	[]	_][]	.[]
I I I			
I I I	[]	_][]	.[]
[][][][
[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][SAMPLE ID DESCRIPTION [[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][
[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][SAMPLE ID DESCRIPTION [[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[][][[]	_][]	.[]
[] [] [] [[] [] [
I I I I			
I I I	[]	_][]	.[]
[][][[]	_][]	.[]
[][][[]	_][]	.[]
[][][[]	_][]	.[]
[][][][[]	_][]	.[]
[][][][[]	_][]	.[]
[][][[][][SAMPLE ID DESCRIPTION [][[][[][[][[][[][
[][][][[]	_][]	.[]
[][][][[]	_][]	.[]
[][[][][[][][[][][][
[][[][][[][][[][][][SAMPLE	ית מדי	SCRIPTION
[][[][][[][][][][][]			
[][[][][[][][][
[][][][][][
[][][
[][
			CARRY OVER [] SHEET [] OF []

Figure 2.2 (contd). Pages from RTMAP field notebook.

RTMAP Code	Regolith Description	Map Code
BU00	unweathered bedrock	BU
EVA00	evaporite	E
EVA01	halite	EH
EVA02	gypsum	EG
EVA03	calcrete	EC
SDA00	alluvial sediments	А
SDA10	channel deposits	AC
SDA20	overbank deposits	AO
SDC00	colluvial sediments	С
SDC01	scree	CS
SDC02	landslide deposit	CL
SDC03	mudflow deposit	CM
SDC04	creep deposit	CC
SDC05	sheet flow deposit	CH
SDC06	fanglomerate	CF
SDE00	aeolian sediments	I
SDE00	aeolian sand	IS
SDE01 SDE02	loess	IL IL
SDE02 SDE03	parna	IP
SDE05 SDF00	fill	F
SDG00	glacial sediments	G
SDL00	lacustrine sediments	L
SDL00 SDM00	marine sediments	OM
SDP00	swamp (paludal) sediments	P
SDP00 SDP01	peat	PP
SDS00	coastal sediments	0
SDS00 SDS01	beach sediments	OB
SDS01 SDS02	estuarine sediments	OB
SDS02 SDS03		OC
SDS05 SDT00	coral terrestrial sediments	T
UOC00		UC
	clay (unknown origin)	
UOM00	weathered material (unknown origin)	UW
UOS00	sand (unknown origin)	US
VOL00	volcanic sediments	V
VOL01	lava flow	VF
VOL02	tephra	VT
WIR10	saprolith	S
WIR11	saprock	SS
WIR12	moderately weathered bedrock	SM
WIR13	highly weathered bedrock	SH
WIR14	very highly weathered bedrock	SV
WIR15	completely weathered bedrock	SC
WIR15.1	mottled zone	SV
WIR15.2	pallid zone	SV
WIR16	saprolite	SP
WIR20	residual material	R
WIR21	lag	RL
WIR22	residual sand	RS
WIR23	residual clay	RC
WIR24	soil on bedrock	RB

Table 2.1. RTMAP codes and map symbols for regolith

RTMAP Code	Landform Description	Map Code
AL00	alluvial landforms	a
AL10	alluvial plain	ap
AL11	flood plain	af
AL12	anastomatic plain	aa
AL13	bar plain	ab
AL14	covered plain	ac
AL15	meander plain	am
AL16	floodout	ao
AL20	alluvial terrace	at
AL30	stagnant alluvial plain	as
AL40	terraced land	al
AL50	alluvial swamp	aw
CO00	coastal lands	c
CO01	beach ridge	cb
CO02	chenier plain	cc
CO03	coral reef	cr
CO04	marine plain	cm
CO05	tidal flat	ct
CO06	coastal dunes	cd
CO07	coastal plain	ср
CO08	beach	cc
DE00	delta	d
DU00	aeolian landforms	u
DU10	aeolian dunes	ud
DU10 DU11	longitudinal dunefield	ul
DU12	transverse dunefield	ut
DU12 DU13	irregular dunefield	ui
DU13 DU14	÷	ub
DU15	source bordering dune lunette	
DU13 DU20	aeolian sheet	uu us
DU20 DU21	climbing sheet	us
ER00	erosional landforms	
ER10		e
	erosional plain	ep
ER11 ER12	pediment	ei
ER12	pediplain	ea
ER13 ER14	peneplain etabulain	en
	etchplain	ee
ER20	rises	er
ER21	residual rise	eu
ER30	low hills	el
ER31	residual low hill	es
ER40	hills	eh
ER50	mountains	em
ER60	escarpment	ec
ER70	badlands	eb
ER80	drainage depression	ed
FA00	fan	f
FA01	alluvial fan	fa
FA02	colluvial fan	fc
FA03	sheet-flood fan	fs
GL00	glacial features	g
GL10	depositional glacial features	gd
GL20	erosional glacial features	ge

Table 2.2. RTMAP codes and map symbols for landforms

KA00	karst	k
MA00	made land	m
ME00	meteor crater	t
PL00	plain	р
PL01	depositional plain	pd
PL02	lacustrine plain	pl
PL03	playa plain	pp
PL04	sand plain	ps
PT00	plateau	1
PT01	plateau edge	le
PT02	plateau surface	ls
VO00	volcano	v
VO01	caldera	vc
VO02	cone (volcanic)	VV
VO03	lava plain	vl
VO04	ash plain	va
VO05	lava flow	vf
VO06	lava plateau	vp

3. DATABASE FIELDS

In this chapter we provide comments on attributes which can be used as a reference when entering data into RTMAP, either directly, or via hard copy forms. We also provide lists of allowable entries for a number of attributes. These lists are the "authority tables" used in RTMAP. In these cases, RTMAP will accept only entries from the authority tables. Where users find situations where the authority tables are incomplete, they should contact the RTMAP custodian at AGSO with a view to adding an entry to the appropriate authority table.

Some authority tables have been updated since the first printing of this handbook.

A discussion and definitions of the attributes are found in Chapter 4.

In RTMAP, as in any database, data are entered into locations called fields. These fields are fixed in length. A few of the fields must be filled in, but most are optional. Details of field names and lengths, and whether they are optional or not, are found in Lenz (1991) and Hazell et al. (1995). Figures 3.1 and 3.2 show the simplified logical relationships of mapping unit data and field site data in RTMAP.

Where appropriate we have used the classifications found in the *Australian Soil and Land Survey Field Handbook* (McDonald et al. 1990). We have done this because that handbook is now well established as an authority for land and soil surveys. However, in most cases we have changed the codes to allow easier searches and reporting using ORACLE. In McDonald et al. (1990), the codes are derived from the first letters of the class. In RTMAP we have arranged attributes into hierarchical order, to allow grouping of attributes. For example, to retrieve regolith landform units containing low hills the code ER30 would be used. However, to retrieve regolith landform units with all kinds of erosional landforms, the code ER% would be used (% is a wildcard character in ORACLE).

The two most important entities within RTMAP are the regolith landform mapping unit (UNIT) and the site (SITE). The regolith landform mapping unit can combine more than one landform type and several regolith types. The site occurs in one landform type, but can be made up of several regolith types. Each regolith type may have several zones. These many-to-one relationships are noted below where appropriate. Information from SITE data can help with compilation of UNIT data.

The attributes are dealt with in the order in which they appear on the data entry screens. Compulsory fields are coloured blue-green, while optional fields are white. Where there is a lookup table, the

following symbol appears on the screen: 1

Lookup tables are given here where appropriate. Many of them can also be obtained from the AGSO web site, <u>http://www.agso.gov.au</u>, under Quick Find: Data Standards. The lists on the web are kept up to date, so they may vary from the ones presented here.

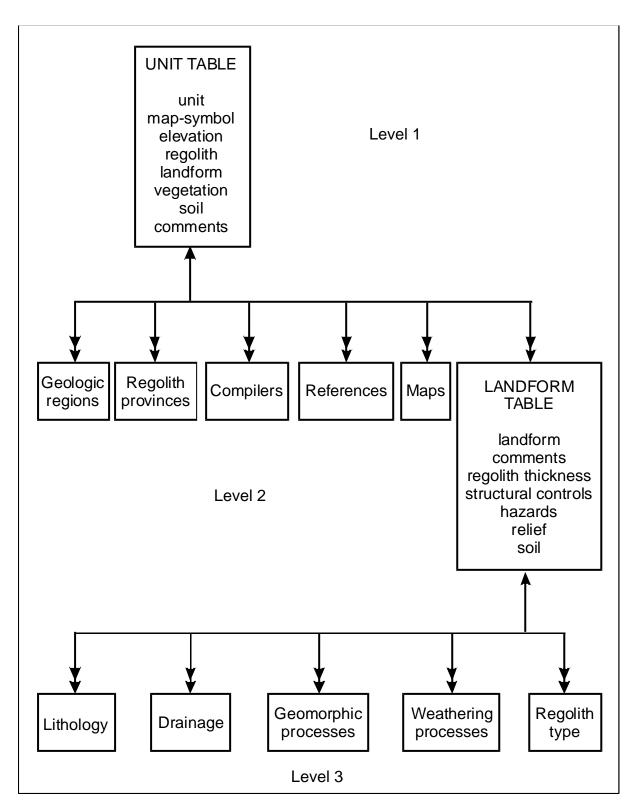


Figure 3.1. Simplified logical relationships of mapping unit data in RTMAP. Level 2 data have a many to one relationship to level 1 data, and level 3 data have a many to one relationship to level 2 data.

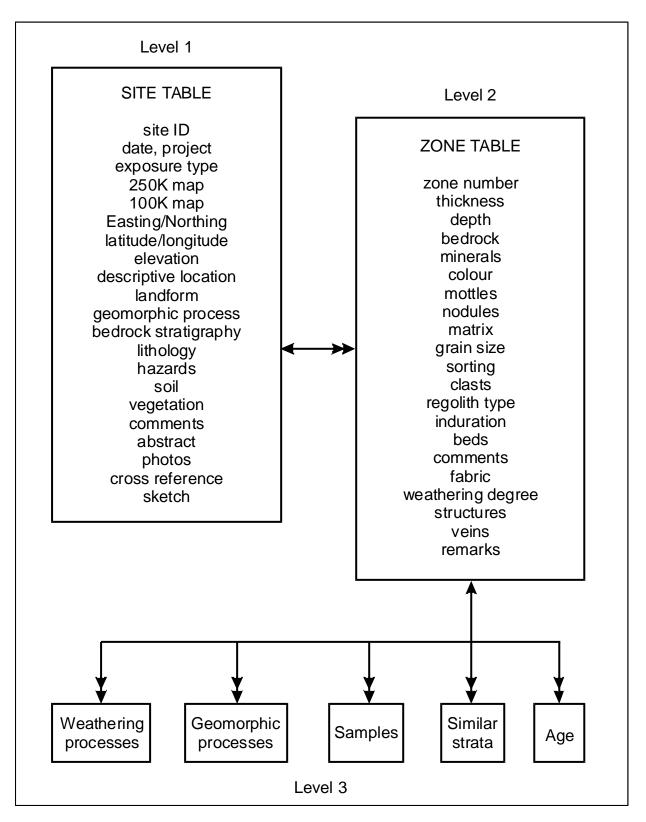


Figure 3.2. Simplified logical relationships of field site data in RTMAP. Level 2 data have a many to one relationship to level 1 data, and level 3 data have a many to one relationship to level 2 data.

3.1 Regolith Landform Unit Fields

These fields (Figure 3.3) contain elevation and relief information on the regolith landform unit and descriptive information on regolith, landforms, vegetation and soils. They refer to the whole unit, and not just part of it.

Unit 🗾 🛚 🕅	/lap unit	Map symbol	Project	Elevation	to m
Regolith Landforms √egetation ↓				Map, Legend & Co Compulsor 0 0 0 Compilers Maps Entered By: Entry Date:	Provinces
Landform Relief ructural control Soil comments Landform comments			Reg. thickness	Rank	Bedrock Drainage Hazard Geomorph. Weath. Proc. Proc.
Regolith t egree of weather Regolith distribu Regolith distribu Regolith Age det	ring ofile tion age) آگا to	Direction of Rego	lith type	Rank

Figure 3.3. The Units screen in RTMAP.

3.1.1 Unit ID (U_ID)

This is a unique automatically created sequential number cued by data entry. It is the number that identifies the regolith landform unit in RTMAP, and it links all the tables together. This number should also be used as the polygon label in a GIS.

3.1.2 Map Unit

This is a unique alphanumeric symbol entered by the compiler at the time of map compilation. It corresponds to a polygon or number of polygons on the map face, and is necessary to link the map in the GIS to the data entry in RTMAP.

3.1.3 Map Symbol

An appropriate map symbol from Tables 2.1 and 2.2 may be used here.

3.1.4 Project

Enter a project code from the project authority table. If the project is not on the list, contact the RTMAP custodian at AGSO.

3.1.5 Elevation

Enter the lower and upper values of the elevation range for the whole unit.

3.1.6 Regolith, Landforms and Vegetation

These are free text fields for descriptions of regolith, landforms and vegetation within the unit as a whole.

3.1.7 Compilers

Enter the compiler(s) name from the lookup table (listed under "Originators" on the AGSO web site). If a compiler is not on the list, contact the RTMAP custodian at AGSO.

3.1.8 Maps

Enter the 1:100,000 map sheet name(s) from the lookup table.

3.1.9 Legend

This field is to choose the style of legend description required for the map. There are currently two choices, a geochemical description, and the standard regolith description.

3.1.10 Tectonic Provinces

Enter one or more elements from the Tectonic Elements Table. This table lists the 93 tectonic structural elements of Australia, from Palfreyman (1984) (Figure 3.4).

01 Adavale Basin 48 Laura Basin 49 02 Adelaide Fold Belt Leeuwin Block 03 Albany-Fraser Province 50 Litchfield Block 04 Amadeus Basin 51 Maryborough Basin 05 Arafura Basin 52 McArthur Basin Money Shoal Basin 06 Arckaringa Basin 53 07 Arnhem Block 54 Mount Isa Block 08 Arrowie Basin 55 Mount Painter Block 09 Arunta Block 56 Murphy Inlier 10 57 Murray Basin Bancannia Trough 11 Bangemall Basin 58 Musgrave Block 12 59 Nabberu Basin Birrindudu Basin 13 Bonaparte Basin 60 New England Fold Belt 14 Bowen Basin Ngalia Basin 61 Northampton Block 15 Bremer Basin 62 Broken Hill Block 63 **Oaklands Basin** 16 17 Canning Basin 64 Officer Basin Cape York-Oriomo Inlier 18 65 Ord Basin 19 Carnarvon Basin Otway Basin 66 20 Carpentaria Basin Paterson Province 67 21 Clarence-Moreton Basin Pedirka Basin 68 22 Coen Block 69 Perth Basin 23 Cooper Basin 70 Pilbara Block 24 71 Daly River Basin Pine Creek Geosyncline 25 Darling Basin 72 Polda Basin Davenport Geosyncline 26 73 Rocky Cape Block 27 Denison Block 74 Rum Jungle Block 75 28 Drummond Basin South Nicholson Basin 29 Duaringa Basin 76 Stansbury Basin 30 Dundas Trough 77 Stuart Shield

- 31 Eromanga Basin
- 32 Esk Trough
- 33 Eucla Basin
- 34 Galilee Basin
- 35 Gascoyne Block
- 36 Gawler Block37 Georgetown Bl
- 37 Georgetown Block38 Georgina Basin
- 39 Gippsland Basin
- 40 Halls Creek Province
- 41 Hamersley Basin
- 42 Hillsborough Basin
- 43 Hodgkinson Fold Belt
- 44 Kanmantoo Fold Belt
- 45 Karumba Basin
- 46 Kimberley Basin
- 47 Lachlan Fold Belt

- 78 St Vincent Basin
- 79 Styx Basin
- 80 Surat Basin
- 81 Sydney Basin
- 82 Sylvania Dome
- 83 Tasmania Basin
- 84 Tennant Creek Block
- 85 The Granites-Tanami Block
- 86 Torrens Basin
- 87 Tyenna Block
- 88 Victoria River Basin
- 89 Warburton Basin
- 90 Wiso Basin
- 91 Wonominta Block
- 92 Yambo Block
 - 93 Yilgarn Block

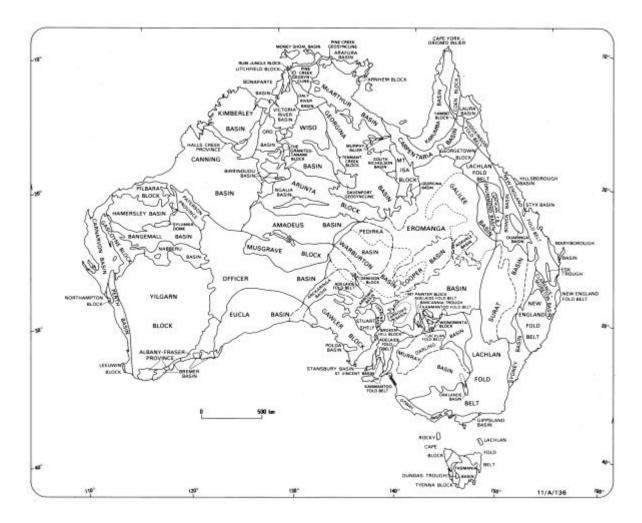


Figure 3.4. Tectonic Structural Elements of Australia (Palfreyman 1984).

3.1.11 Refs

This field is for information about bibliographic references. A ref(erence) number code is entered and the author(s) and date of publication will be displayed on the screen in response. Full information is

contained in the table REFS. The number code is a sequential system-generated number. The entry screens are shown in Figures 3.5 and 3.6.

-	REF	S_UNIT	
Action Edit Query	<u>Block Record Field</u>		<u>H</u> elp
Reference			38

Figure 3.5. Bibliographic reference lookup screen. Clicking on the lookup button brings up the reference entry screen (Figure 3.6).

PROD Query	AGSO REFS - Single Author	Query For Seq Refib		Year (1) (2) (2)		H		
Rest Last Prov. Next Prov. N	Authors	Seq	Reference Details		Enteredby	Entrydate	Ref ID	
Cices	a new reference is inserted Perform Complex Query Update/Insert Reference		Vol/Part			Pages		

Figure 3.6. Bibliographic reference entry screen.

3.1.12 Regolith Landform Provinces

This field is for Regolith Landform Province names, from the Table PROV. The Province details are followed by the major/subordinate (M/S) code to indicate if the regolith landform unit is a major or subordinate component within the Regolith Landform Province. Current provinces are:

1	Walling Rock	2	Boorabbin
3	Cave Hill	4	Kurrajong Range
5	Niagara Creek	6	Leonora
7	Edjudina Range	8	Donkey Rocks
9	Kalgoorlie	10	Moon Rock
11	Emu Rocks	12	Binneringie
13	Mulgabiddy Creek	14	Minnie Hill
15	Ethel Hill	16	Bartlett Bluff
17	Pitcher Range	18	Neale Plateau
19	Streich Mound	20	Moonyoora
21	Carlisle Plain	22	Nyanga Plain
23	Nullarbor Plain	24	Bremer Range
25	Cowarna Rocks	26	Hampton Tableland
27	Kambalda	28	Murdonna Hill
29	Fraser Range	30	Lake Lefroy

3.2 Landform Unit Fields

There may be many landform units within one regolith landform unit. The following fields are completed for each landform unit.

3.2.1 Landform

Enter the landform code from the Landform Authority Table. This is followed by the rank to indicate if the landform unit is a major or subordinate component of the regolith landform unit.

AL00	alluvial landforms	FA00	fan
AL10	alluvial plain	FA01	alluvial fan
AL11	flood plain	FA02	colluvial fan
AL12	anastomotic plain	FA03	sheet-flood fan
AL13	bar plain		
AL14	covered plain	GL00	glacial features
AL15	meander plain	GL10	depositional glacial features
AL16	floodout	GL20	erosional glacial features
AL20	alluvial terrace		C C
AL30	stagnant alluvial plain	MA00	made land
AL40	terraced land		
AL50	alluvial swamp	ME00	meteor crater
	*		
CO00	coastal lands	PL00	plain
CO00 CO01	coastal lands beach ridge	PL00 PL01	plain depositional plain
			-
CO01	beach ridge	PL01	depositional plain
CO01 CO02	beach ridge chenier plain coral reef	PL01 PL02	depositional plain lacustrine plain
CO01 CO02 CO03	beach ridge chenier plain	PL01 PL02 PL03	depositional plain lacustrine plain playa plain
CO01 CO02 CO03 CO04	beach ridge chenier plain coral reef marine plain	PL01 PL02 PL03	depositional plain lacustrine plain playa plain
CO01 CO02 CO03 CO04 CO05	beach ridge chenier plain coral reef marine plain tidal flat coastal dunes	PL01 PL02 PL03 PL04	depositional plain lacustrine plain playa plain sand plain
CO01 CO02 CO03 CO04 CO05 CO06	beach ridge chenier plain coral reef marine plain tidal flat	PL01 PL02 PL03 PL04 PT00	depositional plain lacustrine plain playa plain sand plain plateau
CO01 CO02 CO03 CO04 CO05 CO06 CO07	beach ridge chenier plain coral reef marine plain tidal flat coastal dunes coastal plain	PL01 PL02 PL03 PL04 PT00 PT01	depositional plain lacustrine plain playa plain sand plain plateau plateau edge
CO01 CO02 CO03 CO04 CO05 CO06 CO07	beach ridge chenier plain coral reef marine plain tidal flat coastal dunes coastal plain	PL01 PL02 PL03 PL04 PT00 PT01	depositional plain lacustrine plain playa plain sand plain plateau plateau edge

DE00	delta	VO02 VO03	cone (volcanic) lava plain
DU00	aeolian landforms	V004	ash plain
DU10	aeolian dunes	V005	lava flow
DU11	longitudinal dunefield	V006	lava plateau
DU12	transverse dunefield		L L
DU13	irregular dunefield		
DU14	source bordering dune		
DU15	lunette		
DU20	aeolian sheet		
ER00	erosional landforms		
ER10	erosional plain (<9m relief)		
ER11	pediment		
ER12	pediplain		
ER13	peneplain		
ER14	etchplain		
ER20	rises (9 - 30m relief)		
ER21	residual rise		
ER30	low hills (30 - 90m relief)		
ER31	residual low hill		
ER40	hills (90 - 300m relief)		
ER50	mountains (>300m relief)		
ER60	escarpment		
ER70	badlands		
ER80	drainage depression		

3.2.2 Relief

Enter here the average local relief, the difference in elevation between the highest and lowest parts of the landform unit. Speight (1990) notes that the estimation of relief is made easier by visualising two surfaces that are planar or gently curved, one touching the major crests of the landform unit, and the other passing through the major depressions The average vertical separation of the two surfaces is a measure of the relief. (This should not be confused with elevation, which is absolute height above sea level.)

3.2.3 Structural Controls

The type of structural control on landforms in the landform unit is given from the following list.

NS	no structural control	FT	faulted
AN	anticline	HG	horst/graben
AD	anti dip slope	HO	horizontal bedding
BF	block faulting	JN	jointing
CU	cuesta forms	MN	monocline
DB	dipping beds	SA	strike aligned
DI	dip slope	SN	syncline
DS	dyke/sill		

3.2.4 Regolith Thickness

Regolith thickness over an entire regolith landform unit is obviously impossible to determine. This field is for a general indication of the maximum thickness of regolith in the unit. Enter a thickness code from the following list:

0	unknown
1	< 0.5 m

2	< 2 m
3	> 2 m
4	> 5 m
5	>15 m
6	> 50 m

3.2.5 Soils Comments

The amount of soils information that can be entered will depend to a large extent on the observer. Those with knowledge of soil classification (e.g. Northcote Key, Great Soil Groups, or the new Australian Soil Taxonomy) should use these. Others should note only the main morphological features of the soil. There are lists of some soil classifications, and some definitions, in Chapter 4.

3.2.6 Landform Comments

This is a comment field for free-text description of the landform within the unit. This could include depth and degree of dissection, if appropriate.

3.2.7 Bedrock Details

The bedrock details are for the lithology of the bedrock below this particular landform unit. There may be more than one bedrock type under a single landform unit. The "Bedrock" button on the Units screen gives the following entry block (Figure 3.7).

-	Bedrock Details	
<u>Action Edit Query</u>	Block Record Field	<u>H</u> elp
Rocktype [Close
Lithology Qualifier		
Lithname		
Lithology Details		
Stratigraphy		1 -
а К. М.		- 17

Figure 3.7. The Bedrock Details entry block in RTMAP.

3.2.7.1 Rock Type

Rock type is entered from the following table.

1	unknown	12	metabasite
2	felsic intrusive	13	felsic gneiss
3	intermediate intrusive	14	metasediment
4	mafic intrusive	15	metasomatite
5	felsic extrusive	16	mineralisation
6	intermediate extrusive	17	regolith
7	mafic extrusive	19	vein
8	ultramafite	20	volcaniclastic
9	alkaline igneous	21	tectonite
10	clastic sediment	22	organic
11	chemical sediment		-

3.2.7.2 Lithology Qualifier

Choose a term from the lookup table.

3.2.7.3 Lithology Name

ADK	adakite	AFG	alkali feldspar granite
AFR	alkali feldspar rhyolite	AFS	alkali feldspar syenite
AGB	analcime gabbro = teschenite	AGL	agglomerate
AGLT	argillite	AIRK	alkaline intrusive
ALB	albitite	ALO	alnoite
ALUV	alluvium	AMBR	amber
AMP	amphibolite	ANA	analcimite
ANS	anorthosite	ANT	andesite
ANTH	anthracite	APL	aplite
ARKS	arkose	ARNT	arenite
ASH	ash	ATRK	altered rock
AUGN	augen gneiss	BAD	basaltic andesite
BDST	boundstone	BHRK	beachrock
BIF	banded iron formation	BIOC	biocarbonate
BIOM	biomicrite	BIOS	biosparite
BIT	bitumen	BLD	boulder
BLSH	black shale	BLT	basalt
BMT	benmoreite	BNBD	bone bed
BON	boninite	BSN	basanite
BTA	basaltic trachyandesite	BTH	bomb, block tephra
BX	breccia	CALR	calcarenite
CALU	calcilutite	CAV	cavity
CBIF	carbonate iron formation	CBRK	carbonate rock
CBT	carbonatite	CCT	calciocarbonatite
CHAR	charnockite	CHLK	chalk
CHRT	chert	CHT	chromitite
CLAS	clast	CLBX	clast supported breccia
CLCR	calcrete	CLST	claystone
CLY	clay	CMP	amptonite
CNGL	conglomerate	COAL	coal
COLV	colluvium	COM	comendite
CORL	coral	CPN	clinopyroxene norite
CPT	clinopyroxenite	CQNA	coquina
CRNL	carnieule	CSRK	calc-silicate rock
CVN	carbonate vein	DAC	dacite
DLAR	dolarenite	DLST	dolostone
DLT	dolerite	DMCT	diamictite
DRT	diorite	DST	dust
DTMT	diatomite	DUN	dunite
DUR	duricrust	EGL	eclogite
EPCR	epiclastic rock	EVPT	evaporite
FAN	foid-bearing anorthosite	FAT	foid-bearing alkali feldspar tra
FBG	foid-bearing gabbro	FBM	foid-bearing monzonite
FCT	ferrocarbonatite	FDI	foid-diorite
FDL	foidolite	FDR	foid-bearing diorite
FDT	foidite	FFS	foid-bearing alkali feldspar sye
FGLT	fanglomerate	FGS f	ergusite
FIRK	felsic intrusive	FLNT	flint
FLT	foid-bearing latite	FLVA	felsic lava
FMD	foid-bearing monzodiorite	FMG	foid-bearing monzogabbro
FNT	fenite	FOS	fossil
FPY	feldspar porphyry	FRCT	ferricrete
FRK	felsic rock	FSY	foid-bearing syenite
FTR	foid-bearing trachyte	FVOL	felsic volcanic
GAB	gabbro	GBN	gabbronorite
GAB GFL	granofels	GNS	gneiss
GNST	grainstone	GO	-
GOUG	-	GPST	gossan
GOUG GRD	gouge granodiorite	GPSI GRN	grapestone
GRD		GRSN	granulite greisen
	granophyre		•
GRT	granite	GRU	grus
		20	

GSD	greensand	GSQ	gossanous quartz
GSD	greenstone	GUN	guano
GVL	gravel	GYST	geyserite
GYL GYT	gyttja	GYWK	greywacke
HBT	hornblendite	HDG	hornblende gabbro
HFL	hornfels	HWT	hawaiite
HYA	hyaloclastite	HZB	harzburgite
IGM	ignimbrite	IIRK	intermediate intrusive
IJL	ijolite	ILVA	intermediate lava
IRFM	iron formation	IRK	intermediate rock
IRST	ironstone	IVOL	intermediate volcanic
JASP	jasper	JSPL	jaspilite
KBL	kimberlite	KTT	komatiite
KZT	kersantite	LAG	lag
LATT	laterite	LAVA	lava
LBG	limburgite	LCTT	leucitite
LHZ	lherzolite	LIG	lignite
LITF	lithic tuff	LMST	limestone
LOM	loam	LOS	loess
LPR	lamproite	LPY	lamprophyre
LTT	latite	LTUF	lapilli tuff
MARL	marl	MBL	marble
MCH	meimechite	MCQ	monchiquite
MCRT	micrite	MCT	magnesiocarbonatite
MDST	mudstone	METB	metabasite
METS	metasediment	MGBS	high-Mg basalt
MGST	magnesite	MIG	migmatite
MIRK	mafic intrusive	MLAV	mafic lava
MLG	melteigite	MLL	melilitolite
MLT	melilitite	MNRK	manganese rock
MNTT	minette	MPD	melilite-bearing peridotite
MPT	melilite-bearing pyroxenite	MQZ	massive quartz
MRK	mafic rock	MSI	massive silica
MSK	miaskite	MSS	missourite
MSU	massive sulphide	MSYN	monzosyenite
MTBX	matrix supported breccia	MTIF	magnetite rock
MTS	metasomatite	MTX	magnetite fock
MUD	mud	MUG	
			mugearite
MUV	melilite-bearing ultramafic volc	MVOL	mafic volcanic
MYL	mylonite	MZB	monzogabbro
MZD	monzodiorite	MZG	monzogranite
MZT	monzonite	NFOS	nanofossil
NGB	nepheline gabbro = theralite	NLL	nephelinolite
NMD	nepheline monzodiorite = essexit	NMG	nepheline monzogabbro = essexite
NPH	nephelinite	NRT	norite
NSY	nepheline syenite	NVLT	novaculite
OBS	obsidian	OCP	olivine clinopyroxenite
ODT	opx diorite = norite	OFG	opx alkali feldspar granite
OFS	opx alkali feldspar syenite	OGD	opx granodiorite = opdalite
OGT	opx granite = charnockite	OHP	olivine hornblende pyroxenite
OHT	olivine hornblendite	OMD	opx monzodiorite = jotunite
OML	olivine melilitolite	OMT	olivine melilitite
OMZ	opx monzonite = mangerite	OOP	olivine orthopyroxenite
OOZ	ooze	OPHL	ophiolite
OPT	orthopyroxenite	ORE	ore
OST	opx syenite	OTT	opx tonalite = enderbite
OWT	olivine websterite	OXIF	oxide iron formation
PBS	phonolitic basanite	PBT	picrobasalt
PCLN	porcellanite	PCT	picrite
PEAT	peat	PEG	pegmatite
PELT	pelite	PER	peridotite
PFD	phonolitic foidite	PHD	plagioclase-bearing hornblendite
PHG	pyroxene hornblende gabbro	PHP	pyroxene hornblende peridotite
-		·	1, Pointer pointer

PHSP	phosphorite	PHT	pyroxene hornblendite
PHY		PHYL	
	porphyry		phyllite
PIS	pisolite	PIST	pisolitic ironstone
PKR	peralkaline rhyolite	PKST	packstone
PLDZ	pallid zone	PLZ	polzenite
PML	pyroxene melilitolite	PNT	phonolite
POM	pyroxene olivine melilitolite	PPD	pyroxene peridotite
PPX	potassic trachybasalt	PTR	phonolitic tephrite
PTT	pantellerite	PYCR	pyroclastic rock
QAS	quartz alkali feldspar syenite	QFPY	quartz feldspar porphyry
QFRK	quartz feldspar rock	QGB	quartz gabbro
QHBX	quartz-hematite breccia	QMD	quartz monzodiorite
-		-	1
QMG	quartz monzogabbro	QMRK	quartz magnetite rock
QTE	quartzolite	QTY	quartz trachyte
QZA	quartz anorthosite	QZBX	quartz breccia
QZD	quartz diorite	QZG	quartz-rich granitoid
QZL	quartz latite	QZM	quartz monzonite
QZPY	quartz porphyry	QZS	quartz syenite
QZT	quartzite	QZVN	quartz vein
RDLT	radiolarite	RHD	rhyodacite
RHY	rhyolite	ROCK	rock
ROD	rodingite	SAN	sannaite
SCHT	schist	SCRE	scree
SDBX	sedimentary breccia	SDST	sandstone
SDT	sodalitite	SED	sediment
SHK	shonkinite	SHLE	shale
SHT	shoshonite	SINT	sinter
SKN	skarn	SLA	slate
SLCT	silcrete	SLST	siltstone
SLT	silt	SMD	sodalite monzodiorite
SND	sand	SOIL	soil
SPGT	sparagmite	SPIL	spilite
SPLT	saprolite	SPRK	saprock
SPT	spessartite	SRP	serpentinite
SSY		SUIF	
	sodalite syenite		sulphide iron formation
SURK	sulphide-rich material	SYG	syenogranite
SYN	syenite	TBDT	turbidite
TDJ	trondhjemite	TFD	tephritic foidite
TFT	tuffite	TGWK	tuffaceous greywacke
TLL	till	TLLD	tilloid
TLLT	tillite	TMST	tuffaceous mudstone
TNL	tonalite	TORB	torbanite
TOUM	tourmalinite	TPH	tephra
TPL	tephritic phonolite	TPT	tephrite
TRC	trachyte	TRVN	travertine
TSDS	tuffaceous sandstone	TSST	tuffaceous siltstone
TTL	troctolite		tuff
		TUF	
TYA	trachyandesite	TYB	trachybasalt
TYD	trachydacite	UMRK	ultramafic
URT	urtite	UVOL	ultramafic volcanic
VBX	volcanic breccia	VCR	volcaniclastic rock
VEBX	vein breccia	VEIN	vein
VGT	vogesite	VOLR	volcanic rock
VTUF	vitric tuff	WD	wood
WEB	websterite	WHL	wehrlite
XTUF	crystal tuff		
	- jour turr		

3.2.7.4 Stratigraphy

If the named stratigraphic units are known, enter the details from the authority table.

3.2.8 Drainage

There are 4 data types relating to drainage (Figure 3.8). These are the drainage pattern, drainage character, drainage type, and stream channel spacing.

🗖 Drainage Details			
Query Block Record Field	<u>H</u> elp		
🗍 💼 Rank 1	Close		
Type	<u> </u>		
	12		
	Query Block Record Field		

Figure 3.8. The drainage entry screen.

Codes are obtained from the following lists:

Data type

Data subtype

P drainage pattern	AB	anabranching
Р	AG	angulate
Р	AN	annular
Р	AS	anastomosing
Р	BA	barbed
Р	СР	centripetal
Р	CR	circumvolcanic
Р	CV	convergent
Р	DN	dendritic
Р	DS	distributary
P	DV	divergent
P	GU	gutter
P	IN	interrupted
P	NA	none
P	PA	parallel
P	RA	radial
P	RC	rectangular
P	RT	reticulate
P	TR	trellis
1	IK	uems
C drainage character	D	dry
C Granage character	I I	intermittent
C	T	tidal
C	1	tidai
T drainage type	А	antecedent
T dramage type T	C A	
T		captured diverted
	D	
Т	N	normal
Т	R	reversed
Т	S	superimposed
C drainage grading	۸D	abaant on yang rara > 2500 m
S drainage spacing	AB	absent or very rare $>2500 \text{ m}$
S	CS MS	closely spaced 250 - 400 m
S	MS	moderately spaced 400 - 625 m
S	NU	numerous <150 m

S	SP	sparse 1500 - 2500 m
S	VC	very closely spaced 150 - 250m
S	VW	very widely spaced 1000 - 1500
S	WS	widely spaced 625 - 1000 m

3.2.9 Environmental Hazards

If the landform unit is susceptible to any environmental hazards, enter a code from the following list:

NH	no recognised hazards	SC	solution cavities
AV	snow avalanche	SD	sand drift
СР	coastal progradation	SO	soil erosion
CO	coastal erosion	ST	storm surge
FF	flash flood	SU	subsidence
FL	flood	TS	tsunami
LA	landslide	VE	volcanic eruption
RO	rockfall	GU	gully erosion
SA	salinity	GI	gilgai

3.2.10 Geomorphic Processes

Enter the geomorphic process, the rank, and the active or relict (A/R) code. The active code allows present day processes to be recorded, while the relict code allows recognition of processes active in the past that were responsible for the origin of the landform unit. The geomorphic process code comes from the following table:

GR00	gravity	WI00	wind
GR01	vertical collapse	WI01	wind erosion (deflation)
GR02	particle fall	WI02	sand deposition
GR03	creep	WI03	dust deposition
GR04	landslide		-
GR05	mudflow	VO00	volcanism
		VO01	lava flow
WT00	water	VO02	ash flow
WT01	channelled stream flow	VO03	ash fall
WT02	over-bank stream flow		
WT03	sheet flow, sheet wash or surface wash	BI00	biological agents; coral
WT04	waves		
WT05	tides	HU00	human agents
WT06	detrital deposition in still water		C
WT07	rilling/gullying	MT00	impact by meteors
WT08	subsurface solution/piping		
IC00	ice		

ice	
	frost
	glacial erosion
	glacial deposition
	ice

3.2.11 Weathering Processes

Enter the weathering processes, the rank, and the active or relict (A/R) code. The active code allows present day weathering processes to be recorded, while the relict code allows recognition of weathering processes active in the past. The weathering process code comes from the following table:

WE00	weathering	CH06	hydrolysis
	-	CH07	ferrolysis
PH00	physical weathering	CH08	precipitation/evaporation

PH01	abrasion		
PH02	frost weathering	IN00	indura
PH03	induced fracture	IN01	ba
PH04	insolation weathering	IN02	Ca
PH05	moisture swelling	IN03	cl
PH06	sheeting	IN04	fe
PH07	salt weathering	IN05	gy
PH08	volume increase	IN06	si
PH09	wetting and drying		
		BI00	biotic
CH00	chemical weathering		
CH01	solution		
CH02	oxidation and reduction		
CH03	carbonation		
CH04	hydration		
CH05	chelation		

IN00	induration
IN01	bauxitic induration
IN02	calcareous induration
IN03	clay induration
IN04	ferruginous induration
IN05	gypsiferous induration
IN06	siliceous induration

weathering

3.3 **Regolith Type Fields**

There may be many regolith types within one landform unit.

3.3.1 Regolith Type

Enter the code for regolith type in this field, and the rank. The regolith type comes from the following table:

BU00	unweathered bedrock	SDS00 SDS02	coastal sediments estuarine sediments
EVA01	halite	SDS02 SDS03	coral
EVA01 EVA02	gypsum	SDS03 SDT00	terrestrial sediments
EVA02 EVA03	calcrete	UOC00	clay (unknown origin)
LVA05	earcrete	UOC00 UOM00	weathered material (unknown origin)
SDA00	alluvial sediments	UONIO0 UOS00	sand (unknown origin)
SDA00 SDA10		VOL00	volcanic sediments
SDA10 SDA20	channel deposits overbank deposits	VOL00 VOL01	lava flow
SDA20	overbank deposits	VOL01 VOL02	
SDC00	collection and in ante	VOL02	tephra
SDC00	colluvial sediments		1:41-
SDC01	scree	WIR10	saprolith
SDC02	landslide deposit	WIR11	saprock
SDC03	mudflow deposit	WIR12	moderately weathered bedrock
SDC04	creep deposit	WIR13	highly weathered bedrock
SDC05	sheet flow deposit	WIR14	very highly weathered bedrock
SDC06	fanglomerate	WIR15	completely weathered bedrock
		WIR15.1	mottled zone
SDE00	aeolian sediments	WIR15.2	pallid zone
SDE01	aeolian sand	WIR16	saprolite
SDE02	loess	WIR20	residual material
SDE03	parna	WIR21	lag
	L	WIR22	residual sand
SDF00	fill	WIR23	residual clay
SDG00	glacial sediments		2
SDL00	lacustrine sediments		
SDM00	marine sediment		
SDP00	swamp (paludal) sediments		
SDIOU	strainp (paradar) soumones		

SDP01 peat

3.3.2 Degree Of Weathering

The degree of weathering code from the following list can be used to modify regolith types.

0	unknown	4	highly weathered
1	fresh	5	very highly weathered
2	slightly weathered	6	completely weathered
3	moderately weathered	7	varied weathering

3.3.3 Thickness

This thickness entry is for specific regolith types. The thickness entry in section 3.2.4 refers to general regolith thickness in the landform unit as a whole.

	0	unknown	4	> 5 m
	1	< 0.5 m	5	>15 m
	2	< 2 m	6	> 50 m
	3	> 2 m		
3.3.4	Reg	olith Profile		

This is a descriptive field for recording the total known gross profile characteristics of the regolith, including any truncation or covering that may have occurred.

3.3.5 Regolith Distribution

This is a descriptive field for comments on the 3 dimensional landscape position of the regolith type. It can be used to describe any toposequence relationships observed in the regolith type.

3.3.6 Regolith Age

The age fields are completed if the regolith type has been dated or an age can be inferred, and if it does not belong to a stratigraphic unit. The age range can be entered from the lookup tables, or age details can be entered in the appropriate field.

3.3.7 Induration

In the case of inducated regolith, select an inducation type from the following list. The rank should also be entered for each inducation type.

IN00 IB00 IK00 IC00 IF00	indurated material bauxitic induration calcareous induration clay induration ferruginous induration	DM00 DM20 DM40 DM60	moderately cemented duricrust calcareous, moderately cemented ferruginous, moderately cemented siliceous, moderately cemented
IG00	gypseous induration	DP00	partially cemented duricrust
IS00	siliceous induration	DP10	bauxitic hardpan
IH00	humic induration	DP30	clay hardpan
		DP40	ferruginous hardpan
DC00	completely cemented duricrust	DP60	siliceous hardpan
DC10	alcrete (bauxite)	DP70	humic hardpan
DC20	calcrete		-
DC40	ferricrete	NO00	nodules
DC41	massive ferricrete	NO10	bauxitic nodules
DC42	nodular ferricrete	NO20	calcareous nodules
DC50	gypcrete	NO30	clay nodules

DC60	silcrete	NO40	ferruginous nodules
DC61	silcrete sheet	NO60	siliceous nodules
DC62	silcrete pods		

3.4 Field Observations (Sites)

This screen is common to all AGSO National Geoscience Databases, and contains information about individual sites that are studied in detail (Figure 3.9). This group of database fields describes a field site and contains identifying information and location data. The Outcrops, Ozchem and Ozchron buttons lead to other AGSO databases.

Sites Originator				Siteid		Entered E			
FieldId			Co	onfidential ID	<u></u>	LastUpda		_	
Obs Date			Co	untry Australia	Û	Lastopua			
State		🚺 Re	egion 📘			💼 🏥 Si	te No		
Geog Area									
ocation Desc									Outcrops
1:100K Map				1:250K N	1ap				
GDA94 Eas	sting 📘			GDA94 Northing		ş	GD66 COORDS	1	
GDA94 Latit	tude 📘			GDA94 Longitude		Datum	(30)A94 🗆 🗆		Ozchem
		D	M	S	D	M	S		
Method 📃						0	ccuracy So	m	
Height	+,	/_ P	rim <mark>a</mark> ry E	ntered Coords	vletric - M	-			Ozchron
Bibli Ref			Ai	r Photo					

Figure 3.9. Sites data entry block.

3.4.1 Originator

This number is obtained from the table of originators, held in the AGSO corporate database. The AGSO database administrator must issue anyone who wishes to enter data into RTMAP with an originator number.

3.4.2 Site ID

Site ID is a compulsory field in RTMAP, and is a number that uniquely identifies each site. Use a code with a minimum of 10 digits, as follows:

YYYYPPSSSS

Where YYYY is the 4 digits of the year in which the site was recorded in the field, PP is the project code (obtainable from CRC LEME or AGSO), and SSSS is the number you assign from the block of numbers allocated to you by your project leader.

3.4.3 Field ID

Field ID is an optional field for use during fieldwork.

3.4.4 Confidential ID

This field is a flag to indicate that the data is confidential to the originator and/or the project.

3.4.5 Date

This is the date of data collection in the field, and is in the form 00-MON-1999.

3.4.6 Country

Select the country from the lookup table.

3.4.7 State

Select the state from the lookup table.

3.4.8 Geological Region

Select the geological region (Figure 3.10) from the lookup table.

2	Adelaide	30	Dundas	105	Northeast Tasmania
3	Albany	31	Eromanga	64	Officer
4	Amadeus	33	Eucla	65	Ord
6	Anakie	282	Fly-Highlands	66	Otway
5	Arafura	100	Fraser	67	Paterson
7	Arnhem	34	Galilee	68	Pedirka
8	Arrowie	35	Gascoyne	69	Perth
9	Arunta	36	Gawler	70	Pilbara
112	Ashburton	37	Georgetown	71	Pine Creek
10	Bancannia	38	Georgina	72	Polda
11	Bangemall	39	Gippsland	106	Proserpine
12	Birrindudu	40	Halls Creek	48	Quinkan
13	Bonaparte	41	Hamersley	73	Rocky Cape
14	Bowen	44	Kanmantoo	107	Savory
15	Bremer	46	Kimberley	75	South Nicholson
94	Bresnahan	101	King Island	78	St Vincent
16	Broken Hill	102	King Leopold	77	Stuart
95	Burke River	47	Lachlan	79	Styx
43	Cairns	49	Leeuwin	80	Surat
97	Caloola	50	Litchfield	81	Sydney
17	Canning	51	Maryborough	82	Sylvania
19	Carnarvon	103	Marymia	85	Tanami
20	Carpentaria Lowlands	52	McArthur	84	Tennant Creek
83	Central Tasmania	53	Money Shoal	108	Tibooburra
98	Charters Towers	54	Mount Isa	86	Torrens
21	Clarence-Moreton	55	Mount Painter	18	Torres Strait
99	Clarke River	56	Murphy	87	Tyennan
22	Coen	57	Murray	88	Victoria River
24	Daly River	58	Musgrave	96	Wilsons Promontory
25	Darling	59	Nabberu	109	Winnecke
26	Davenport	60	New England	90	Wiso
27	Denison	61	Ngalia	91	Wonominta
28	Drummond	104	Nongra	93	Yilgarn
29	Duaringa	62	Northampton	0	unknown

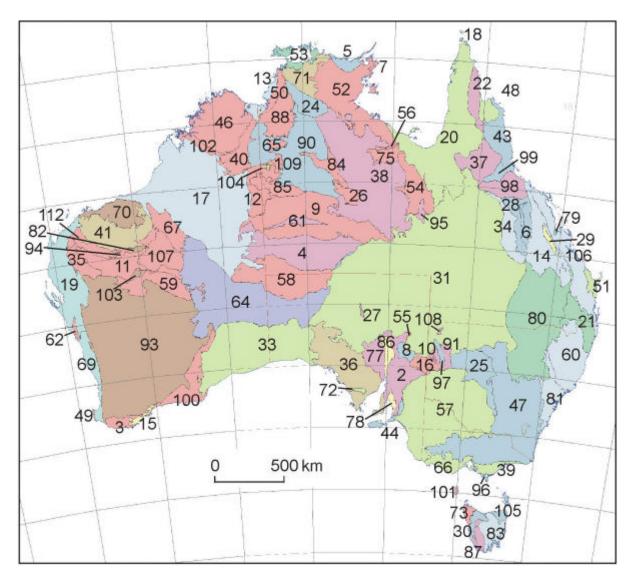


Figure 3.10. Geological regions.

3.4.9 Geographic area

This field is for the general geographic location of the site.

3.4.10 Location Description

This field is used for any details of the site location.

3.4.11 1:100K Map

Enter the 1:100,000 map number and name from the lookup table.

3.4.12 1:250k Map

Enter the 1:250,000 map number and name from the lookup table.

3.4.13 GDA94 Easting and Northing

These two fields are for AMG map coordinates. An internal check ensures that the coordinates fall in the named 1:100,000 map sheet.

3.4.14 Datum

The datum for Australian sites must be GDA94. AGD66 coordinates can be entered or viewed using the AGD66 to GDA94 conversion form, opened by pressing the AGD66 COORDS button.

3.4.15 Method and Accuracy

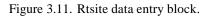
Enter the method and accuracy of site location from the lookup tables.

3.4.16 Height

Enter the elevation of the site, together with an error margin.

3.4.17 Bibliographic Reference

See section 3.1.11 (Figures 3.5 and 3.6).


3.4.18 Air Photo

Enter information about the air photo on which the site occurs (Run and photo number, scale).

3.5 Field Observations (Rtsite)

These fields record site data that are entered into RTMAP. The entry block is shown in Figure 3.11.

Rtsite		Entered By	Entry Date	e	
Project	())) Exp	osure Type 📃 🕅 Land	form	1	Hazards
Slope	Aspect	Geomorphic Processes:			
Rock Type					
Stratno					Vegetation
Qualifier		📋 Lithology		<u>(1)</u>	
Photos			Sketch	Skelches/Pholos	Zones
Soil					
√egetation					
Abstract					Sectholes

3.5.1 Project

Choose the project from the lookup table.

3.5.2 Exposure type

The type of site is selected from the following list:

AUGER	Auger hole (soil/otherwise)	OUTCR	Outcrop
CANAL	Canal	PROSP	Prospect
CLIFF	Cliff	QUARR	Quarry
CORE	Core	RAILW	Railway
COST	Costean	ROAD	Road/highway cutting
CUTTI	Cuttings	RUBBL	Rubble
DAM	Dam	SOIL	Soil
FLOAT	Float	STREA	Stream (for creeks/rivers)
GRAVE	Gravel scrape	SURF	Surface
GULLY	Gully (for gullies/washouts)	TRENC	Trench
MINE	Mine		

3.5.3 Landform

Enter a code for landform type from the landform table.

3.5.4 Slope and Aspect

These fields are for slope angle in degrees (0 - 90) and aspect in degrees (0 - 360).

3.5.5 Geomorphic Process

There is space for 2 codes for the geomorphic processes responsible for the formation of the site. The geomorphic process codes come from the geomorphic process lookup table.

3.5.6 Bedrock type

Enter the code, from the rock type lookup table, for the bedrock type underlying the regolith at this site, if known.

- 1 unknown
- 2 felsic intrusive
- 3 intermediate intrusive
- 4 mafic intrusive
- 5 felsic extrusive
- 6 intermediate extrusive
- 7 mafic extrusive
- 8 ultramafite
- 9 alkaline igneous
- 10 clastic sediment
- 11 chemical sediment

3.5.7 Bedrock Stratigraphic Name

This is for the bedrock stratigraphic unit that underlies the regolith at this site, if known. Stratigraphic unit codes are from the STRAT lookup table.

3.5.8 Bedrock Qualifier

Enter the code, from the lithology qualifier lookup table, for the bedrock lithology underlying the regolith at this site, if known.

3.5.9 Bedrock Lithology

Enter the code, from the lithology lookup table, for the bedrock lithology underlying the regolith at this site, if known.

3.5.10 Sketches/Photos

Press the Sketches/Photos button, and enter details in the relevant fields (Figure 3.12).

- 12 metabasite
- 13 felsic gneiss
- 14 metasediment
- 15 metasomatite
- 16 mineralisation
- 17 regolith
- 19 vein
- 20 volcaniclastic
- 21 tectonite
- 22 organic

Originator		Ē	Ow	
Siteld			Sketchno	-
ict. Type			Siteno	
Direction	a (Rockno	
Film No.	Negative No.		TSNo	
Capiton				
Capilion]				
Caption]				

Figure 3.12. Site sketches and photos entry screen.

3.5.11 Sketch

Enter Y here if a sketch was made of this site during field data collection.

3.5.12 Soil

This field is for a description of the soil at the site.

3.5.13 Vegetation

This field can contain a description of the vegetation at the site. If more details are needed, use the Vegetation button.

3.5.14 Abstract

The abstract field is for a summary description of the site, including brief comments about the zones.

3.5.15 Hazard

This button opens a data entry block that is used for environmental hazards.

3.6 Field Observations (Zone Details)

The following fields contain information pertaining to a single zone within a field site. Usually there will be several zones at each field site. The entry screen is shown in Figure 3.13.

Zones Originator Dbs. Thickness (m) Regolith Degree of weathering Zone desc. Other data	Depth to lov	Siteid ver boundary (m) Dor Dor	Zone	Zone No Sectholeno Entered On: By:	
Zonedata					
Attribute Name	Descrip	otor	Descri	ption	Rank
			<u></u>		
Samples				Entered On:	
Siteid Origno S	ample ID Sample	Description	Zone No	Zone By:	

Figure 3.13. Zones entry screen.

3.6.1 Zone Number

The zone number is a 2-digit number in the format 01, 02, 03 etc., increasing with relative age. Usually this means increasing depth from surface, but it may mean elevation or other indicator of relative age. If the latter, a sketch should be provided in the notebook.

3.6.2 Obs. Thickness

This is a number field for the average thickness of the zone, in the format: 3 digits, decimal point, 2 digits, given in metres.

3.6.3 Depth to Lower Boundary

Enter the depth of the lower boundary of the zone in metres (2 decimals allowed).

3.6.4 Regolith Type

This field is for the regolith type, and comes from the regolith type lookup table.

3.6.5 Bedrock

Enter Y if there is bedrock immediately below this zone.

3.6.6 Degree of Weathering

Enter the degree of weathering from the lookup table.

3.6.7 Zone description

An optional 240-character field for comments on the zone that cannot be placed elsewhere.

3.7 Field Observations (Zone Data)

The Zonedata block in RTMAP allows a range of additional attributes to be recorded as needed. The attributes currently available in AGSO's database structure are listed in Table 3.2. Not all of them are directly relevant to the study of regolith.

Table 3.2. Data types available in the AGSO corporate database.

ALT ALTI BED BNDS BNDT	Alteration Style Alteration Intensity Bedding Thickness Lower boundary-shape Lower boundary-type	PHO POR QZGS QZSP RAD	Photodata Porosity Quartz grain size Quartz grain sphericity Gamma Ray Spectrometry (cps)
BST CFD	Bedrock structures Coarse fragment orientation	RCC REF	Regolith clast composition Reference
CM	Common mineral	REM	Remarks
COL	Colour	RSTR	Rock Strength
CON	Consistence	SEGA	Segregations-abundance
COP	Colour pattern	SEGC	Segregations-composition
FOS	Fossil	SEGS	Segregations-size
DRMA	Nature of drilled material	SEGT	Segregations-type
FAB	Fabric	SEQ	Sequence Types
GP	Geomorphic processes	SF	Sampled For
GS	Grain Size	SOM	Sedimentary Occurrence Mode
IN	Induration	SOR	Sorting
IOM	Igneous Occurrence Mode	SP	Sample Provenance
IS	Internal Stratification	SPH	Sphericity

ITX	Igneous Texture	SS	Sedimentary Structures
MAG	Magnetic. sus. (SI Units x 10-5)	SSTR	Soil strength
MAGS	Sample container size	ST	Sample type
MC	Munsell colour	STK	Stickiness
MET	Metamorphic Grade	STX	Sedimentary Texture
MI	Mineral	TEC	Tectonic Features
MOTA	Mottles-abundance	TH	Regolith thickness
MOTS	Mottles-size	VEIN	Vein, dyke or sill
MTX	Metamorphic Texture	WEA	Degree of Weathering
PH	PH level	WP	Weathering processes

Each attribute, or data type, has a number of sub types, which are listed below.

The subtype field is followed by a description field, which is an optional free text field of 64 characters for descriptor values (e.g. pH, or Magnetic susceptibility), or any additional information relating to the data type or sub type. Though this field is free text, values for instrument readings should be recorded as numbers only. This allows them to be easily retrieved for use in GIS. For example, values for magnetic susceptibility or gamma-ray counts should be entered without any units or comments. Additional comments relating to the readings should be recorded as a separate record using the remarks data type (REM).

Many definitions of data and sub data types are contained in McDonald et al. (1990), and it is strongly recommended that readers of this manual also obtain a copy of that handbook.

Rank is an optional single integer field for a number from 1 to 9. When a particular data type is used more than once the corresponding sub types can be ranked in order of importance or dominance at the site. This is useful when interrogating the data with a GIS as it provides users with a method of identifying and displaying only the dominant subtype in a group of identical data types.

3.7.1 Age Determination

At present comments about zone age should be entered using the remarks data type (REM). However, the OZCHRON database will be expanded and linked to this table in the future.

3.7.2 Bedding Thickness

Data typ	e	Sub type	
BED	Bedding Thickness	LA	laminated (<10 mm)
BED		VTN	very thin (10-30 mm)
BED		ME	medium (100-300 mm)
BED		TN	thin (30-100 mm)
BED		TK	thick (300-1000 mm)
BED		VTK	very thick (>1000 mm)

3.7.3 Internal Stratification

Data type

IS IS IS	Internal Stratification	RG CLA CMI	reverse grading corrugated lamination cryptomicrobial (algal laminae)
IS		CLR	climbing ripples
IS		CTS	contorted stratification
IS		CV	convolute
IS		HO	horizontal
IS		HPL	horizontal parallel laminae
IS		HX	hummocky cross bedding

3.7.4 Sequence Types

Data type

Sub type

SEQ	Sequence Types	CU	coarsening upward sequence
SEQ		FU	fining upward sequence
SEQ		TKU	thickening upward
SEQ		TNU	thinning upward

3.7.5 Sedimentary Occurrence Mode

Data type

Sub type

SOMSedimentary Occurrence ModeSOMSOMSOMSOM	CLAS CMT CNC SDY MT	clast cement concretion dyke matrix
--	---------------------------------	---

3.7.6 Sedimentary Structures

Data type

SS	Sedimentary Structures	BP	ball-and-pillow
SS		ADR	adhesion ripples
SS		AMB	armoured mud balls
SS		ASYM	asymmetrical ripple mark
SS		BIO	bioturbated
SS		BP	ball-and-pillow
SS		BU	burrows
SS		BUB	bubble prints
SS		CC	current crescents
SS		CHB	churned bedding
SS		CIC	cone-in-cone
SS		CNC	concretions
SS		COP	coprolite
SS		CRY	crystal casts
SS		CSP	cusp structures
SS		DC	desiccation cracks
SS		DS	dish structure
SS		DWS	de-watering structures
SS		ES	erosive structures
SS		FGNS	faceted grains
SS		FLM	flame structures
SS		GEO	geopetal
SS		GSP	gas pits

	SS SS	HMK ICL IM INV IR LC MC MSV MT PTG PM PN POP RHP RIP RS SC SD SHC SHR SLN SMR SLS SSD SHC SHR SLN SMR SLS SSD STY SYN TM TO TR VCLA WBL	
SSWBLwhirl-ballsSSWMwrinkle marks (runzelmarken)			

3.7.7 Sedimentary Texture

Data type

Sub type

STX	Sedimentary Texture	CEM	cemented
STX		BX	breccia
STX		GP	geopetal
STX		MCC	micritic
STX		ON	oncolitic
STX		OO	oolitic
STX		PE	peloidal

3.7.8 Bedrock structures

Within RTMAP, this data type is for bedrock structures which remain within the regolith, so will refer only to saprolite.

BST VN veins 3.7.9 Boundary

Two data types describe the lower boundary of each zone (see Chapter 4 for definitions).

Data typ	e	Sub type	;
BNDS	Lower boundary-shape	SM	smooth
BNDS		D	discontinuous
BNDS		I	irregular
BNDS		T	tongued
BNDS		W	wavy
BNDT	Lower boundary-type	SH	sharp
BNDT		A	abrupt
BNDT		C	clear
BNDT		D	diffuse
BNDT		G	gradual

3.7.10 Nature of drilled material

Data type	Sub type	
DRMA Nature of drilled material	AGG	aggregate
DRMA	CHPS	chip strong
DRMA	CHPW	chip weak
DRMA	DISAGG	disaggregate

3.7.11 Regolith clast composition

This data type is for the composition of the > 2 mm fraction.

RCC RCC RCC RCC RCC RCC RCC RCC RCC RCC	Regolith clast composition	AFG AFS AGL AGLT AMP ANS ANT APL ARKS ARNT BIOC BLT BSN BTH BX CBT CHAR CHLK CHRT CHCR CLCR CLST	chalk chert chromitite calcrete claystone
RCC RCC		CNGL DAC	conglomerate dacite
nee		2110	auerre

RCC	DLST	dolostone
RCC	DLT	dolerite
RCC	DMCT	diamictite
		diorite
RCC	DRT	
RCC	DTMT	diatomite
RCC	DUN	dunite
RCC	EGL	eclogite
RCC	EVPT	evaporite
RCC	FGLT	fanglomerate
RCC	FLNT	flint
RCC	FRCT	ferricrete
RCC	GAB	gabbro
		-
RCC	GBN	gabbronorite
RCC	GFL	granofels
RCC	GNS	gneiss
RCC	GNST	grainstone
RCC	GPST	grapestone
RCC	GRD	granodiorite
RCC	GRN	granulite
RCC	GRSN	greisen
RCC	GRT	granite
		•
RCC	GRU	grus
RCC	GSN	gossan
RCC	GST	greenstone
RCC	GYWK	greywacke
RCC	HBT	hornblendite
RCC	HDG	hornblende gabbro
RCC	HFL	hornfels
RCC	HZB	harzburgite
RCC	IGM	ignimbrite
RCC	IRFM	iron formation
RCC	IRST	
		ironstone
RCC	KBL	kimberlite
RCC	KTT	komatiite
RCC	LHZ	lherzolite
RCC	LMST	limestone
RCC	LPR	lamproite
RCC	LPY	lamprophyre
RCC	LTT	latite
RCC	MARL	marl
RCC	MBL	marble
RCC	MDST	mudstone
RCC	MIG	migmatite
RCC	MTS	metasomatite
RCC	MYL	mylonite
RCC	MZB	monzogabbro
RCC	MZD	monzodiorite
RCC	MZG	monzogranite
RCC	MZT	monzonite
RCC	NRT	norite
RCC	OBS	obsidian
RCC	OFS	opx alkali feldspar syenite
RCC	OHT	olivine hornblendite
RCC	OPHL	ophiolite
RCC	OST	opx syenite
RCC	PCLN	porcellanite
RCC	PEG	pegmatite

RCC	PELT	pelite
RCC	PER	peridotite
RCC	PHD	plagioclase-bearing hornblendite
RCC	PHP	pyroxene hornblende peridotite
RCC	PHSP	phosphorite
RCC	PHT	pyroxene hornblendite
RCC	PHY	porphyry
RCC	PHYL	phyllite
RCC	PKR	peralkaline rhyolite
RCC	PPD	pyroxene peridotite
RCC	PRX	pyroxenite
RCC	PSMT	psammite
RCC	QAS	quartz alkali feldspar syenite
	~	
RCC	QGB	quartz gabbro
RCC	QTE	quartzolite
RCC	QTY	quartz trachyte
RCC	QZA	quartz anorthosite
RCC	QZD	quartz diorite
RCC	QZG	quartz-rich granitoid
RCC	QZL	quartz latite
RCC	QZM	quartz monzonite
RCC	QZS	quartz syenite
RCC	QZT	quartzite
RCC	RHD	rhyodacite
RCC	RHY	rhyolite
RCC	SCHT	schist
RCC	SDST	sandstone
RCC	SHLE	shale
RCC	SHT	shoshonite
RCC	SKN	skarn
RCC	SLA	slate
RCC	SLST	siltstone
RCC	SPGT	sparagmite
RCC	SPIL	spilite
RCC	SRLT	saprolite
		1
RCC	SRP	serpentinite
RCC	SYN	syenite
RCC	TBDT	turbidite
RCC	TFT	tuffite
RCC	TLLD	tilloid
RCC	TLLT	tillite
RCC	TNL	tonalite
RCC	TRC	trachyte
RCC	TRVN	travertine
RCC	TUF	tuff
RCC	TYA	trachyandesite
RCC	TYB	trachybasalt
RCC	TYD	trachydacite
RCC	WHL	wehrlite

Data type

CFD	Coarse fragment orientation	U	undisturbed
CFD	-	D	dispersed randomly
CFD		R	reoriented
CFD		S	stratified (eg stone lines)

3.7.12 Colour

These data types can be used for descriptions of colour, colour changes or combinations The use of MC (Munsell colour) is preferred if meaningful comparisons are to be made.

Data type		Sub typ	Sub type	
COL	Colour	ВК	black	
COL		BL	blue	
COL		BR	brown	
COL		BU	buff	
COL		CH	chocolate	
COL		CR	cream	
COL		FA	fawn	
COL		GR	green	
COL		GY	grey	
COL		IR	iridescent	
COL		KH	khaki	
COL		MA	maroon	
COL		OL	olive	
COL		OR	orange	
COL		PI	pink	
COL		PU	purple	
COL		RE	red	
COL		VC	varicoloured	
COL		VI	violet	
COL		WH	white	
COL		YE	yellow	
COP	Colour pattern	МО	mottled	
MC	Munsell colour	Enter c	ode from Munsell colour book	

3.7.13 Consistence

Consistence refers to the strength of cohesion and adhesion in soil and regolith materials. Strength will vary according to water status. Strength is the resistance to breaking or deformation. Stickiness is a characteristic determined on wet material. McDonald and Isbell (1990) discuss these properties further, and provide definitions and means of determination.

Data type		Sub type	
SSTR SSTR SSTR SSTR SSTR SSTR SSTR	Soil Strength	 S0 loose S1 S2 S3 S4 S5 S6 	very weak (<25 kPa) weak (25-50 kPa) firm (50-100 kPa) very firm (100-200 kPa) strong (200-400 kPa) very strong (>400 kPa)
STK STK STK STK	Stickiness	NS SS MS VS	non-sticky slightly sticky moderately sticky very sticky

3.7.14 Porosity

Data type	
-----------	--

POR	Porosity	0	non porous, dense
POR		1	Slightly porous
POR		2	Porous

3.7.15 Rock Strength

RSTRRock StrengthR1RSTRR2RSTRR3RSTRR4RSTRR5	very low rock strength, (1.5-3Mpa) low rock strength, (3-10Mpa) medium rock strength, (10-25Mpa) high rock strength, (25-80Mpa) very high rock strength (>800Mpa)

3.7.16 Fabric

In pedology fabric describes the appearance of the soil material (McDonald and Isbell 1990), and the term can be extended to regolith materials. Differences in fabric are associated with the presence or absence of aggregations, and the presence, size and arrangement of voids in the regolith mass. More sub data types will be added to this data type.

Data type	Sub type	
FAB Fabric	RP	relict primary
3.7.17 Fossil		
Data type	Sub type	
FOS Fossil FOS FOS FOS FOS	FOSI FOSP FOST FOSV STRO	fossil invertebrates fossil plants trace fossils fossil vertebrates stromatolite

3.7.18 Geomorphic Processes

This data type is used for geomorphic processes responsible for the formation of the zone. The sub types are from the geomorphic processes lookup table.

Data type

GP	Geomorphic processes	BI00	biological agents; coral
GP		DI00	diastrophism; earth movements
GP		GR00	gravity
GP		GR01	vertical collapse
GP		GR02	particle fall
GP		GR03	creep
GP		GR04	landslide
GP		GR05	mudflow
GP		HU00	human agents
GP		IC00	ice
GP		IC01	frost
GP		IC02	glacial erosion
GP		IC03	glacial deposition
GP		MT00	impact by meteors
GP		VO00	volcanism
GP		VO01	lava flow
<u> </u>		, 001	14/4 110//

GP	VO02	ash flow
GP	VO03	ash fall
GP	WI00	wind
GP	WI01	wind erosion (deflation)
GP	WI02	sand deposition (wind)
GP	WI03	dust deposition (wind)
GP	WT00	water
GP	WT01	channelled stream flow
GP	WT02	over-bank stream flow
GP	WT03	sheet flow, sheet or surface wash
GP	WT04	waves
GP	WT05	tides
GP	WT06	detrital deposition still water
GP	WT07	rilling/gullying
GP	WT08	subsurface solution/piping
		· · · ·

3.7.19 Grain size

Enter the size of particles in the zone, from the following list. This list is derived from several sources. Choose the size ranges best suited to the materials in the zone.

Data type		Sub type		
GS	Grain Size	MUD	clay (<0.002 mm)	
GS		SLT	silt (0.002-0.062 mm)	
GS		SA	sand (0.062-2 mm)	
GS		VFS	very fine sand (0.062-0.125 mm)	
GS		FS	fine sand (0.125-0.5mm)	
GS		MS	medium sand (0.25-0.5 mm)	
GS		CS	coarse sand (0.5-1 mm)	
GS		VCS	very coarse sand (1-2 mm)	
GS		GV	gravel (2-60 mm)	
GS		FG	fine gravel (2-6 mm)	
GS		MG	medium gravel (6-20 mm)	
GS		CG	coarse gravel (20-60 mm)	
GS		CB	cobble (64-256 mm)	
GS		ST	stone (256-600 mm)	
GS		BO	boulder (>256 mm)	
GS		LPL	lapilli (4-64 mm)	
GS		BM	bomb (>64 mm)	
GS		GL	granule (2-4 mm)	
GS		PB	pebble (4-64 mm)	
GS		F	fine (<1 mm)	
GS		Μ	medium (1-5 mm)	
GS		С	coarse (>5 mm)	
GS		MX	microcrystalline	
GS		PEG	pegmatitic	
GS		VC	very coarse	
GS		VF	very fine	
GS		CLAY	clay (<0.002mm)	
GS		CSLT	coarse silt (0.031-0.0625mm)	
GS		FSLT	fine silt (0.0078-0.0156mm)	
GS		MSLT	medium silt (0.0156-0.031mm)	
GS		RMUD	5	
GS		VFSLT	very fine silt (0.0039-0.0078mm)	

3.7.20 Quartz grains

Quartz clasts have been separated out because of their importance in sedimentary regolith materials. There are two data types, quartz grain size and quartz sphericity.

Data type		Sub type	
QZGS	Quartz Grain Size	BO	boulder (>256mm)
QZGS		CB	cobble (64-256mm)
QZGS		CLAY	clay (<0.002mm)
QZGS		CSA	coarse sand (0.5-1mm)
QZGS		CSLT	coarse silt (0.031-0.0625mm)
QZGS		FSA	fine sand (0.125-0.25mm)
QZGS		FSLT	fine silt (0.0078-0.0156mm)
QZGS		GL	granule (2-4mm)
QZGS QZGS QZGS QZGS QZGS QZGS QZGS QZGS		GV MSA MSLT PB RMUD SA SLT VCS VFSA	gravel (>2mm) medium sand (0.25-0.5mm) medium silt (0.0156-0.031mm) pebble (4-64mm) clay/silt (<0.0625mm) sand (0.0625-2mm) silt (0.002-0.0625mm) very coarse sand (1-2mm) very fine sand (0.0625-0.125mm)
QZGS	Quartz Sphericity	VFSLT	very fine silt (0.0039-0.0078mm)
QZSP		ANG	angular
QZSP		RO	rounded
QZSP		SANG	sub-angular
QZSP		SRO	sub-rounded
QZSP		VANG	very angular
QZSP		WRO	well-rounded

3.7.21 Induration

This datatype covers the degree and type of induration.

Data type		Sub type		
IN	Induration	IN00	indurated material	
IN		DC00	completely cemented duricrust	
IN		DC10	alcrete (bauxite)	
IN		DC20	calcrete	
IN		DC40	ferricrete	
IN		DC41	massive ferricrete	
IN		DC42	nodular ferricrete	
IN		DC50	gypcrete	
IN		DC60	silcrete	
IN		DC61	silcrete sheet	
IN		DC62	silcrete pods	
IN		DM00	moderately cemented duricrust	
IN		DM20	calcareous, moderately cemented	
IN		DM40	ferruginous, moderately cemented	
IN		DM60	siliceous, moderately cemented	
IN		DP00	partially cemented duricrust	
IN		DP10	bauxitic, partially cemented	
IN		DP30	clay hardpan	
IN		DP40	ferruginous hardpan	

IN	DP60	siliceous hardpan
IN	DP70	*
		humic hardpan
IN	DU00	duricrust
IN	IB00	bauxitic induration
IN	IC00	clay induration
IN	IF00	ferruginous induration
IN	IG00	gypseous induration
IN	IH00	humic induration
IN	IK00	calcareous induration
IN	IS00	siliceous induration
IN	NO00	nodules
IN	NO10	bauxitic nodules
IN	NO20	calcareous nodules
IN	NO30	clay nodules
IN	NO40	ferruginous nodules
IN	NO60	siliceous nodules

3.7.22 Mottling

These data types are used for comments about the size and abundance of any mottling present. Contrast with surrounding material, and strength or induration, are currently dealt with in the remarks data type (REM).

Data type		Sub type	
MOTA Mottles-a	ibundance	0	no mottles
MOTA		1	very few (< 2%)
MOTA		2	few (2 - 10%)
MOTA		3	common (10 -20%)
MOTA		4	many (20 -50%)
MOTS Mottles-s	ize	FIN	fine (< 5mm)
MOTS		MED	medium (5 - 15mm)
MOTS		CSE	coarse (15 - 30mm)
MOTS		VCS	very coarse (30 - 100mm)
MOTS		MEG	megamottles (> 100mm)

3.7.23 Nodules

Comments about any nodules present, including size, abundance, contrast with surrounding material, and strength or induration, are currently dealt with in the remarks data type (REM). The data type Segregations can also be used for nodules (see 3.7.25).

3.7.24 Matrix

Comments on, and a description of the matrix of the zone, are currently dealt with in the remarks data type (REM).

3.7.25 Common minerals

This is for common minerals that can be identified in the zone. The minerals data type (MI) contains a comprehensive list of minerals.

Data typ	2	Sub typ	e
CM	Common minerals	AB	albite
CM		ACT	actinolite
CM		ADS	andesine

CM	ALM	almandine
СМ	ALN	allanite
CM	ALSI	× 1 /
CM	AMPH	amphibole
СМ	AN	anorthite
СМ	AND	andalusite
CM	ANL	analcime
CM	ANR	anorthoclase
СМ	AP	apatite
СМ	APY	arsenopyrite
		1.
CM	ASOX	oxidised arsenopyrite
CM	ATH	anthophyllite
СМ	AUG	augite
СМ	AZ	azurite
CM	BN	bornite
CM	BRL	beryl
СМ	BRT	barite
СМ	BT	biotite
CM	BTW	bytownite
CM	CAL	calcite
СМ	CAMP	clino-amphibole
СМ	CARB	carbonate
CM	CC	chalcocite
CM	CCP	chalcopyrite
СМ	CHR	chromite
СМ	CIN	cinnabar
CM	CL	chlorite
CM	CLAY	5
CM	CLD	chloritoid
СМ	COR	corundum
CM	CPX	clinopyroxene
CM	CRD	cordierite
CM	CRS	cristobalite
СМ	CST	cassiterite
СМ	CUM	cummingtonite
		e
CM	CUOX	oxidised copper minerals
CM	CUP	cuprite
CM	CV	covellite
СМ	CZO	clinozoisite
CM	DI	diopside
CM	DMD	diamond
CM	DOL	dolomite
СМ	EN	enstatite
СМ	EP	epidote
		*
CM	FELD	feldspar
CM	FL	fluorite
CM	FSPD	feldspathoid
СМ	FY	fayalite
CM	GLN	•
		glaucophane
CM	GLT	glauconite
CM	GN	galena
СМ	GNT	garnet
CM	GP	gypsum
CM	GR	graphite
CM	GRS	grossular
	OND	8
CM		-
CM CM	GT HBL	goethite hornblende

CM	HEM	hematite
CM	HL	halite
CM	ILL	illite
CM	ILM	ilmenite
СМ	JD	jadeite
СМ	KFS	k-feldspar
СМ	KLN	kaolinite
CM	KY	kyanite
CM	LAB	labradorite
CM	LAD	leucite
CM		
	LMT	laumontite
CM	LWS	lawsonite
CM	MAL	malachite
CM	MC	microcline
CM	MCS	marcasite
CM	MGS	magnesite
CM	MGT	magnetite
СМ	MICA	mica
СМ	MNT	montmorillonite
CM	MNZ	monazite
CM	MOL	molybdenite
CM	MOL	muscovite
CM	NE OAMP	nepheline
CM		orthoamphibole
CM	OGC	oligoclase
CM	OL	olivine
CM	OPL	opal
CM	OPQ	opaque mineral
CM	OPX	orthopyroxene
СМ	OR	orthoclase
СМ	PBOX	oxidised lead minerals
СМ	PGT	pigeonite
СМ	PHL	phlogopite
CM	PHOS	phosphate
CM	PL	plagioclase
CM	PMP	pumpellyite
CM	PO	pyrrhotite
CM	PRH	prehnite
CM	PRL	pyrophyllite
CM	PRP	pyrope
CM	PY	pyrite
CM	PYOX	oxidised pyrite
CM	PYRX	pyroxene
СМ	QZ	quartz
СМ	RDN	rhodonite
СМ	RT	rutile
СМ	SANI	sanidine
CM	SCH	scheelite
CM	SCP	scapolite
CM	SD	siderite
CM	SERI	sericite
CM	SERP	serpentine
CM	SIL	sillimanite
CM	SP	sphalerite
CM	SPL	spinel
СМ	SPS	spessartine
СМ	SRL	schorl

CMTRDtridymiteCMTTNtitaniteCMUuraniumCMUROXuranium oxide mineraCMUSPulvospinelCMVESvesuvianiteCMVRMvermiculiteCMZEOLzeolite	CM CM CM CM CM CM CM CM	TTNtitaniteUuraniumUROXuranium oxide mineralUSPulvospinelVESvesuvianiteVRMvermiculiteZEOLzeoliteZNOXoxidised zinc minerals
---	--	--

3.7.26 Segregations

These data types are for the abundance, composition, size and type of segregations in the zone.

Data type		Sub type	
SEGA	Segregations-abundance	0	no segregations
SEGA		1	very few (< 2%)
SEGA		2	few (2 - 10%)
SEGA		3	common (10 - 20%)
SEGA		4	many (20 - 50%)
SEGA		5	very many (> 50%)
SEGC SEGC SEGC SEGC SEGC SEGC SEGC SEGC	Segregations-composition	U A F H K L M O Y Z	unidentified aluminous earthy ferruginous organic calcareous argillaceous manganiferous other gypseous saline
SEGS	Segregations-size	FIN	fine (< 2mm)
SEGS		MED	medium (2 - 6mm)
SEGS		CSE	coarse (6 - 20mm)
SEGS		VCS	very coarse (20 - 60mm)
SEGS		ECS	extremely coarse (> 60mm)
SEGT	Segregations-type	C	concretions
SEGT		F	fragments
SEGT		N	nodules
SEGT		P	pisoliths
SEGT		T	tubules

3.7.27 Similar Strata

The REM data type can be used to make a note of zones at other sites that have similar characteristics. Both Site ID and Zone Number for the other sites must be entered. This field can also be used for informal identifying names that might be applied to the zone.

3.7.28 Sorting

This data type describes the particle sorting:

Data type	Sub type	
SOR Sorting SOR SOR SOR SOR	Wwell sortedMSOmoderately sortedPpoorly sortedVPvery poorly sortedUNSunsorted	
3.7.29 Sphericity		
Data type	Sub type	

SPH	Sphericity	ANG	angular
SPH		RO	rounded
SPH		SAN	sub-angular
SPH		VA	very angular
SPH		WR	well-rounded

3.7.30 Veins

This field is for comments about any veins present.

Data type	Sub type
VEIN Vein VEIN VEIN VEIN VEIN VEIN VEIN VEIN VEIN	QZquartzAPLapliteCARBcarbonateDACdaciteDLTdoleriteGRDgranodioriteGRSNgreisenGRTgraniteLPYlamprophyrePEGpegmatitePHYporphyry
VEIN	QMG multi-generation quartz veins

3.7.31 Weathering Degree

This is for the degree of weathering:

Data type

WEA	Weathering degree	0	unknown
WEA		1	fresh
WEA		2	slightly weathered
WEA		3	moderately weathered
WEA		4	highly weathered

WEA	5	very highly weathered
WEA	6	completely weathered
WEA	7	varied weathering

3.7.32 Weathering Processes

This data type is used for weathering processes responsible for the formation of the zone.

Data type		Sub type	
•	ig processes	Sub type PH00 BI00 CH00 CH01 CH02 CH03 CH04 CH05 CH06 CH07 CH08 HA00 IN00 IN01 IN02 IN03 IN04 IN05 IN06 PH01 PH02	physical weathering biotic weathering chemical weathering solution oxidation and reduction carbonation hydration chelation hydrolysis ferrolysis precipitation/evaporation hydrothermal alteration induration bauxitic induration calcareous induration clay induration ferruginous induration gypsiferous induration siliceous induration abrasion frost weathering
WP WP		PH02 PH03	frost weathering induced fracture
WP		PH04	insolation weathering
WP		PH05	moisture swelling
WP		PH06	sheeting
WP		PH07	salt weathering
WP		PH08	volume increase
WP		PH09	wetting and drying
WP		WE00	weathering

3.7.33 Weathering Structures

The REM data type can be used for any comments about weathering characteristics of the zone.

3.7.34 Magnetic Susceptibility

Data type		Sub type	
MAG	Mag. sus. (SI Units x 10 ⁻⁵)	MAX	maximum
MAG		MN	mean
MAG		MIN	minimum

Because magnetic susceptibility measured in the laboratory varies with the container size, there is an additional data type, sample container size.

Data typ	e	Sub type	
MAGS	sample container size	PETRIE1	petrie dish (85x10mm)

MAGS	PETRIE1	petrie dish (52x10mm)
MAGS	TRAY1	tray 5 compartments (190x35x10mm)
MAGS	TRAY2	tray 5 compartments (190x35x20mm)
MAGS	TRAY3	tray 20 compartments (24x48x28mm)

3.7.35 Gamma Ray Spectrometry

Readings for K, TH, U and total count should be entered separately, and the values placed in the description field, as numbers only without any units or comments. Additional comments relating to the readings should be recorded as a separate record using the remarks data type (REM).

Data typ	pe	Sub ty	ype
RAD	Gamma Ray Spectrometry (cps)	K	potassium
RAD		TH	thorium
RAD		U	uranium
RAD		TC	total count

3.7.36 PH

Enter the general pH level

Data typ	e	Sub type	
PH PH	pH level	-	acidic (0-6.9) basic (8-14)
PH		NEUT	neutral (7-7.9)

3.7.37 Photo data

Enter data on photographs taken at the site.

Data typ	e	Sub type	
PHO	Photodata	BW	black and white
PHO		CP	colour print
PHO		S	slide
PHO		D	digital

3.7.38 Remarks

The REM data type can be used for any free-text additional comments about the zone. The sub data type is GE.

3.7.39 Samples

The following 3 data types may be entered in the Zones Data block.

Data typ	e	Sub type	•
SF SF SF SF SF SF SF	Sampled For	UNK GC HS MIPA MAPA PI SO SS	unknown geochronology hand specimen micropaleontology macropaleontology PIMA soil chemistry stream sediment chemistry

SF		TS	thin section
SF		XRD	X-Ray Diffraction
SP	Sample Provenance	UNK	unknown
SP		ADTS	aeolian detritus
SP		COLV	colluvium
SP		DSPB	displaced block (near situ)
SP		GLE	glacial erratic
SP		RB	alluvial detritus
SP		VD	volcanic ejectamenta
ST ST ST ST ST ST ST ST ST	Sample type	OC AUG CORE CUTT FLT PERC RAB REVC SIDE SOIL	outcrop sample auger core sample cuttings sample float sample open hole percussion rotary airblast reverse circulation percussion sidewall sample soil

The following fields in the Samples block also relate to samples taken in the field:

Site ID is the site identifier, and is carried over from the zone description. *Zone Number* is also carried over.

Sample Number is a code that uses the site number plus an optional extra 2 characters:

YYYYPPSSSS + aa or nn or an

Where site number is as before,

aa = maximum two letter code where you have more than one sample at the same site.

nn = maximum of 99 number codes for multiple samples.

an = maximum number letter code for multiple samples.

Sample Description contains any comments or description of the sample. Field sample identification can also be entered here.

4. ATTRIBUTE DEFINITIONS

In this chapter we have followed standard definitions where possible, especially those in McDonald et al. (1990). Where appropriate, sources have been given. In doing this, we point out that this handbook is not a textbook. We assume that users are either familiar with most of the terms we use here, or that they have access to appropriate textbooks. We also refer readers to the CRC LEME *Glossary of Regolith Terms* (Eggleton 2000).

Attribute definitions are presented in the same order that they appear on the entry screens in RTMAP. However, unlike Chapter 3, not all attributes are considered here. We consider only those that we feel need definitions as we use them in RTMAP.

4.1 Soils Definitions

In RTMAP, soil refers to the organically affected upper part of the regolith. Soils are formed by interactions between the mineral material of the regolith and organic matter derived largely from vegetation growing in the regolith. Here we refer to 3 classifications that are used in Australia.

4.1.1 Principal Profile Form

The principal profile form comes from Northcote (1979). The simple definitions given here will allow people without any knowledge of soil science to place soils in one of the groups listed in the soils table. The definitions are taken largely from Northcote (1979), and readers should refer to that publication for more details. Northcote's classification refers to the arrangement of horizons in the soil.

O Organic

Organic soils are dominated by plant remains in at least the top 30 cm, and they can be much deeper. Any soil containing more than 30% organic matter may be considered to be organic.

Uc Uniform, coarse textured

Uniform soils are dominated by mineral material, and have small, if any, differences in grain size (texture) throughout the profile. The range of texture falls within the span of one texture group (see texture classes in Northcote, 1979). Uc soils have textures in the sand and sandy loam or coarser classes.

Um Uniform, medium textured

Uniform soils with textures in the loams and clay loams classes.

Uf Uniform, fine textured, not cracking

Uniform soils with textures in the clay classes, and seasonal cracking of the soil material does not occur.

Ug Uniform, fine textured, cracking

Uniform soils with textures in the clay classes, and the soil material is characterised by seasonal cracking.

Gc Gradational, calcareous throughout

Gradational soils are dominated by the mineral fraction and show increasingly finer (more clayey) texture grades on passing to greater depths. The changes in texture are gradual, and over the whole profile span more than one texture group. Gc soils are calcareous throughout.

Gn Gradational, not calcareous throughout

Gn soils are gradational, but are not calcareous throughout. However, calcium carbonate may be present in the lower parts of the soil, either as nodules or dispersed through the soil material.

Dr Duplex, red clay B horizons

Duplex soils are dominated by the mineral fraction and have a texture contrast of more than 1.5 texture groups between the A (surface) and B (subsurface) horizons. Further, the boundary between the two horizons is less than 10 cm thick. Dr soils have red B horizons, which in the Munsell Notation means a hue as red, or redder than, 5YR.

Db Duplex, brown clay B horizons

Db soils are duplex, with brown B horizons, which in the Munsell Notation means a hue yellower than 5YR.

Dy Duplex, yellow-grey clay B horizons

Dy soils are duplex, with yellow-grey B horizons.

Dd Duplex, dark clay B horizons

Dd soils are duplex, with dark B horizons, which in the Munsell Notation means a value/chroma less than 3/2 or 2/2.

Dg Duplex, gley clay B horizons

Dg soils are duplex, with gley B horizons, which in the Munsell Notation means any value on the Munsell `gley' chart.

4.1.2 Great Soil Group

Stace *et al.* (1968) provide a description and classification of Australian soils into great soil groups. The great soil groups are based on both soil morphology and soil genesis. Interested readers are referred to that publication. The following are the great soil groups. Codes are taken from Isbell and McDonald (1990).

SK	Solonchak	SS	Siliceous sand
А	Alluvial soil	ES	Earthy sand
L	Lithosol	GBK	Grey brown calcareous soil
KS	Calcareous sand	RK	Red calcareous soil
DL	Desert loam	GE	Grey earth
RBH	Red and brown hardpan soil	YE	Yellow earth
GC	Grey clay	TR	Terra rossa soil
BC	Brown clay	E	Euchrozem
RC	Red clay	Х	Xanthozem
BE	Black earth	Κ	Krasnozem
R	Rendzina	GBP	Grey brown podzolic soil
СМ	Chernozem	RP	Red podzolic soil
PS	Prairie soil	YP	Yellow podzolic soil
W	Wiesenboden	BP	Brown podzolic soil
SZ	Solonetz	LP	Lateritic podzolic soil
SDS	Solodized solonetz	GP	Gleyed podzolic soil
SC	Solodic soil	Р	Podzol
SH	Soloth	HP	Humus podzol
SB	Solonized brown soil	PP	Peaty podzol
RBE	Red brown earth	AH	Alpine humus soil

NKB	Non calcic brown soil	HG	Humic gley
С	Chocolate soil	NP	Neutral peat
BRE	Brown earth	ALP	Alkaline peat
KRE	Calcareous red earth	ACP	Acid peat
RE	Red earth	NSG	No suitable group

4.1.3 New Australian Classification

Isbell (1996) has published a new scheme for the classification of Australian soils, based on morphological, chemical and physical properties. The following classes are used:

AN	Anthroposols	KU	Kurosols
CA	Calcarosols	OR	Organosols
CH	Chromosols	РО	Podosols
DE	Dermosols	RU	Rudosols
FE	Ferrosols	SO	Sodosols
HY	Hydrosols	TE	Tenosols
KA	Kandosols	VE	Vertosols

4.2 Landform Definitions

Landforms are an expression of the evolution of the landscape in which they occur. They are a culmination of processes, both past and present, acting on that landscape. Landforms are also highly visible in the landscape, and can be recognised from topographic maps and from various kinds of imagery, both airborne and spaceborne.

The landform units listed here are equivalent to the landform patterns of Speight (1990). According to Speight landform patterns are areas more than 600 m across, and are made up of landform elements. In RTMAP we use the concept of landform units and landform elements in much the same way. At a scale of 1:250 000 we are mapping landform units, and the landform elements are too small to map. However, some landform elements are listed here, and more will be added, as our mapping includes more detail of smaller areas.

The listing is grouped together into related landform types under general headings, to give a hierarchical classification (see Chapter 3). Speight (1990) defines most of the landform units listed in this table. Other definitions, and more details, can be found in Fairbridge (1968) and Eggleton (2000).

4.2.1 Landform Units

AL00 Alluvial Landforms

A complex landform pattern on valley floors with active, inactive or relict erosion and aggradation by channelled and over-bank stream flow.

AL10 Alluvial plain

A level, or gently sloping, or slightly undulating land surface produced by extensive deposition of alluvium, generally adjacent to a river that periodically overflows its banks; it may be situated on a flood plain, a delta, or an alluvial fan.

AL11 Flood plain

Alluvial plain characterised by frequently active aggradation by over-bank stream flow (i.e, by flooding more often than every 50 years) and erosion by channelled stream flow.

AL12 Anastomotic plain

Flood plain on which the stream channels join and divide, as do the veins on a leaf. Flood plain with slowly migrating, deep alluvial channels, usually moderately spaced, forming a divergent to unidirectional integrated reticulated network. There is frequently active aggradation by over bank and channelled stream flow.

AL13 Bar plain

Flood plain having sub-parallel stream channels which both aggrade and erode so as to develop a generally corrugated surface with numerous bars. Flood plain with numerous rapidly migrating shallow alluvial channels forming a unidirectional integrated reticulated network. There is frequently active aggradation and erosion by channelled stream flow.

AL14 Covered plain

Flood plain with a number of alluvial channels which are widely-spaced (i.e., a little under a km), migrating, more or less parallel, and deep (i.e., width-depth ratio <20:1). Aggradation by over-bank stream flow occurs at least once every 50 years, providing further alluvial cover.

AL15 Meander plain

Flood plain aggraded and eroded by meandering streams. Flood plain with widely spaced, rapidly migrating, moderately deep alluvial stream channels that form a unidirectional integrated non-tributary network. There is frequently active aggradation and erosion by channelled stream flow with subordinate aggradation by over-bank stream flow.

AL16 Floodout

Flat inclined radially away from a point on the margin or at the end of a stream channel, aggraded by over-bank stream flow, or by channelled stream flow associated with channels developed within the over-bank part.

AL20 Alluvial terrace

Former flood plain on which erosion and aggradation by channelled and over-bank stream flow is slightly active or inactive because of deepening or enlargement of the stream channel has lowered the level of flooding. A pattern that includes a significant active flood plain, or former flood plains at more than one level, becomes terraced land.

AL30 Stagnant alluvial plain

Alluvial plain on which erosion and aggradation by channelled and over-bank stream flow is slightly active or inactive because of reduced water supply, without apparent incision or channel enlargement that would lower the level of stream action.

AL40 Terraced land

Landform pattern including one or more terraces and often a flood plain. Relief is low or very low (9 - 90m). Terrace plains or terrace flats occur at stated heights above the top of the stream bank.

AL50 Alluvial swamp

Almost level, closed or almost closed depression with a seasonal or permanent water table at or above the surface, commonly aggraded by overbank stream flow and sometimes biological (peat) accumulation.

CO00 Coastal lands

Level to gently undulating landform pattern of extremely low relief eroded or aggraded by waves, tides, overbank or channel flow, or wind. The landform pattern may be either active or relict.

CO01 Beach ridge plain

Level to gently undulating landform pattern of extremely low relief on which stream channels are absent or very rare; it consists of relict parallel linear ridges built up by waves and modified by wind.

CO02 Chenier plain

Level to gently undulating landform pattern of extremely low relief on which stream channels are very rare. The pattern consists of relict, parallel linear ridges built by waves, separated by and built over flats aggraded by tides or over bank stream flow.

CO03 Coral reef

Continuously active or relict landform pattern built up to the sea level of the present day or of a former time by corals and other organisms. It is mainly level, with moderately inclined to precipitous slopes below sea level. Stream channels are generally absent, but there may occasionally be fixed deep erosional tidal stream channels forming a disintegrated non-tributary pattern.

CO04 Marine plain

Plain eroded or aggraded by waves, tides, or submarine currents, and aggraded by deposition of material from suspension and solution in sea water, elevated above sea level by earth movements or eustacy, and little modified by subaerial agents such as stream flow or wind.

CO05 Tidal flat

Level landform pattern with extremely low relief and slowly migrating deep alluvial stream channels which form dendritic tributary patterns; it is aggraded by frequently active tides.

CO06 Coastal dunes

Level to rolling landform pattern of very low to extremely low relief without stream channels, built up or locally excavated, eroded or aggraded by wind. This landform pattern occurs in usually restricted coastal locations.

CO07 Coastal plain

Level landform pattern with extremely low relief either with or without stream channels, built up by coastal, usually tidal, processes.

CO08 Beach

Short, low, very wide slope, gently or moderately inclined, built up or eroded by waves, forming the shore of a lake or sea.

DE00 Delta

Flood plain projecting into a sea or lake, with slowly migrating deep alluvial channels, usually moderately spaced, typically forming a divergent distributary network. This landform is aggraded by frequently active over-bank and channelled stream flow that is modified by tides.

DU00 aeolian landforms

Landform pattern built up or locally excavated, eroded or aggraded by wind. Mabbutt (1977) provides a useful summary of the variety of aeolian landforms found in arid climates.

DU10 aeolian dunes

Low mounds, ridges, banks, or hills of loose, windblown granular material (generally sand, in some places volcanic ash), either bare or covered with vegetation, capable of being moved from place to place by wind but always retaining their own characteristic shape.

DU11 longitudinal dunefield

Dune field characterised by long narrow sand dunes and wide flat swales. The dunes are oriented parallel with the direction of the prevailing wind, and in cross section one slope is typically steeper than the other is.

DU12 transverse dunefield

Dune field characterised by long narrow sand dunes and wide flat swales. The dunes are oriented normal to the direction of the prevailing wind, and in cross section the windward slope is typically steeper than the lee slope.

DU13 irregular dunefield

Dune field with a mixture of longitudinal and transverse dunes, as well as other more complicated forms.

DU14 source bordering dune

A dune formed adjacent to the source of the wind blown material. Most commonly the source is a river or floodplain which supplies aeolian sediment during periods of low or no flow.

DU15 lunette

Elongated, gently curved, low ridge built up by wind on the margin of a playa, typically with a moderate, wave-modified slope towards the playa and a gentle outer slope.

DU20 aeolian sheet

A sheet of aeolian material, generally sand, formed when wind moulding of the surface is prevented either by vegetation, or more usually because the sand grains are too coarse. They are commonly associated with sources that give coarse sand grains, such as alluvial plains, or weathering of coarse-grained granite, as in the Yilgarn of Western Australia.

ER00 Erosional landforms

Landform pattern of very low to high relief and very gentle to steep slopes. The pattern is eroded by continuously active to slightly active or inactive geomorphic processes.

ER10 Erosional plain

Level to undulating or, rarely, rolling landform pattern of extremely low relief (< 9 m) eroded by continuously active to slightly active or inactive geomorphic processes.

ER11 Pediment

Gently inclined to level (< 1% slope) landform pattern of extremely low relief, typically with numerous rapidly migrating, very shallow incipient stream channels that form a centrifugal to diverging integrated reticulated pattern. It is eroded, and locally aggraded, by frequently active channelled stream flow or sheet flow, with subordinate wind erosion. Pediments characteristically lie down-slope from adjacent hills with markedly steeper slopes.

ER12 Pediplain

Level to very gently inclined landform pattern with extremely low relief and no stream channels, eroded by slightly active sheet flow and wind. Largely relict from more effective erosion by stream flow in incipient channels as on a pediment.

ER13 Peneplain

Level to gently undulating landform pattern with extremely low relief and sparse slowly migrating alluvial stream channels that form a non-directional integrated tributary pattern. It is eroded by slightly active sheet flow, creep, and channelled and over bank stream flow.

ER14 Etchplain

Level to undulating or, rarely, rolling landform pattern of extremely low relief, formed by deep weathering and then erosion of the resulting weathered regolith. Removal of the weathered material may be either partial or complete (see also Ollier 1984).

ER20 Rises

Landform pattern of very low relief (9 - 30 m) and very gentle to steep slopes. The fixed erosional stream channels are closely to very widely spaced and form a dendritic to convergent, integrated or interrupted tributary pattern. The pattern is eroded by continuously active to slightly active creep and sheet flow.

ER21 Residual rise

Landform facet of very low relief (9 - 30 m) and very gentle to steep slopes. This term is used to refer to an isolated rise surrounded by other landforms.

ER30 Low hills

Landform pattern of low relief (30 - 90 m) and gentle to very steep slopes, typically with fixed erosional stream channels, closely to very widely spaced, which form a dendritic or convergent integrated tributary pattern. There is continuously active sheet flow, creep, and channelled stream flow.

ER31 Residual low hill

Landform facet of low relief (30 - 90 m) and gentle to very steep slopes. This term is used to refer to an isolated low hill surrounded by other landforms.

ER40 Hills

Landform pattern of high relief (90 - 300 m) with gently sloping to precipitous slopes. Fixed, shallow erosional stream channels, closely to very widely spaced, form a dendritic or convergent integrated tributary network. There is continuously active erosion by wash and creep and, in some cases, rarely active erosion by landslides.

ER50 Mountains

Landform pattern of very high relief (> 300 m) with moderate to precipitous slopes and fixed erosional stream channels which are closely to very widely spaced and form a dendritic of diverging integrated tributary network. There is continuously active erosion by collapse, landslide, sheet flow, creep, and channelled stream flow.

ER60 Escarpment

Steep to precipitous landform pattern forming a linearly extensive, straight or sinuous inclined surface which separates terrains at different altitudes, that above the escarpment commonly being a plateau. Relief within the landform pattern may be high (hilly) or low (planar). An included cliff or scarp often marks the upper margin.

ER70 Badlands

Landform pattern of low to extremely low relief (< 90 m) and steep to precipitous slopes, typically with numerous fixed erosional stream channels which form a dendritic to parallel integrated tributary network. There is continuously active erosion by collapse, landslide, sheetflow, creep and channelled stream flow.

ER80 Drainage depression

Depression cut into a surface by erosional processes. This term should be used only in cases where a single depression or valley is incised into a plateau or other surface, and where the scale of mapping does not allow the depression to be subdivided into its component parts (e.g. rises, floodplain).

FA00 Fan

Level (< 1% slope) to moderately inclined complex landform pattern of extremely low relief with a generally fan-shaped plan form. The channels form a centrifugal to divergent, integrated, reticulated to distributary pattern.

FA01 Alluvial fan

Level (< 1% slope) to very gently inclined complex landform pattern of extremely low relief with a generally fan-shaped plan form. The rapidly migrating alluvial stream channels are shallow to moderately deep, locally numerous, but elsewhere widely spaced. The channels form a centrifugal to divergent, integrated, reticulated to distributary pattern. The landform pattern includes areas that are bar plains, being aggraded or eroded by frequently active channelled stream flow, and other areas comprising terraces or stagnant alluvial plains with slopes that are greater than usual, formed by channelled stream flow but now relict. Incision in the up-slope area may give rise to an erosional stream bed between scarps.

FA02 Colluvial fan

Very gently to moderately inclined complex landform pattern of extremely low relief with a generally fan-shaped plan form. Divergent stream channels are commonly present, but the dominant process is colluvial deposition of materials. The pattern is usually steeper than an alluvial fan.

FA03 Sheet-flood fan

Level (< 1% slope) to very gently inclined landform pattern of extremely low relief with numerous rapidly migrating very shallow incipient stream channels forming a divergent to unidirectional, integrated or interrupted reticulated pattern. Frequently active sheet flow and channelled stream flow, with subordinate wind erosion aggrade the landform pattern.

GL00 Glacial landforms

This term covers a wide range of landforms that are produced by glacial processes. In Australia most landforms of this type are all relict, with the exception of Heard Island. For more details, see Fairbridge (1968) or Davies (1969).

GL10 Depositional glacial landforms

This collective term includes features such as moraines of various kinds, as well as irregular landforms made up of glacial deposits. For more details, see Fairbridge (1968) or Davies (1969).

GL20 Erosional glacial landforms

Glacial erosion produces a variety of streamlined forms such as cirques and U-shaped valleys. For more details, see Fairbridge (1968) or Davies (1969).

KA00 Karst

Landform pattern of unspecified relief and slope (for specification use terms such as "Karst rolling hills") typically with fixed deep erosional stream channels forming a non-directional disintegrated tributary pattern and many closed depressions without stream channels. It is eroded by continuously active solution and rarely active collapse, the products being removed through underground channels.

MA00 Made land

Landform pattern typically of very low or extremely low relief and with slopes in the classes level and very steep. Sparse, fixed deep artificial steam channels form a non-directional interrupted tributary pattern. The landform pattern is eroded and aggraded, and locally built up or excavated, by rarely active human agency.

ME00 Meteor crater

Rare landform pattern comprising a circular closed depression with a raised margin, it is typically of low to high relief and has a large range of slope values, without stream channels, or with a peripheral integrated pattern of centrifugal tributary streams. The pattern is excavated, heaved up and built up by a meteor impact and now relict.

PL00 Plain

Level to undulating or, rarely, rolling landform pattern of extremely low relief (< 9 m). Some types of plains are described under alluvial landforms, and some are also described under erosional landforms.

PL01 Depositional plain

Level landform pattern with extremely low relief formed by unspecified depositional processes.

PL02 Lacustrine plain

Level landform pattern with extremely low relief formerly occupied by a lake but now partly or completely dry. It is relict after aggradation by waves and by deposition of material from suspension and solution in standing water. The landform pattern is usually bounded by wave-formed cliffs, rock platforms, beaches, berms and lunettes that may be included or excluded.

PL03 Playa plain

Level landform pattern with extremely low relief, typically without stream channels, aggraded by rarely active sheet flow and modified by wind, waves, and soil phenomena. Playa plains are sediment sinks and are the lowest parts of the landscape.

PL04 Sand plain

Level landform pattern with extremely low relief, typically without stream channels, aggraded by active wind deposition and rarely active sheet flow.

PT00 Plateau

Level to rolling landform pattern of plains, rises or low hills standing above a cliff, scarp or escarpment that extends around a large part of its perimeter. A bounding scarp or cliff may be included or excluded; a bounding escarpment would be an adjacent landform pattern.

PT01 Plateau edge

The cliff, scarp or escarpment that extends around a large part of the perimeter of a plateau.

PT02 Plateau surface

The low relief surface of a plateau.

VO00 Volcano

Typically very high and very steep landform pattern without stream channels, or with erosional stream channels forming a centrifugal or radial tributary pattern. The landform is built up by volcanism, and modified by erosional agents.

VO01 Caldera

Rare landform pattern typically of very high relief and steep to precipitous slopes. It is without stream channels or has fixed erosional channels forming a centripetal integrated tributary pattern. The landform has subsided or was excavated as a result of volcanism.

VO02 Cone (volcanic)

Typically low to high relief and very steep landform pattern without stream channels, or with erosional rills forming a radial tributary pattern. The landform is built up by volcanism, and slightly modified by erosional agents.

VO03 Lava plain

Level to undulating landform pattern of very low to extremely low relief typically with widely spaced fixed stream channels which form a non-directional integrated or interrupted tributary pattern. The landform pattern is aggraded by volcanism (lava flow) that is generally relict; it is subject to erosion by continuously active sheet flow, creep, and channelled stream flow.

VO04 Ash plain

Level to undulating landform pattern of very low to extremely low relief typically with widely spaced fixed stream channels that form an integrated or interrupted tributary pattern. The landform pattern is aggraded by volcanism (ash fall) that is generally relict; it is subject to erosion by continuously active sheet flow, creep, and channelled stream flow.

VO05 Lava flow

A landform produced on the land surface by flowing magma. It is generally relict, and subject to erosion by continuously active sheet flow, creep, and channelled stream flow.

VO06 Lava plateau

A plateau aggraded by volcanism (lava flow) that is generally relict, and subject to erosion by continuously active sheet flow, creep, and channelled stream flow.

4.2.2 Structural Control

The type of structural control on landforms in the landform unit can often be determined from aerial photographs or satellite imagery. There is commonly a strong relationship between drainage patterns and structure. Hillslope form also reflects rock structure in many cases.

NS No structural control

Dendritic drainage patterns with no preferred orientation, and generally smooth slope forms often indicate homogeneous rocks which exercise no control on landforms.

AD Anti dip slope

Anti dip slopes, also known as scarp slopes or scarps, are formed across the dip of bedded rocks. They are frequently irregular because of differential erosion of more and less resistant rocks that are interbedded.

AN Anticline

Anticlines are characterised by outward facing dip slopes and inward facing anti-dip slopes. They also may have divergent drainage patterns. In the extreme form, domes, drainage may be radial.

BF Block faulting

Individual blocks may be either up- or down-thrown to give distinctive features in the landscape.

CU Cuesta forms

Cuestas have a steep anti dip slope and a more gentle dip slope. Both strike and dip of the underlying rock are reflected in the landforms.

DB Dipping beds

In areas where bedded rocks dip at significant angles, differential erosion of more and less resistant rocks can lead to linear valleys and ridges.

DI Dip slope

In some cases a long very gentle dip slope gives rise to a gently slope ramp. Parallel drainage is often found on such structural ramps.

DS Dyke/sill

Dykes and sills are frequently exposed by differential removal, by erosion, of the softer rocks around them. The volcanic rock then stands out in the landscape.

FT Faulted

Faults may show up as lineaments in the landscape, and in some cases may show up as a scarp. A fault scarp is a scarp formed by faulting, whereas a fault line scarp is one formed by erosion and backward retreat of a fault scarp.

HG Horst/graben

Horsts and grabens are formed by widespread block faulting giving rise to a mountain and valley topography that owes its origin in part at least to regional block faulting.

JN Jointing

Jointing patterns are usually expressed in the landscape as a result of weathering and geomorphic processes taking advantage of the weak points provided by the joints. Commonly the drainage pattern reflects such joint control.

MN Monocline

Monoclines may show a fall from a high to a low level in the landscape.

SA Strike aligned

In many areas both ridges and rivers are aligned along the strike of the bedrock. This may lead to the exposure of a series of cuestas, or in some cases anticlines and synclines.

SN Syncline

Synclines are characterised by inward facing dip slopes and outward facing anti dip slopes. Drainage may be convergent.

4.3 Environmental Hazard Definitions

Evidence of environmental hazards can be observed in the field, and assessments of hazard liability can be made. The hazards listed here are those that are either directly related to the regolith and landforms (e.g. landslides), or their impacts are restricted to particular landscape types that are identified as part of a regolith terrain map (e.g. floods). Readers who want more information about environmental hazards should, as a beginning point, refer to Heathcote and Thom (1979) or Blong and Johnson (1986).

AV Snow avalanche

Rapid movement of snow down mountain slopes.

CO Coastal erosion

Erosion of coastal land by waves and wind. This may be brought about by several factors including human disturbance of the foredune, and various effects of climatic change such as rising sea level, and increased storminess.

FF Flash flood

Rapid rise of water level in rivers, sometimes with overbank flow, resulting from high intensity rain storms. These events are common in lower rainfall areas, and may occur downstream of the location of rainfall.

FL Flood

Rise of water in rivers followed by overbank flow, resulting from prolonged heavy rainfall. Flood waters may affect areas outside the area of rainfall.

LA Landslide

Rapid mass movement of regolith material down hillslopes.

RO Rockfall

Fall of rock from vertical or near vertical cliffs.

SA Salinity

Accumulation of salts at the surface or within the near-surface soil. This can arise from a number of causes ranging from a rise in water table levels in irrigated areas to emergence of subsurface water in lower footslope areas.

SC Solution cavities

In some circumstances, particularly on calcareous rock types, solution processes within the underlying rock can lead to the development of hollows and possibly collapse.

SD Sand drift

Movement of sand by wind erosion, transport and deposition.

SO Soil erosion

Loss of soil by erosion processes, including surface wash and rill erosion, as well as wind erosion.

ST Storm surge

Unusually high temporary sea levels resulting from storms that force sea water on to the land through a combination of strong onshore winds, high tides, and lowered barometric pressure.

SU Subsidence

Sinking of the ground surface, either slowly or by more rapid collapse, due, for example, underground caves in limestone, mines, and removal of water from subsurface aquifers.

TS Tsunami

Ocean waves generated by either volcanic or seismic activity, usually on the sea floor. Tsunami are sometimes erroneously called tidal waves.

VE Volcanic activity

Effects resulting from volcanic eruption.

4.4 Drainage Definitions

4.4.1 Drainage Pattern

Drainage pattern refers to the plan shapes made by drainage channels on the land surface. It should not be confused with *channel pattern*, which refers to the plan shape of river reaches. Drainage patterns reflect a number of elements in the landscape. They may reflect underlying rock structures, or the nature of the original surface on which they were developed. Some of these interpretations are discussed briefly in the relevant definitions below.

Simple rivers have a dendritic pattern. Complications to a dendritic pattern mean that rock structure or events in its geomorphic history or both have affected the drainage. Proper interpretation of drainage patterns contributes to an understanding of the geomorphic history of an area, and so to an understanding of regolith development. Drainage patterns are often one of the oldest features in a landscape, because they are developed very soon after an area is exposed to surface activity, and they can persist through several tectonic and erosional episodes.

The drainage patterns listed here are derived from a number of sources, including Ollier (1981) and Speight (1990).

AB Anabranching

Drainage pattern where the channels divide and then join further down stream. This pattern is sometimes referred to as anastomosing, or reticulated. It is similar in form to the arrangement of channels in a braided river channel, but is at a much larger scale.

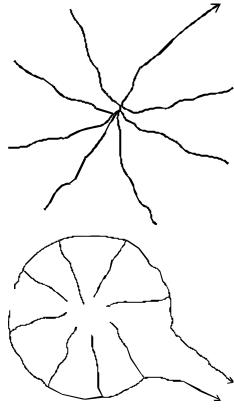
AG Angulate

Channels follow a roughly rhomboid plan. This type of pattern occurs mainly where intersecting joints weakens the underlying rock. These joints control the location of drainage lines.

AN Annular

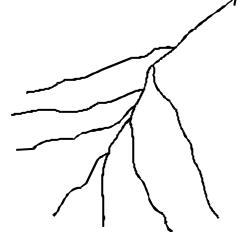
Drainage pattern where channels form parts of circles. Annular patterns are usually controlled by domal or anticlinal rock structures that are picked out by channels. They may be either circular or elliptical.

BA Barbed

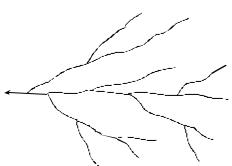

Barbed drainage patterns are those where tributaries join the main channel at angles of greater than 90°. In this situation the tributaries tend to flow in a direction opposite that of the main channel. This can mean that the flow direction of the main channel has been reversed.

CP Centripetal

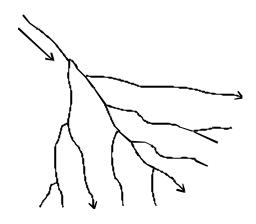
Drainage pattern where channels flow in towards a central point or area from a surrounding area encompassing at least 180°. In many cases this central area is a closed depression, such as a caldera, in which case the incoming channels drain a surrounding area encompassing 360°.


CR Circumvolcanic

In many areas with volcanic landforms, drainage lines flow in semicircular courses around volcanoes. These drainage lines are called circumvolcanic. Generally they indicate that former drainage lines have been diverted into a circular course by the eruption and growth of the volcano.


CV Convergent

Drainage pattern where channels converge towards a point or area from a surrounding area encompassing less than 180^o. Such patterns can be found, for example, on synclines.

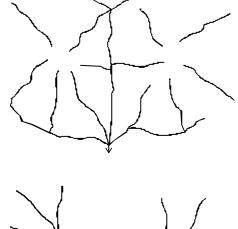

DN Dendritic

Integrated drainage patterns where small branch channels join, usually at acute angles, to feed a trunk channel. They show no preferred orientation, and are typical of areas where the underlying rock is more or less homogeneous.

DS Distributary

Drainage pattern where a single channel breaks or diverges into a number of smaller channels. This pattern is typical of deltas, but can occur in any area where a single channel flows out of a confining valley. In some parts of Australia these areas are called "floodouts".

DV Divergent


Drainage pattern where multiple channels diverge from a small area to a surrounding area. Such patterns can be found, for example, on the ends of anticlines, and are typical of fans.

GU Gutter

Gutter drainage, like circumvolcanic drainage, is associated with volcanoes. It occurs where two volcanoes overlap, and the drainage lines flow along the low line of intersection.

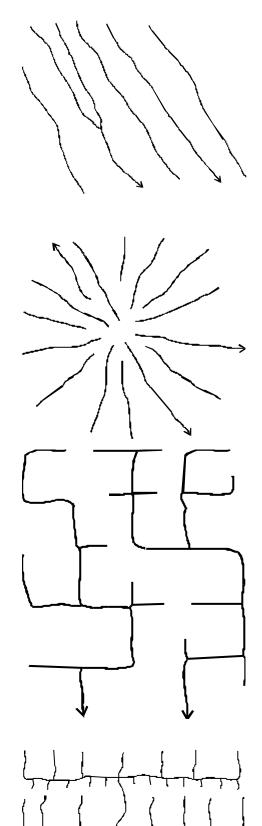
IN Interrupted

Drainage where the channel segments are short and unconnected. Typically this occurs in karst landforms, and in areas where the drainage pattern has not been fully integrated. Some parts of the arid centre of Australia show this pattern, because of the lack of sufficient precipitation, and disruption of drainage lines by wind blown materials.

PA Parallel

Drainage pattern where the channels are parallel to each other. This type of drainage is commonly initiated on sloping surfaces, and the presence of a parallel drainage pattern or its remnants may suggest the former presence of such a surface.

RA Radial


Drainage pattern where the channels radiate from a point or small area. Commonly this occurs on volcanoes or domal structures. A radial drainage pattern infers the former presence of such features, even if they are no longer present in the landscape.

RC Rectangular

A drainage pattern in which the channels follow a roughly rectangular plan with channels joining at about 90°. This type of pattern occurs where the underlying rock is broken by rectangular jointing or, less frequently, bedding which controls stream direction one way and joints the other.

TR Trellis

Drainage pattern where secondary channels flow at right angles to the main channel. The secondary channels are in turn joined at right angles by small tributaries flowing parallel to the main channel. This pattern is common in well-bedded rocks, commonly with scarp and dip slopes. Small tributaries on the scarp slopes are short and steep, while those on the dip slopes are longer and more gently sloping.

4.4.2 Drainage Character

Drainage character refers to the frequency of flow in river channels in the landform unit, and for RTMAP is restricted to the following:

D Dry

Channels which flow on very rare occasions. This drainage character is confined largely to the arid areas of central Australia.

I Intermittent

Channels that flow on a seasonal or irregular basis, containing water during wet parts of the year, and drying up during periods with no rain. Much of northern Australia has this drainage character.

P Perennial

Channels that flow all year round. This drainage character is confined to wetter areas on the margins of the Australian continent.

4.4.3 Drainage Type

Drainage type refers to the relationship between drainage lines and landscape evolution. Currently the following types are recognised.

A Antecedent

Antecedent drainage is developed when uplift or warping raises an area of highlands across the path of a river, but the uplift is sufficiently slow to allow river downcutting to keep pace, and therefore maintain its course.

C Captured

Drainage capture occurs when drainage from one catchment is diverted into another catchment. Sharp bends in river direction and barbed drainage patterns can indicate river capture.

D Diverted

Drainage may be diverted when uplift or warping raises an area of highlands across the path of a river. If the river cannot cut down its bed as fast as the rate of uplift, the river will be defeated, and then diverted to flow in another direction. In extreme cases, a closed depression with a lake may develop (e.g. Lake George).

N Normal

Normal drainage develops where there are no apparent tectonic, structural or lithologic controls on the major river/landscape relationships.

R Reversed

Reversed drainage is the reversal of flow in a river channel, and can occur as a result of tectonic tilting, causing lowering of the headwaters of a river system. Sometimes river capture can lead to drainage reversal.

S Superimposed

Superimposed drainage occurs when a river cuts down through rocks of varying hardness from above. Softer rocks are readily removed, but harder rocks remain as higher parts of the landscape. This commonly leads to rivers flowing in gorges right through high areas.

U Underground

Drainage occurring underground is found most commonly in karst areas. Surface drainage may disappear underground when it enters a limestone area, to emerge often many kilometres away.

4.4.4 Stream Channel Spacing

Stream channel spacing is a measure of drainage density, the total length of channel per unit area (Speight 1990). At a very broad level it is affected by precipitation, higher rainfall areas generally having closer stream channel spacing. At more local levels where climate is more uniform, stream channel spacing can reflect underlying lithology, with softer rocks often having a closer stream channel spacing than harder rocks.

Values for stream channel spacing can be obtained by laying a ruler on a map, and counting the number of channels that cross a line equivalent to 2 or 3 km. Several such measurements will give a representative value for each landform unit. Values for stream channel spacing are restricted to:

AB	Absent or very rare	> 2500 m
SP	Sparse	1500 - 2500 m
VW	Very widely spaced	1000 - 1500 m
WS	Widely spaced	625 - 1000 m
MS	Moderately spaced	400 - 625 m
CS	Closely spaced	250 - 400 m
VC	Very closely spaced	150 - 250 m
NU	Numerous	< 150 m

4.5 Geomorphic Process Definitions

In the database, geomorphic processes are those which form or modify landform units. They can refer to either present or past activity. This means that processes occurring now as well as those responsible for the evolution of a regolith terrain unit can be entered into the database. An active/relict (A/R) code is used to distinguish the two.

Brief definitions are included here. For more detailed descriptions of these processes the user is referred to a textbook on geomorphology, such as Chorley et al. (1984). Other suitable references are given at various points.

GR00 Gravity

Any geomorphic process that acts mainly as a result of gravity. For more details see Selby (1982).

GR01 Vertical collapse

Collapse of large fragments of rock and/or soil, commonly from cliff faces. The collapsed materials accumulate where they fall, and may be acted on by other processes.

GR02 Particle fall

More-or-less free fall of small particles of rock and/or soil from or near vertical faces.

GR03 Creep

Slow movement of rock and/or soil particles down slope under the influence of gravity. Creep operates at rates of a few millimetres per year, with wetting and drying, shrinking and swelling, and freezing and thawing all contributing to the down slope movement of material.

GR04 Landslide

Translational movement of material along a shearplane under the influence of gravity. The moving material may be either a single coherent mass, or it may consist of a number of sliding fragments. In this type of movement, the material generally maintains its orientation relative to the land surface. The resulting deposit contains unbroken blocks or rafts of material.

GR05 Mudflow

Turbulent movement of material down slope under the influence of gravity. In this type of movement the moving mass tumbles, rolls and flows down slope. The resulting deposit is a mixture of material of all sizes, with no obvious orientation or indication of original structure.

WT00 Water

The movement and deposition of material through the agency of water. For more details see Morisawa (1985).

WT01 Channelled stream flow

Erosion, transport and deposition of material in stream channels. These commonly give well-sorted deposits that are confined to river channels, either modern or relict (channel deposits).

WT02 Over-bank stream flow

Erosion, transport and deposition of material on flood plains and other areas adjacent to rivers by water which has flowed out of a confined channel (over-bank deposits).

WT03 Sheet flow, sheet wash, surface wash

Erosion, transport and deposition of material by sheets of water flowing over the ground surface. This unconfined flow occurs on hill slopes and on low angle landform units. It commonly removes fine material, leaving coarser material behind as a lag deposit.

WT04 Waves

Erosion, transport and deposition of material by wave action either on the seacoast or along lake edges. For more details on coastal processes see Davies (1980).

WT05 Tides

Erosion, transport and deposition of material by movement of tidal currents.

WT06 Detrital deposition in still water

Deposition of detrital material from a body of standing water onto the floor of the basin. In terrestrial landscapes this occurs in lakes. Sources of detrital material include channel flow into the lake, and wave action along lake edges.

WT07 Rill/gully erosion

Linear erosion by water, producing steep sided channels. Rills are less than 0.3m deep and gullies are more than 0.3m deep.

IC00 Ice

Erosion, transport and deposition of material by moving ice. For more details see Davies (1969).

IC01 Frost

Freezing and thawing of water, which leads to shattering and movement of rock fragments, and disturbance of soil material. Processes include solifluction, and the development of patterned ground.

IC02 Glacial erosion

Erosion and transport of material by glacial ice, giving rise to distinctive landforms such as U-shaped valleys and cirques.

IC03 Glacial deposition

Deposition of material from melting ice. The general term moraine refers to the deposits.

WI00 Wind

Erosion, transport and deposition of material by wind. For more details see Mabbutt (1977).

WI01 Wind erosion (deflation)

Erosion of material by the action of wind. This may involve entrainment of sand and dust particles, and their movement to other locations. It also includes the action of sand corrasion to produce ventifacts.

WI02 Sand deposition (wind)

Deposition of sand by wind to form various landform types including dunes and sand sheets.

WI03 Dust deposition (wind)

Deposition of dust being transported by wind in the atmosphere as suspended load. This process is responsible for deposition of loess. Where the dust is composed of clay pellets, it forms a special kind of loess, sometimes called parna in Australia.

DI00 Diastrophism; earth movements

Diastrophic movements are those that result directly or indirectly in relative or absolute changes of position, level or attitude of rocks forming the earth's crust. This includes uplift and faulting.

VO00 Volcanism

Volcanism refers to the group of processes generated by volcanic activity on the land surface (see Ollier 1988).

VO01 Lava flow

The flow of molten rock across the land surface.

VO02 Ash flow

The flow of volcanic ash material across the land surface. This includes nuée ardentes. The resulting deposits are sometimes called ignimbrites.

VO03 Ash fall

The fall of volcanic ash on to the land surface, typically leading to mantles of volcanic ash (tephra) over all parts of the landscape.

BI00 Biological agents

Formation or changes in the shape of landforms by animals or plants, for example, the development of coral reefs.

HU00 Human agents

Formation or changes in the shape of landforms by human activity.

MT00 Impact by meteors

Formation or changes in the shape of landforms by meteorite impact, typically to produce craters.

4.6 Weathering Process Definitions

Weathering is an essential first step in landscape development. Without weathering there can be no soil formation, nor can there be any erosion and transportation of rock materials. Weathering processes range from simple physical breaking of rocks into smaller pieces to complex chemical alteration of rock materials. Ollier (1984) provides a detailed discussion of weathering and landforms.

WE00 Weathering

Weathering refers to any process that modifies rocks, either physically by reducing the size of fragments, or chemically by altering the composition of constituent rock materials.

PH00 Physical weathering

Physical weathering is any process that leads to a reduction in the size of rock fragments.

PH01 Abrasion

Abrasion is the mechanical breaking of rocks or minerals by either friction or impact. Friction is common at the base of glaciers, for example, whereas impact abrasion is more common in streams and in areas of wind transport.

PH02 Frost weathering

Breaking and separation of rock fragments by the force exerted when water freezes to ice. Freeze-thaw cycles are very important in the breakdown and mixing of rock and soil material.

PH03 Induced fracture

Induced fracture occurs when a large rock rests on an underlying rock. This sets up stresses that can act on both the underlying and overlying rock.

PH04 Insolation weathering

Insolation weathering occurs when temperature changes cause expansion and/or shrinkage of rocks. Repeated temperature changes may cause rocks to fracture, and for insolation weathering the heating agent is the sun.

PH05 Moisture swelling

Considerable changes in rock volume can be caused by a reversible absorption of moisture, and the volume changes may be enough to cause physical weathering.

PH06 Sheeting

Sheeting is the division of rock into sheets by joint-like fractures that are generally parallel to the ground surface. It is caused by pressure release and expansion of rock masses following erosion. Topographic jointing is another name for this process.

PH07 Salt weathering

The growth of salt crystals from solution can sometimes cause breakdown of rock materials in a manner similar to that caused by freezing of water.

PH08 Volume increase

Chemical alteration of rocks and minerals may cause an increase in volume. This volume increase usually leads to exfoliation, the peeling of thin shells of material from the parent rock.

PH09 Wetting and drying

Repeated wetting and drying of rock materials can lead to physical beak down of the materials into smaller fragments.

CH00 Chemical weathering

Chemical weathering occurs with any chemical alteration of rocks or minerals. It results from chemical reactions of minerals with air and water.

CH01 Solution

Solution is usually the first stage of chemical weathering, and may take place in running water or in a thin film of water round a solid particle. Dissolved chemicals are removed from the weathering rock.

CH02 Oxidation and reduction

Oxidation is a reaction between minerals and oxygen to produce oxides or, with water, hydroxides. Reduction is the opposite of oxidation and usually takes place in waterlogged and other anaerobic sites. Alternating oxidation and reduction in, for example, a zone of fluctuating water level, often leads to mottling of weathered materials.

CH03 Carbonation

Carbonation is the reaction of carbonate or bicarbonate ions with minerals. Carbon dioxide is common in soil air, and carbonation can be quite rapid where carbonic acid is readily available.

CH04 Hydration

Hydration is the addition of water to a mineral to form hydrated mineral forms, or hydroxides. Hydration is an important process in clay mineral formation.

CH05 Chelation

Chelation, or complexing, is the holding of an ion, usually a metal, within a ring structure of organic origin. It is an important process involving both mineral and organic materials.

CH06 Hydrolysis

Hydrolysis, a very important chemical weathering process, is a chemical reaction between minerals and the H+ and OH- ions of water.

CH07 Ferrolysis

Replacement of Ca, K, Na ions with Fe ions. The former are then lost to the soil water or ground water.

CH08 Chemical precipitation/evaporation

In suitable chemical environments various chemicals precipitate from solution and are deposited in various parts of the landscape. This may be an important source of materials in some parts of the landscape, especially in situations where water comes to the surface and is then evaporated.

IN00 Induration

Induration processes lead to either absolute or relative accumulation of a cementing agent, to form a duricrust. Sometimes the cementing agent replaces regolith materials. A duricrust is a hard crust formed by weathering processes.

IN01 Bauxitic inducation

Cementing largely by aluminous materials.

IN02 Calcareous induration

The *in situ* cementation and/or replacement of regolith by carbonate.

IN03 Clay induration

Induration of regolith by clay materials.

IN04 Ferruginous Induration

Cementing by iron to form ferricrete, sometimes referred to as lateritic duricrust.

IN05 Gypsiferous induration

The *in situ* cementation and/or replacement of regolith by gypsum.

IN06 Siliceous induration

The *in situ* cementation and/or replacement of regolith by silica.

HA00 Hydrothermal alteration

Hydrothermal alteration is produced by chemical changes in rock materials caused by hot water and steam rising through country rock. This is not weathering, but produces very similar effects. The best field distinction between clay bodies formed by weathering and hydrothermal alteration is that weathering decreases with depth, and hydrothermal alternation increases with depth.

BI00 Biotic weathering

Biotic weathering is a combination of chemical and physical weathering brought about by biological agents. It has a wide variety of effects, but is not usually more than locally important. See Ollier (1984) for more details.

4.7 **Regolith Definitions**

Landform classification has reached the stage where, although there may be minor disagreements, most people generally agree on the major groupings. However, regolith classification is an entirely

different matter. There is still disagreement about what regolith is, and this disagreement extends to the use of different terms to describe regolith types. A good example is the use of the words *laterite* and *ferricrete*.

In developing a classification of regolith we must keep in mind its purpose. We are mapping regolith landform units at a publication scale of 1:250,000, although field mapping will be at 1:100,000. This rules out, in most cases, mapping specific regolith materials such as the mottled zone of a laterite profile. Regolith landform units will contain groupings of specific regolith materials. Often these groupings will be related both spatially and genetically, in the same way as the soils in a toposequence are related. The difference between a regolith "toposequence" and a soil toposequence is that the former is likely to be deeper and more complex. A group of regolith types will be a three dimensional entity which frequently contains a wide variety of specific materials.

The list presented here contains the basic regolith types, derived in part from Speight and Isbell (1990). It will expand, particularly with the addition of categories of regolith profiles, as data come both from our field mapping program and from workers outside the BMR.

4.7.1 Regolith Type

BU00 Unweathered bedrock

In some areas, particularly on steep slopes, or on young surfaces, the regolith consists of soil material formed directly on the underlying bedrock. Commonly the soil has a skeletal profile, and is less than 1 m thick. These areas are mapped as bedrock.

EVA00 Evaporite

Sediment formed by the precipitation of solutes from water bodies on the land surface, typically as lacustrine sediments.

EVA01 Halite

Evaporite consisting of sodium chloride.

EVA02 Gypsum

Evaporite consisting of hydrated calcium sulphate.

EVA03 Calcrete

Used broadly to refer to regolith carbonate accumulations, forming more-or-less-well cemented aggregates composed largely of calcium carbonate, but not excluding dolomitic or magnesitic material. Although some regolith carbonates clearly cement fragmental regolith to form duricrusts, others may be pisolitic, nodular, pebbly, slabby or powdery. Calcrete is a convenient field term for all such carbonate accumulations.

SDT00 Sediments (terrestrial)

Materials deposited on the land surface by terrestrial geomorphic processes.

SDA00 Alluvial sediments

Materials deposited on the land surface from transport by flowing water confined to a channel or valley floor.

SDA10 Channel deposits

Alluvium which is deposited in an alluvial channel. It is commonly coarser than surrounding deposits, and is found in both active and relict channels. It includes deposits in cut-off meanders, and point bar deposits.

SDA20 Overbank deposits

Alluvium that is deposited outside an alluvial channel from flowing water which has overflowed from the channel. It includes levees and back swamp deposits.

SDC00 Colluvial sediments

Sediment mass deposited from transport down a slope by gravity. Compared with alluvium, colluvium lacks bedding structure, is more variable in grain size, and contains mainly material derived locally.

SDC01 Scree

Scree, sometimes called talus, is colluvium deposited after falling or rolling from cliffed or precipitous slopes, consisting of loose rock fragments of gravel size or larger.

SDC02 Landslide deposit

Colluvium rapidly displaced down slope by failure of a mass of earth or rock. If the mass was not already part of the regolith the landslide incorporates it into the regolith. Original rock structures are fragmented and tilted by the action of the landslide.

SDC03 Mudflow deposit

Colluvium rapidly displaced down slope mixed with water to form a dense fluid. The material is more thoroughly disaggregated than that of a landslide deposit, but lacks the bedding and sorting of grain sizes seen in alluvium.

SDC04 Creep deposit

Normally a thin layer of rocky or earthy colluvium which moves very slowly down slope. In some circumstances it may be recognised by, for example, bending of rock bands down slope, but in other cases can only be inferred.

SDC05 Sheet flow deposit

Colluvium deposited from transport by a very shallow flow of water as a sheet, or network of rills on the land surface. Sheet flow deposits are very thin except at the foot of a slope and beneath sheet flood fans.

SDC06 Fanglomerate

Sedimentary regolith consisting of slightly water-worn, heterogeneous fragments of all sizes, deposited in an alluvial fan.

SDE00 Aeolian sediment

Sediment deposited from transport by wind.

SDE01 Aeolian sand

Wind blown sediment of sand size, often taking the form of dunes, with characteristic bedding structures.

SDE02 Loess

Aeolian sediment of silt size, often deposited over the landscape as a blanket.

SDE03 Parna

Aeolian sediment of clay size, commonly transported as flakes of larger size, up to sand size.

SDF00 Fill

Artificial sediment mass formed by earth moving works. Fill is sometimes compacted to the status of a very weak rock, but typically remains an earth mass.

SDG00 Glacial sediments

Sediment deposited from transport by moving ice. It is neither bedded nor sorted. It has a matrix of clay or silt enclosing larger particles of unweathered rock ranging up to large boulders.

SDL00 Lacustrine sediments

Sediments deposited from transport by waves and from solution and suspension in still water in a closed depression on land.

SDM00 Marine sediment

Sediments deposited from transport by waves and from solution and suspension in seawater. Marine sediments may occur in the regolith where the sea has withdrawn from an area during the Quaternary Period.

SDP00 Swamp (paludal) sediments

Fine grained regolith material accumulated in a closed or almost closed depression with a seasonal or permanent water table at or above the surface, commonly consisting of over-bank stream deposits and sometimes by biological (peat) accumulation.

SDP01 Peat

Black or brown, partly decomposed, fibrous vegetative matter that has accumulated in a waterlogged environment such as a bog.

SDS00 Coastal sediments

Sediments deposited in the coastal zone by coastal processes.

SDS01 Beach sediments

Sediment mass deposited from transport by waves or tides at the shore of a sea or lake.

SDS02 Estuarine sediments

Sediments deposited in an estuary or lagoon, from transport by tidal currents.

SDS03 Coral

Material accumulated by the growth of coral in place.

UOC00 Clay (unknown origin)

Some clay deposits cannot be attributed to any particular origin. Such deposits should be placed in this category.

WMU00 Weathered material (origin unknown)

This category covers those materials that are weathered, and so are regolith, but contain no features that allow them to be characterised as being either in situ or transported.

UOS00 Sand (unknown origin)

Some sand deposits, particularly in inland locations, cannot be attributed to any particular origin. Such deposits should be placed in this category.

VOL00 Volcanic material

Material derived from igneous activity at the surface.

VOL01 Lava

Igneous rocks solidified after eruption on to the land surface.

VOL02 Volcanic Ash (tephra)

Material deposited on the land surface after ejection from a volcano. It often contains a proportion of highly weatherable glass, and mantles the landscape.

WIR00 In situ weathered rocks

Rock masses that have suffered chemical, mineral and physical changes on exposure to land surface processes, resulting in a loss of up to 85% of the rock strength (Speight and Isbell 1990). Weathered rocks have thus been altered by weathering processes such that they are broken into smaller fragments and/or changed in composition. The degree of weathering can vary from slight to complete (see under Degree of Weathering).

WIR10 Saprolith

In situ regolith produced by weathering of rock masses due to exposure to land surface processes. A number of terms are in general use for naming all or parts of a weathering profile. Some definitions are given here, with preferred terms for use in RTMAP indicated. An undisturbed deep weathering profile consists of an upper soil layer and a lower *in situ* weathered layer. The former is developed from the material below, but may have been disturbed. It is best classed as residual material. The latter is quite undisturbed.

The various layers or zones in deep weathered regolith are often assumed to be genetically related. In some cases this may be true, but there are so many exceptions reported in the literature that we have chosen to leave out all genetic connotations in our definitions. Moreover, the various layers do not always occur in the same sequence, making genetic implications suspect in many cases.

The term *lateritic profile* is sometimes used to refer to a particular type of deep weathered regolith that has ferruginous upper layers, and kaolinised lower layers.

WIR11 Saprock

Saprolite that still contains rock structure, and in which only a relatively small proportion of the weatherable minerals in the original rock have been altered. Some workers call this material saprock.

WIR12 Moderately weathered bedrock

Moderately weathered bedrock has strong iron staining, and up to 50 % earth material. Corestones, if present, are rectangular and interlocked. Most feldspars have decayed, and there are microfractures throughout. Moderately weathered rock can be broken by a kick (with boots on), but not by hand.

WIR13 Highly weathered bedrock

Highly weathered bedrock has strong iron staining, and more than 50% earth material. Core stones, if present, are free and rounded. Nearly all feldspars are decayed, and there are numerous microfractures. The material can be broken apart in the hands with difficulty.

WIR14 Very highly weathered bedrock

Very highly weathered bedrock is produced by the thorough decomposition of rock masses due to exposure to land surface processes. The material retains structures from the original rock. It may be pallid in colour, and is composed completely of earth material. Corestones, if present, are rare and rounded. All feldspars have decayed. It can easily be broken by hand.

WIR15 Completely weathered bedrock

Completely weathered bedrock retains no structures from the original rock. There are no corestones, but there may be mottling. It is composed completely of earth material.

WIR15.1 Mottled zone

Material, usually strongly weathered, where iron segregation results in the development of ferruginous mottles, commonly reddish in colour. Size of mottles can range from millimetres to tens of centimetres. The latter are sometimes called mega mottles. The mottled zone is frequently near the top of a deeply weathered regolith profile, lying above the pallid zone.

WIR15.2 Pallid zone

Kaolinised zone usually found in the lower part of a weathering profile. This zone is generally light grey to white in colour, and may or may not retain original rock structure.

WIR16 Saprolite

The term *saprolite* (Becker 1895) is used in RTMAP to refer to all those parts of a weathering profile which have been formed strictly *in situ*, with interstitial grain relationships being undisturbed. This contrasts with residual material, which has been disturbed (see below, WIR20). Saprolite is altered from the original rock by mainly chemical alteration and loss without any change in volume. This is sometimes referred to as constant volume alteration. Saprolite is often equivalent to the C horizon in pedology. Some workers confine the use of the term to weathered material below the zone of pedological alteration (or pedoplasmation - Flach *et al* 1968).

WIR20 Residual material

Material derived from weathering of rock and remaining in place after part of the weathered material has been removed. It results from loss of volume from the weathered mass.

WIR21 Lag

A deposit, commonly thin, of fragments larger than sand size, spread over the land surface. Its most common origin is as the coarse material left behind after fine material has been transported away by wind or, less commonly, sheet flow.

WIR22 Residual sand

A deposit of sand sized material, commonly composed largely of quartz, covering the land surface, and derived from the removal of finer material either in solution or suspension in subsurface water. It includes the sandy top of some soil types.

WIR23 Residual clay

Clay material that remains behind after weathering has removed part of the original rock. A common example is the clay soil material found on limestone after solution has removed the calcareous part of the rock.

WIS00 Shallow soil on fresh bedrock

In some areas, particularly on steep slopes, or on young surfaces, the regolith consists of soil material up to 2 m thick formed directly on the underlying bedrock. Commonly the soil has a skeletal profile, and is less than 1 m thick.

4.7.2 Induration

IN00 Indurated material

Regolith material that has been hardened and/or cemented to some degree. This category can be further subdivided according to the dominant indurating material, as follows:

IB00	Bauxitic induration
IK00	Calcareous induration
IC00	Clay induration
IF00	Ferruginous induration
IG00	Gypsiferous induration
IS00	Siliceous induration

DU00 Duricrust

Mass of hard material formed within the regolith by either relative or absolute accumulations of natural cements in sediment (which may be variably weathered), saprolite or partially weathered rock.

DC00 Completely cemented duricrust

Smooth textured duricrust where >90% of the material has been cemented. The suffix "crete" is used for these materials.

DC10 Alcrete (bauxite)

Completely cemented duricrust cemented mainly by aluminium compounds.

DC20 Calcrete

Completely cemented duricrust cemented mainly by calcium carbonate.

DC40 Ferricrete

Completely cemented duricrust cemented mainly by iron.

DC41 Massive ferricrete

Ferricrete which has little or no internal differentiation.

DC42 Nodular ferricrete

Ferricrete that is differentiated internally and gives the appearance of cemented nodules.

DC50 Gypcrete

Completely cemented duricrust cemented mainly by gypsum.

DC60 Silcrete

Completely cemented duricrust cemented mainly by silica. These materials can be further subdivided as follows:

DC61	Silcrete sheet
DC62	Silcrete pods

DM00 Moderately cemented duricrust

Duricrust where the material is 70 - 90% cemented. It often has a grainy texture and may be mottled. These materials can be further subdivided as follows:

DM20	Calcareous
DM40	Ferruginous
DM60	Silic eous

DP00 Partially cemented duricrust

Duricrust with less than 70% cemented material, often with an open texture, for which the term hardpan is used. This category can be further subdivided:

DP10	Bauxitic
DP30	Clay
DP40	Ferruginous
DP60	Siliceous
DP70	Humic

NO00 Nodules

Nodules are irregular to spherical units of regolith material that occur enclosed within the regolith, as lag, or in duricrusts. They generally have rounded edges. They are distinct because of a greater concentration of some constituent, a difference in internal fabric or a distinct boundary with the surrounding material. We use the term as more or less equivalent to the *glaebule* of Brewer (1964). It does not include fragments of weathered rock, or coarse sedimentary particles unless they have been modified. For example, a fragment of rock weathered and coated with a cutan would fit our definition.

There are many possible subdivisions of this category, such as pisoliths and concretions. These may be included in revisions. The following subdivisions of this category are included at this time:

NO10 b	auxitic nodules
--------	-----------------

- NO20 calcareous nodules
- NO30 clay nodules
- NO40 ferruginous nodules
- NO60 siliceous nodules

4.7.3 Degree of Weathering

For each regolith type listed above it is necessary to assess the degree of weathering. Speight and Isbell (1990) have developed a schema for *in situ* rocks. We have modified this slightly, and have included practical tests from Ollier (1965). We have extended Speight and Isbell's schema to cover transported materials. It should be noted that this assessment is for chemical weathering only. Physical weathering can be assessed on the degree to which rocks have been broken into smaller particles.

0 Unknown

This category is used during reconnaissance mapping when an RTU has been recognised on imagery or maps, but has not been visited in the field.

1 Unweathered

Regolith with no visible signs of weathering. Normally this class will be confined to sedimentary regolith types because, by definition, fresh bedrock is not regolith.

2 Slightly weathered

Slightly weathered rock has traces of alteration, including weak iron staining, and some earth material. Corestones, if present, are interlocked; there is slight decay of feldspars, and a few microfractures. Slightly weathered rock is easily broken with a hammer.

Slightly weathered sediments have traces of alteration on the surfaces of sedimentary particles, including weak iron staining. Some earth material may be present, filling voids between coarse particles.

3 Moderately weathered

Moderately weathered rock has strong iron staining, and up to 50 % earth material. Corestones, if present, are rectangular and interlocked. Most feldspars have decayed, and there are microfractures throughout. Moderately weathered rock can be broken by a kick (with boots on), but not by hand.

Moderately weathered sediments have strong iron staining, and up to 50 % earth material. Labile particles up to gravel size are completely weathered. Larger particles have thick weathering skins. Most feldspars in larger particles have decayed.

4 Highly weathered

Highly weathered rock has strong iron staining, and more than 50% earth material. Core stones, if present, are free and rounded. Nearly all feldspars are decayed, and there are numerous microfractures. The material can be broken apart in the hands with difficulty.

Highly weathered sediment has strong iron staining, and more than 50% earth material. All except the largest particles are weathered right through. Boulders have thick weathering skins.

5 Very highly weathered

Very highly weathered rock is produced by the thorough decomposition of rock masses due to exposure to land surface processes. The material retains structures from the original rock. It may be pallid in colour, and is composed completely of earth material. Corestones, if present, are rare and rounded. All feldspars have decayed. It can easily be broken by hand.

Very highly weathered sediment is thoroughly decomposed, but still retains the shapes of the original sediment particles, as well as laminations and bedding. It is composed completely of earth material.

6 Completely weathered

Completely weathered rock retains no structures from the original rock. There are no corestones, but there may be mottling. It is composed completely of earth material.

Completely weathered sediment retains no structures from the original sediment. It is composed completely of earth material. There may be mottling.

4.7.4 Zone Data

This section defines some of the attributes recorded for zones.

4.7.4.1 Boundary

The following definitions are from McDonald and Isbell (1990).

Lower b	ooundary-shape			
SM	smooth	almost a plain s	urface	
W	wavy	undulations with	h depressions	wider than they are deep
Ι	irregular	undulations with	n depressions of	deeper than they are wide
Т	tongued	depressions con	siderably deep	per than they are wide
D	discontinuous	the zone is itself discontinuous		
Lower b	ooundary-type			
SH	SH sharp (<5mm wide)		D	diffuse (50-100mm wide)
А	abrupt (5-20mm wide)		G	gradual (>100mm wide)

4.7.4.2 Consistence

А С

clear (20-50mm wide)

Consistence refers to the strength of cohesion and adhesion in soil and regolith materials. Strength will vary according to water status. Strength is the resistance to breaking or deformation. Stickiness is a characteristic determined on wet material. McDonald and Isbell (1990) discuss these properties further, and provide definitions and means of determination.

Soil Strength is determined subjectively by the force just sufficient to break or deform a 20mm piece of material when a compressive force is applied between thumb and forefinger.

S 0	loose	No force required. Separate particles such as loose sand
S 1	very weak (<25 kPa)	Very small force, almost nil
S2	weak (25-50 kPa)	Small but significant force
S 3	firm (50-100 kPa)	Moderate or firm force
S4	very firm (100-200 kPa)	Strong force but within power of thumb and forefinger
S5	strong (200-400 kPa)	Beyond power of thumb and forefinger. Crushes underfoot.
S 6	very strong (>400 kPa)	Either crushes under foot with difficulty, or not at all

Stickiness is determined on wet material by pressing the wet sample between thumb and forefinger and then observing the adherence of material to the fingers.

NS	non-sticky	Little or no material adheres
SS	slightly sticky	Soil adheres to thumb and forefinger but is not stretched notably
		and comes off rather cleanly
MS	moderately sticky	Soil adheres to thumb and forefinger and tends to stretch rather
		than pull free of fingers
VS	very sticky	Soil adheres strongly to thumb and forefinger and stretches notably

4.7.4.3 Rock strength

Rock strength is the strength of the intact material rather than that of the mass, the strength of which has generally been reduced by jointing, fracturing etc.

	Strength	knife	pick	hammer
R1	very low, (1.5-3Mpa)	deep cut	crumbles	flattened or powdered
R2	low, (3-10Mpa)	Shallow cut or scratch	Deep indent	Shattered into many small fragments
R3	medium, (10-25Mpa)	Nil or slight mark	Shallow indent	Breaks readily into a few large and some small fragments

R4	high, (25, 80Mpa)	Nil	Nil	Breaks into one or two large fragments
R5	(25-80Mpa) very high (>800Mpa)	Nil	Nil	Nil

5. **REFERENCES**

- Becker, G.F., 1895: Gold fields of the southern Appalachians, Annual Report of the United States Geological Survey, Part III. Mineral Resources of the United States, 1894, Metallic Products, 16: 251-331.
- Bird, M.I. and A.R. Chivas, 1989: Stable-isotope geochronology of the Australian regolith, *Geochimica et Cosmochimica Acta*, 53:3239-3256.
- Blong, R.J. and R.W. Johnson, 1986: Geological hazards in the southwest Pacific and southeast Asia region: identification, assessment, and impact, *BMR Journal of Australian Geology and Geophysics*, 10:1-15.
- Brewer R. 1964: Fabric and Mineral Analysis of Soils, Wiley, New York, 470pp.
- Butt, C.R.M., 1987: A basis for geochemical exploration models for tropical terrains, *Chemical Geology*, 60:5-16.
- Butt, C.R.M. and H. Zeegers, 1989: Classification of geochemical exploration models for tropically weathered terrains, *Journal of Geochemical Exploration*, 32:65-74.
- Chan, R.A., 1988: Regolith terrain mapping for mineral exploration in Western Australia, *Zeitschrift fur Geomorphologie Supp. Bnd*, 68:205-221.
- Chan, R.A., 1989: Regolith terrain mapping a geomorphic base for mineral exploration, *The AustIMM Bulletin and Proceedings*, 294(2):25-28.
- Chan, R.A., Craig, M.A., D'Addario, G.W., Gibson, D.L., Ollier, C.D. and Taylor, G. 1986: The Regolith Terrain Map of Australia 1:5,000,000, BMR Record 1986/27.
- Chan, R.A., Ollier, C.D. and Gibson, D.L. 1988: Regolith Terrain Data, Kalgoorlie 1:1,000,000 sheet SH-51, Western Australia, BMR Record 1988/3.
- Chorley R.J., Schumm. S.A. and Sugden D.E. 1984: Geomorphology, Methuen, 605pp.
- Craig, M.A. (Ed), 1993: Regolith-landform mapping in the Yilgarn Craton, Western Australia: towards a standardised approach, Discussion Paper, CSIRO Division of Exploration Geoscience Report, 338R: 43pp.
- Davies, J.L. 1969: Landforms of Cold Climates, ANU Press, Canberra, 200pp.
- Davies, J.L. 1980: Geographical Variation in Coastal Development, Second Edition, Longman, London, 212pp.
- Eggleton, R.A. (Ed) 2000. *The regolith glossary: surficial geology, soils and landscape*, CSIRO Publishing, Melbourne.
- Fairbridge, R.W. 1968. *The Encyclopedia of Geomorphology*, Encyclopedia of Earth Sciences Series, Volume III, Reinhold Book Corporation, New York.
- Flach, K.W., Cady, J.G. and Nettleton, W.D., 1968: Pedogenic alteration of highly weathered parent materials, *9th International Congress of Soil Science Transactions*, 4:343-351.
- Hazell, M.S., Lenz, S. and Ryburn, R.J., 1995: User's Guide to RTMAP, Regolith Landform Mapping Database, AGSO Record 1995/22, 62pp.
- Heathcote R.L. and Thom B.G. (eds) 1979: *Natural Hazards in Australia*, Australian Academy of Science, Canberra, 531pp.

- Isbell, R.F. 1996: *The Australian Soil Classification*, Australian Soil and Land Survey Handbook, 4, Inkarta Press, Melbourne, 143pp.
- Isbell, R.F. and McDonald, R.C., 1990: Soil taxonomic units, In *Australian Soil and Land Survey Field Handbook*, (R.C. McDonald et al. eds), Inkarta Press, Melbourne:171-180.
- Lenz, S., 1991: RTMAP BMR Regolith Database Users' Manual, Bureau of Mineral Resources, Australia, Record, 1991/30: 44pp
- Mabbutt, J.A. 1977: Desert Landforms, ANU Press, Canberra, 340pp.
- McDonald, R.C. and Isbell, R.F. 1990: Soil profile, In *Australian Soil and Land Survey Field Handbook*, (R.C. McDonald et al. eds), Inkarta Press, Melbourne: 103-152.
- McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S., 1990: Australian Soil and Land Survey Field Handbook, (2nd Edition), Inkarta Press, Melbourne:198pp.
- Merrill, G.P. 1897: A Treatise on Rocks, Rock-weathering and Soils, Macmillan, New York.
- Morisawa, M. 1985: Rivers, Longman, London, 222pp.
- Northcote, K. H. 1979: A Factual Key for the Recognition of Australian Soils, 4th Edition, Rellim Technical Publications, Adelaide.
- Ollier, C.D., 1965: Some features of granite weathering in Australia, *Zeitschrift fur Geomorphologie*, 9(3): 285-304.
- Ollier, C.D. 1967: Geomorphic indications of contour map inaccuracy, Cartography, 6(3): 121-124.
- Ollier, C.D., 1977: Early landform evolution, In D.N. Jeans (Ed), *Australia: A Geography*, Sydney University Press: 85-98.
- Ollier, C. D. 1981: Tectonics and Landforms, Longman Group, London.
- Ollier, C.D. 1984: Weathering, (2nd Edition), Longman.
- Ollier, C.D. 1988: Volcanoes, Blackwell, Oxford.
- Ollier, C.D. and Joyce E.B. 1986: Regolith Terrain Units of the Hamilton 1:1,000,000 Sheet Area, Western Victoria, BMR Record 1986/33.
- Ollier, C.D. and Galloway, R.W. 1990: The laterite profile, ferricrete and unconformity, *Catena*, 17:97-109.
- Pain, C.F. 1985: Mapping of landforms from Landsat imagery: an example from eastern New South Wales, Australia. *Remote Sensing of Environment* 17: 55 65.
- Pain, C., Chan, R., Craig, M., Hazell, M., Kamprad, J. and Wilford, J. 1991: RTMAP BMR Regolith Database Field Handbook, *BMR Record*, 1991/29: 125pp.
- Pain, C.F. and Ollier, C.D., 1992: Ferricrete in Cape York Peninsula, North Queensland, *BMR Journal* of Australian Geology and Geophysics, 13: 207-212.
- Pain, C.F. and Ollier, C.D., 1995: Regolith stratigraphy: principles and problems, AGSO Journal of Australian Geology and Geophysics, 16(3): 197-202.

Palfreyman W.D. 1984: Guide to the Geology of Australia, BMR Bulletin 181, 111pp.

Ryburn, R.J. 1990: User's Guide to the PetChem Database, BMR Record 1990/19, 53pp.

- Selby, M.J. 1982: Hillslope Materials and Processes, Oxford University Press, 264pp.
- Speight, J.G. 1990: Landform. In Australian Soil and Land Survey Field Handbook, (2nd Edition), McDonald et al. (Eds), Inkarta Press, Melbourne.
- Speight, J. G. and Isbell, R. F. 1990: Substrate, In *Australian Soil and Land Survey Field Handbook*, (2nd Edition), McDonald, R. C. et al. (eds), Inkarta Press, Melbourne, pp 153 170.
- Stace H.C.T. et al. 1968: A Handbook of Australian Soils, Rellim Technical Publications, Adelaide.
- Stewart, G.A. and Perry, R.A., 1953: Survey of Bowen-Townsville region (1950), CSIRO Australia Land Research Series, 2:87pp.
- Worrall, L., Munday, T.J. and Green, A.A., 1999: Airborne electromagnetics providing new perspectives on geomorphic processes and landscape development in regolith-dominated terrains, *Physics and Chemistry of the Earth* (A), 24(10): 855-860.