
geosciences

Article

Objective Regolith-Landform Mapping in a Regolith
Dominated Terrain to Inform Mineral Exploration

Alicia S. Caruso 1,* ID , Kenneth D. Clarke 1, Caroline J. Tiddy 2, Steven Delean 1 and
Megan M. Lewis 1

1 School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia;
kenneth.clarke@adelaide.edu.au (K.D.C.); steven.delean@adelaide.edu.au (S.D.);
megan.lewis@adelaide.edu.au (M.M.L.)

2 Future Industries Institute, University of South Australia, Mawson Lakes SA 5095, Australia;
Caroline.Tiddy@unisa.edu.au

* Correspondence: alicia.caruso@adelaide.edu.au; Tel.: +61-08-8313-2792

Received: 13 July 2018; Accepted: 10 August 2018; Published: 24 August 2018
����������
�������

Abstract: An objective method for generating statistically sound objective regolith-landform maps
using widely accessible digital topographic and geophysical data without requiring specific regional
knowledge is demonstrated and has application as a first pass tool for mineral exploration in regolith
dominated terrains. This method differs from traditional regolith-landform mapping methods in that
it is not subject to interpretation and bias of the mapper. This study was undertaken in a location
where mineral exploration has occurred for over 20 years and traditional regolith mapping had
recently been completed using a standardized subjective methodology. An unsupervised classification
was performed using a Digital Elevation Model, Topographic Position Index, and airborne gamma-ray
radiometrics as data inputs resulting in 30 classes that were clustered to eight groups representing
regolith types. The association between objective and traditional mapping classes was tested using
the ‘Mapcurves’ algorithm to determine the ‘Goodness-of-Fit’, resulting in a mean score of 26.4%
between methods. This Goodness-of-Fit indicates that this objective map may be used for initial
mineral exploration in regolith dominated terrains.

Keywords: regolith-landform mapping; Geographic Information Systems (GIS); Mapcurves; regolith
dominated terrains; unsupervised classification

1. Introduction

Regolith is the surface expression of the entire unconsolidated or secondarily recemented cover
that overlies coherent bedrock that has been formed by weathering, erosion, transport, and/or
deposition of older material [1]. Regolith is also known as the ‘Critical Zone’, the combination
of chemical, geological, biological, and physical processes at the Earth’s surface preserved as sediments
above bedrock [2,3]. Regolith connects to the underlying geology through weathering and commonly
alters the surface expression of a buried ore body in a prospective region e.g., [4–7]. Approximately
80% of basement rocks in Australia are covered by regolith [8,9]. Given that these basement rocks are
known to host numerous economically viable ore deposits of various commodities in South Australia
(e.g., Olympic Dam Cu-Au-REE-U; Carrapateena Cu-Au; Middleback Ranges Fe2O3: Figure 1), they are
highly prospective for mineral exploration. Therefore, regolith mapping is becoming an increasingly
used tool to assist in identifying key regions for mineral exploration e.g., [10,11].

Regolith mapping contributes to understanding the geomorphology and landscape evolution of a
region, but it is not a wholly objective method [5,7] and there are known spatial and compositional
inconsistencies arising from differences in subjective interpretations of experts [12]. Significant
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progress has been made in standardizing regolith-landform mapping techniques within Australia
e.g., [13–15]—although are subject to the preferred interpretation of the mapper. Some forms of
remotely sensed data are used when creating traditional regolith-landform maps but are usually
utilized as an interpretative tool [16,17]. Similarly, landform mapping has traditionally been performed
through visual interpretation of aerial photography and field surveys [17–19]. Landforms provide
an understanding of past geologic and geomorphic processes and can also be used as a surrogate for
regolith mapping due to genetic and spatial links [12,20,21]. Although landforms can improve the
understanding of previous processes, similar landforms can represent differing regolith domains [20].
To assist in this discrimination, the use of scale is vital as well as examining the relationship between
other regolith-landform features and field validation [22].

Spatial GIS methods have evolved to enrich geomorphological maps [23] but there are few
standards established for digital regolith mapping. An objective regolith map using a standard set of
spatial analytical methods may therefore provide higher consistency across a region or continent [24].
The work in [4] provides an example of digital regolith mapping in a tropical environment, successfully
mapping regolith and basement geology using an unsupervised classification of radiometric data
and Landsat TM imagery followed by an interpretation of the weathering and geomorphic history.
Integrating regolith and landforms spatially has been beneficial for mineral exploration success by
identifying appropriate target regions or sampling media e.g., [12,25,26].

Recent work [27–31] has used a variety of machine learning methods to digitally map lithology
and regolith using a range of geophysical and remote sensing data. A majority of this work has
been done at regional scales, but machine learning methods have also been applied at a continental
scale [32]. Although these machine learning methods have been shown to be beneficial in a range
of settings, they are all advanced forms of supervised classifications. To the best of our knowledge,
an unsupervised classification using geophysical and remote sensing data has not been used to produce
a useful regolith-landform map in Australia.

In this paper, we create an objective mapping method to map broad regolith-landforms based on
readily available digital landform and gamma-ray spectrometry data. The example is from the southern
Gawler Ranges in South Australia, which is host to several prospective targets including the Paris silver
deposit and the Nankivel porphyry copper prospect (Figure 1). We present and discuss a statistical
comparison between the newly proposed objective mapping method and traditional regolith-landform
mapping followed by the examination of this application of this technique to mineral exploration.

2. Background

2.1. Geological Setting

The area used in this study covers 3866 km2 within the southern region of the Gawler Craton
(Figure 1) and includes a variety of landscape and vegetation features. The study area includes the
‘Gawler’ region and ‘Gawler volcanics’ and ‘Myall Plains’ sub-regions of the Interim Biogeographic
Regionalisation for Australia (IBRA) [33]. The landscape is broadly characterized by hills, hill foot
slopes, and sandy plains [34]. The vegetation varies across the sub-regions but mainly comprises
low open woodlands of Western Myall (Acacia papyrocarpa) and Black Oak (Casuarina pauper) trees
over sparse shrub understoreys of Bluebush (Maireana spp.), Saltbush (Atriplex spp.), and Spinifex
(Triodia spp.).

The oldest basement rocks are preserved in the south of the study area and are poorly exposed.
These rocks are part of the Sleaford Complex (ca. 2550–2440 Ma) and the unconformably overlying
Palaeoproterozoic Hutchinson Group [35–37]. The Warrow Quartzite is the oldest unit of the
Hutchinson Group within the study area and has an age of ca. 2008 Ma [38,39]. The Gawler Range
Volcanics (GRV) are well exposed in the north of the study area and variably exposed throughout the
southern and central thirds of the study area. Within the study area, the GRV is defined as the Lower
GRV (Figure 1) which has an extrusion age of ca. 1591–1588 Ma [40]. The Hiltaba Suite is co-magmatic
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to the GRV but has a longer extrusion time of ca. 1598–1574 Ma [39,41]. It occurs widely throughout
the Gawler Craton and is known to be associated with the major tectonothermal and metallogenic
episode that impacted much of the Gawler Craton e.g., [35,37] (Figure 1).

The composition and formation of the regolith in the study area is described in detail by [42].
Archean and Palaeoproterozoic basement rocks are uncomfortably overlain by much younger Cenozoic
sediments. Limited regolith was deposited throughout the Paleogene and Neogene, and mostly
comprises ferricrete, silcrete, some colluvial sediments, and palaeochannel sediments of the Garford
Formation. The Garford Formation occurs in low relief areas and includes carbonaceous clay and silt
with other fluvial and lacustrine sediments.
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Figure 1. Simplified geological map showing the location of the study area and other known major
deposits throughout the Gawler Craton. The dark grey area in inset map corresponds to the extent of
the Gawler Craton. Modified after Forbes, et al. [43].

Development of ferricrete and silcrete continued into the Quaternary, cementing host lithologies
and fragments of quartz and other material. A variety of sediments were deposited including aeolian,
terrestrial, colluvial, and lacustrine. Colluvial sediments comprise ferruginous and poorly sorted
pebbly conglomerate and sandstone. Calcrete formed throughout the Quaternary as laminated sheets
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of nodular aggregates now generally exposed in erosional terrains near alluvial channels and in areas
of deflation. During the Pleistocene, aeolian sediments dominated and are characterized by fine to
medium grained sands, some of which formed ridges and swales. The most recent sediments deposited
were aeolian quartzose sands draped over lacustrine and other aeolian deposits on the leeward side of
playas [42].

2.2. Regolith Mapping

A regolith unit is a subdivision of the regolith with visibly distinguishable boundaries at a
mappable scale. The term can also be used for zones or horizons of weathering profiles [1]. There are
many ways regolith unit are classified but the most common schemes are TI (Transported or In-situ)
or RED (Relict, Erosional, or Depositional) [11,44]. Following this classification, the units may be
categorized according to sediment origin e.g., marine or terrestrial. Then units may be distinguished
based on physical attributes such as grain size, thickness, composition, to create detailed descriptions.
If possible, age will also be included in the definition to provide an understanding of landscape
formation processes that occurred in the region. Some units also include information on predominant
vegetation cover.

Traditional regolith mapping of the Yardea and Port Augusta 1:250,000 map sheets was completed
in 2016 by [42], and the study area for this work is a small section of this mapping area where there are
known exploration targets. The original mapping involved a combination of visual interpretation and
some field assessment of a number of available data sets including: state geological mapping, Landsat
TM5 and ETM7 imagery, 1 and 3 s Digital Elevation Models (DEMs), and gamma-ray radiometric
data [45]. Ten attributes were assigned to mapping units including regolith materials, landform names,
Regolith Terrain Map (RTMAP) code, and TI scheme. Bedrock weathering intensity and regolith
thickness were not able to be inferred from the data used but are available as individual products
from the Geological Survey of South Australia. The final product was based on the 1:100,000 geology
mapping using the RTMAP scheme developed by [14].

3. Materials and Methods

The methods for this work were multi-faceted and are detailed in the following subsections with
an overview presented in Figure 2.

3.1. Clustering of Traditional Regolith Map

Figure 3 shows the regolith map of [42] for the study area. This map shows 19 regolith-landform
units that depict the fine scale detail throughout the map area. The landscape is clearly dominated by
a few regolith types with a majority of others sparsely distributed and limited in extent (Figure 3). Due
to the limited extent of some regolith units, the 19 regolith map units were aggregated into eight types
based on their spatial distribution and description of regolith material origin. The topological integrity
of the mapping was retained although the number of overall regolith classes was reduced. An example
of this was aggregating silcrete, calcrete, and ferricrete together (Duricrusts) to retain topology as they
are expressed with the same landform at surface. Similarly, the palaeochannel deposits and playa lake
deposits were also spatially limited and were clustered together to preserve map topology and include
these regolith types as an exclusive class, water related formation processes (Lake/Palaeochannel
sediments, Table 1). The accuracy of the DEM methodology that is applied in this work does not allow
to discriminate them.
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Figure 3. Regolith map of the study area. Regolith spatial data from Krapf [42].

Although this aggregation retained some types of regolith, others were clustered to provide
greater clarity. For example, the Sandplains/dunes, mostly aeolian origin regolith type (herein referred
to as ‘Sandplains/dunes’) includes sediments formed by wind formation processes, longitudinal sief
dune field deposits and aeolian sand sheet deposits (Table 1). Colluvial sediments occurring in the
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north and south of the study area were clustered together as they are derived from the same formation
processes (erosion–weathering–transport–deposition sediments).

Some regolith types were particularly distinctive and were not aggregated in the Clustered
Regolith Mapping Unit (CRMU) map (Figure 4) as they were considered to be unrelated to other
regolith types. These included Alluvial sediments, GRV bedrock, and Undifferentiated Quartz. It is
known that GRV and Non-GRV bedrock are compositionally different [35,46] and undergo differing
formation processes, therefore it was reasonable to keep these regolith types separate in the clustering
process (Figure 4, Table 1).

Table 1 shows the clustering of the original 19 regolith types of [42] to form the CRMU map shown
in Figure 4. The reduction of detail in the CRMU map has simplified regolith primarily in the southern
two-thirds of the study area (Figure 4). Clustering the traditional regolith map based on formation
processes alone can introduce some bias and subjectivity in this method.

Table 1. Matrix showing aggregation of 19 regolith types from Figure 3 into 8 Clustered Regolith
Mapping Units (CRMU) in Figure 4. Each color represents the color of the aggregated class displayed
in Figure 4.

Title CRMU Regolith Types (Figure 6)

Traditional Regolith Types (Figure 2)
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Alluvial deposits
Colluvial deposits associated with

Archean to Palaeoproterozoic
undifferentiated bedrock

Colluvial deposits associated with
Mesoproterozoic felsic volcanic bedrock

Older ferruginous colluvial deposits
Mesoproterozoic felsic volcanic bedrock

Palaeochannel deposits (Garford
Formation)

Playa lake deposits
Archean Palaeoproterozoic bedrock
Mesoproterozoic granitic bedrock

Aeolian sand capping dune and sand
sheet deposits

Aeolian sand sheet deposits
Depositional plain deposits

Longitudinal sief dune field deposits
Sandplain deposits

Source bordering dune deposits
Calcrete

Ferricrete
Silcrete

Undifferentiated quartz veins and quartz
bodies

3.2. Regolith-Landform Analysis

The data used to perform the regolith-landform analysis was selected for its comprehensive
extent and high spatial resolution. This data is also of high quality for this remote region of South
Australia. All data and data transformations used in this work are freely available, produced by
Geoscience Australia and cover the entirety or vast majority of Australia providing the ability to
replicate this method.

3.2.1. Spatial Data and Transforms

Spatial data used in the analysis includes a Digital Elevation Model (DEM), Topographic Position
Index (TPI), and Slope Position Classification (SPC) derived from the smoothed DEM (DEM-S) derived
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by Geoscience Australia from the 1-second Shuttle Radar Topography Mission (SRTM) of NASA in
2000 with a spatial resolution of 30 m [47] (Figure 5).Geosciences 2018, 8, 318 7 of 19 
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Figure 5. 1-s Digital Elevation Model (DEM) used as an input for the unsupervised classification,
sourced from Geoscience Australia.

The TPI developed by [48,49] has been used to interpret numerous landscapes globally and
across disciplines e.g., [50,51]. TPI is calculated as the mean elevation within a focal window of a
specified radius around each cell in a DEM [48]. This index is scale dependent, with fine scales more
appropriate for exploring soil erosion and coarse scales appropriate for studying regional landforms.
The study area was analyzed at a coarse (2000 m radius) and fine (300 m radius) scale using ArcGIS
10.3 Toolbox [52].
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The TPI is an index of curvature and while mathematically meaningful is not easily interpreted.
However, the SPC classifies this index into a more interpretable form that describes the slopes in
the study area. SPC is not a geometric classification of a landscape, it uses the local elevation and
slope conditions for each point based on the TPI using standard deviation thresholds listed in Table 2,
as defined by [48]. These thresholds are appropriate across different terrains, as shown by [51,53].
The SPC algorithm applied to both TPI grids to visualize the landscape patterns at the different scales
(Figure 6).

Table 2. Slope position classification thresholds. Reproduced from Weiss [48].

Class Description Breakpoints (Standard Deviation Units) Slope (Degrees)

1 Ridge > 1 N/A
2 Upper slope > 0.5 ≤ 1 N/A
3 Middle slope > −0.5 < 0.5 > 5
4 Flats slope ≥ −0.5 ≤ 0.5 ≤ 5
5 Lower slopes ≥ −1 < 0.5 N/A
6 Valleys < −1 N/A
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Figure 6a shows the fine scale SPC at 300 m radius, illustrating many local ridge formations
across the landscape and flat slopes with some valleys apparent in the north of the study area, whereas
Figure 6b (2000 m radius) highlights the ridge and valley features with only some intermediate slopes.

3.2.2. Gamma-Ray Radiometrics

Digital maps of potassium, thorium, and uranium emissions were obtained through the South
Australian Resources Information Gateway (SARIG: https://map.sarig.sa.gov.au/) with a spatial
resolution of 100 m (Figure 7). The data were derived through interpolating data of previously
flown airborne radiometric surveys based on methods from the Australia Wide Airborne Geophysical
Survey [54,55].
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Figure 7. Ternary composite gamma ray radiometric map of the study area, sourced from SARIG.

3.3. Unsupervised Classification

An unsupervised classification was used to cluster and identify spatial patterns in the input data
sets. Inputs for the unsupervised classification were elevation from the DEM; two TPIs of different
radii (2000 m and 300 m); and gamma-ray radiometric grids for potassium, equivalent thorium,
and equivalent uranium (Figures 5–7). An Iso Cluster Unsupervised Classification was performed
classifying the gridded data into 30 classes. These were clustered to eight classes using a class similarity
threshold applied to a dendrogram of between-class distance of sequentially merged classes. This
threshold was informed by visual interpretations of the spatial distribution and coherence of the
classes produced.

3.4. Relationship between Mapping Methods

The relationship between the aggregated unsupervised classification and the CRMU map classes
was evaluated using the Mapcurves ‘Goodness-of-Fit’ (GOF) measure developed by [56]. This measure
evaluates the spatial concordance between the two maps (Equation (1)).

Goodness o f Fit = ∑
[(

C
B + C

)(
C

A + C

)]
(1)

https://map.sarig.sa.gov.au/
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where A is the total area of the category on the compared map, B is the total area of the category on a
reference map, and C is the amount of intersection of a category between two maps.

This method was selected because of its ability to be applied to maps with differing numbers of
categories and as it is independent of resolution [56,57]. Mapcurves analysis has been successfully
used to compare categorical maps in a variety of disciplines including species distribution and
biogeographical region modelling e.g., [58,59]. Mapcurves analysis was implemented using 5000 points
generated randomly across the study area. For each of these points, the mapped class and regolith
type was sampled for each mapping method. The Mapcurves implementation of [60] was applied
using 400 iterations of the algorithm using a random subsample of 500 of the 5000 points. Finally,
we considered the sensitivity of the statistics from the 400 Mapcurves outputs.

4. Results

4.1. Aggregation of Traditional Regolith-Landform Map

With the number of regolith mapping units of the traditional regolith map reduced to eight,
it becomes much easier to visualize the distribution of broad regolith types. Figure 4 shows that the
landscape is dominated by Sandplains/dunes and the Gawler Range Volcanics in the north of the study
area. The landscape also contains a large proportion of Colluvial sediments, generally surrounding
bedrock, mostly around the Gawler Range Volcanics in the north of the study area. Figure 4 also
highlights the prevalence of Non-Gawler Range Volcanics bedrock in the south and western regions of
the study area. There are smaller units of Duricrusts and Lake/Palaeochannel sediments across the
study area. Duricrusts mostly occur in the eastern portion of the study area, and are in proximity of
Colluvial sediments and Non-GRV bedrock. Alluvial sediments appear as they did in Figure 3, as they
were not aggregated with other regolith types.

4.2. Aggregated Unsupervised Classification

The unsupervised classification produced 30 classes which were clustered hierarchically into
eight broad groups. Figure 8 shows the aggregation of the classes, indicating the threshold used to
establish the aggregated unsupervised objective mapping (herein referred to as ‘the image map’) classes
displayed in Figure 9. Table 3 displays the average values of input variables for each derived class with
the average crustal abundances of radiometric variables included for comparison. The distribution of
Slope Position Classes, both coarse and fine scale for each mapping class are shown in Figure 10.

Table 3. Summary statistics for each defined class derived from input data. Average crustal abundance
for radiometric elements are provided here for reference (data from Minty [61] and Rudnick and
Gao [62]).

Class Average Values 1 3 6 13 16 18 26 28

DEM (m) NA 202.73 177.13 250.03 346.91 165.14 229.41 293.46 306.80
K (%) 1.90 0.59 1.08 1.26 0.93 2.20 3.17 3.69 3.67

Th (ppm) 8.50 1.08 7.38 10.41 10.46 13.22 21.44 26.36 26.86
U (ppm) 2.70 1.26 1.01 1.31 1.20 1.81 2.90 3.99 3.87
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Figure 9. Image map of eight classes resulting from the unsupervised classification. Each class is based
on a common topographic and radiometric signature.
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Figure 10. The proportion of SPC of the total area for each class, for both coarse and fine scales of
slope analysis.

4.3. Composition and Distribution of the Image Mapping Classes

Class 3 accounts for 24.7% of the study area. It is mostly located across the western-central region
of the study area with some small areas located in the far east and north. The raw radiometric data
(Figure 7) indicates that this region is rich in thorium, confirmed in Table 3 with approximately average
crustal abundance values for thorium and below average abundances for potassium and uranium.
At the coarse SPC analysis, this class is predominately made up of valley features; whereas at the fine
scale, a higher proportion of flat slopes and upper and lower slopes are evident.

Class 1 is distributed in the south east and across some of the southern margin of the study
area and makes up 6% of the study area. It has an average elevation of 202 m, with below-average
abundance of all radiometric elements. At the coarse scale of topographic analysis, this class comprises
mostly ridge features with 35% valley features (Figure 10). At the fine scale, much of this is identified
as flat slopes, accounting for 36% of the terrain.

Class 6 is the largest class, making up 31.2% of the study area but more commonly in the east.
This class has an average elevation of 250 m with some enrichment in thorium and uranium. This
class has above-average abundance of thorium but below-average values of potassium and uranium.
Class 6 contains approximately half ridge and half valley features at the coarse scale with the fine scale
illustrating upper, flat, and lower slopes forming 64% of this class.

Class 13 is the most geographically restricted class at <1% of the total area, confined to high
ridges in the southern and central regions. This class contains the highest mean elevation at 346 m
above average thorium and approximately half the average abundance of potassium and uranium.
The coarse SPC shows this class has 95% ridge features but 45% ridge features combined with valley
and other slope features at the fine scale.

Class 16 is restricted to the north and the southern boundary of class 18 in the west of the study
area. This class contains the lowest average elevation at 165 m. Figure 7 suggests that this class would
be high in uranium, but the abundance in Table 3 indicates that this class contains 1.81 ppm, below
average. Thorium and potassium are both above average crustal abundance. Valley features make up
over 70% of the coarse SPC, whereas the fine scale indicates contains a higher occurrence of flat slopes
at 61%.
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Class 18 is the second largest class derived, making up 27.5% of the study area. It is mostly located
in the central to western region of the study area with some small areas located in the north. Figure 7
indicates that this class is high in all three radiometric elements and Table 3 attests that this class
contains average or clearly above average abundances. The coarse scale highlights the large proportion
of valley features for this class with approximately 30% ridge features. At the fine scale, intermediate
slope types make up a large proportion of the SPC result and ridge and valley features are reduced in
their proportion.

Class 26 is the smallest of all classes at 0.85% of the area and it is spatially restricted, likely due to
its representation of specific landscape features. It contains above-average radiometric values across
all elements with all three elements, with potassium and uranium being the greatest of all classes.
The coarse scale indicates an approximately equal division between ridge and valley features whereas
the fine scale clearly shows the high proportion of valley features within this class. This class also has
one of the highest average elevations of all classes at 293 m.

Class 28 makes up 3.4% of the total area and is distributed across the northern region with
exceptions in the central and southern margins. This class has the second-highest average elevation at
306 m with Figure 7 and Table 3 in agreement that this class is high in all three radiometric elements.
This class is represented by primarily ridge features at the coarse and fine scale. Class 28 illustrates the
most dominant relationship with one slope type compared to all other classes identified in the final
mapping method.

Classes 13, 16, and 26 were not aggregated with other classes and are noticeably distinct (Figure 8,
Table 3). Class 1 is a relatively unique class as it is formed from two classes during aggregation but has
some similarity to Classes 3 and 6 in the thorium and uranium content. Coincidentally, Classes 1, 3,
and 6 are adjacent across the southern two-thirds of the study area (Figure 9).

4.4. Spatial Concordance between Mapping Methods

The iterative Mapcurves function produced Goodness-of-Fit (GOF) scores between map classes
ranging from 22.4–38.5% with a mean GOF of 26.4%. Table 4 shows the mean GOF for each intersection
between the CRMU and the image mapping classes, indicating the highest GOF scores for each image
mapping class. The intersection of Class 3 and Sandplains/dunes has the largest GOF score at 35.98%,
followed by Class 18 and Colluvial sediments at 31.8%. Other large GOF scores also occur between
Class 28 and 18 and Gawler Range Volcanics and Class 13 and Non-Gawler Range Volcanics CRMU
regolith types.

Table 4. Mean GOF (%) from Mapcurves analysis: bold values are the highest GOF for the comparison
of image mapping with the CRMU regolith type, and italicized values are the highest GOF for the
comparison of CRMU regolith type with the image mapping classes. Values bold and italicized are the
highest GOF for both comparison directions.

CRMU Regolith Type
Image Mapping Class

1 3 6 13 16 18 26 28

Alluvial sediments 0 0 0.21 0 1.21 2.29 0 0
Colluvial sediments 0 0 3.57 0.93 0.37 31.8 0.14 0

Gawler Range Volcanics 0 0 0.07 0.03 0.01 23.3 35.98 25.71
Lake/Palaeochannel sediments 0 1.61 0.01 0 2.37 0.04 0 0
Non-Gawler Ranges Volcanics 0.03 0.23 2.90 11.66 0.07 0 0 0.11

Sandplains/dunes 9.24 35.98 30.41 0.03 5.97 1.04 0 0
Duricrusts 0 0.03 1.17 1.59 0 0.03 0 0

When comparing the image map to the CRMU map, Classes 1, 3, 6, and 16 have the highest
GOF with Sandplains/dunes. The Gawler Range Volcanics CRMU regolith type has multiple
correspondences with Classes 26 and 28. None of the 5000 randomly generated points fell within
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the Undifferentiated Quartz regolith type due to its small area, therefore it was not included in the
Mapcurves analysis.

5. Discussion

5.1. Relationship between Maps and Input Variables

Sandplains/dunes has two large GOF scores with Classes 3 and 6 at 35.98% and 30.41%
respectively. When examining Figure 9 in conjunction with Table 4, it can be seen that Classes 3 and 6
make up a majority of the central region of the study area. Comparison with Figure 4 demonstrates that
both classes have high GOF scores with this CRMU regolith type due to the majority of the CRMU map
comprising Sandplains/dunes with other regolith types scattered throughout the central region of the
study area. The image map shows two different classes (Classes 3 and 6) that make up approximately
the same area (Figure 9). It is likely that this is due to elevation and SPC input data. It can be seen in
Figure 5 that an area of high elevation on the eastern side and centre of the study area, corresponds
with Sandplains/dunes in Figure 4. From Table 3, elevation and radiometric thorium content will
likely explain the separation of Classes 3 and 6 and hence their similar GOF scores.

Although there are strong relationships between Sandplains/dunes and Classes 3 and 6, there are
much smaller GOF scores with this CRMU regolith type and Classes 1 and 16 (Table 4). Figure 4 shows
that the south western corner and central northern portion of the study area are sandplains/dunes
but these have been separated in the image mapping as Classes 1 and 16 respectively likely due to the
differences in both radiometric response and elevation from Figures 4 and 6 and Table 3. This means
that Classes 1 and 16 are not as well predicted from Sandplains/dunes and they make up a smaller
proportion of this CRMU regolith type, explaining their low GOF scores.

Class 18 has strong correspondence with both Colluvial sediments and the Gawler Range Volcanics
(Table 4). The northern regolith types are distinct in the radiometric input data (Figure 7) as they are
high in all radiometric elements, confirmed in Table 3. Figure 4 shows the extent of the GRV in the
north of the study area and when comparing this to Figure 9, it can be seen that Class 28 is not as
extensive. The strong similarities of the radiometric responses explain the separation of classes and
therefore high GOF scores for both Colluvial sediments and GRV with Class 18.

While there are areas of higher GOF, there are also many minor GOF values which still indicate
some relationship between map classes (Table 4). The GOF between Colluvial sediments and Class 6 at
3.57% is due to the aggregation of the unsupervised classification. Class 6 includes some Colluvial
sediments in the eastern half of the study area when comparing Figures 3 and 8. This type of interaction
between mapping methods also occurs with Class 18 and Alluvial sediments.

5.2. Mapcurves for Comparison of Regolith-Landform Maps

The choice of map to use as the reference is subjective and will produce differing outcomes.
Mapcurves analysis permits the comparison of mapping methods to be made in both directions,
i.e., using the traditional map or the image map as the reference for the comparison between classes.
The comparison that produces the greatest GOF is considered to be the best direction of concordance
between the maps and may also indicate which map is finer scale [56]. It has been suggested by [63]
that the coarser map would be advantaged when selecting the highest Mapcurve result. However,
given the similarity in scales of the two maps compared in this study this seems unlikely to be an
influencing factor in the results.

The Mapcurves result suggests that in this case the traditional map should be used as the reference
as the greatest GOF score (26.4%) is for the comparison of the image map to the traditional map. This
Goodness-of-Fit indicates that our objective regolith-landform map describes some of the same pattern as
the traditional subjective map, but also contains significant additional information, probably resulting
from the topographic indices and radiometric data. An unsupervised regolith-landform map is easily
evaluated using Mapcurves as shown in this study. Mapcurves can provide confidence in this mapping
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method due to its numerous advantages, such as application beyond a pair-wise comparison with
multiple maps and resolution independence. This work has identified, analyzed, and interpreted the
GOF scores and intersections between classes (Table 4) to bring greater interpretation to the objective
regolith-landform map and how it relates to the traditional map.

5.3. Regolith-Landform Mapping without Prior Knowledge

The generation of an objective map from digital data that is comparable to the pre-existing
regolith-landform map demonstrates that it is not necessary to have extensive knowledge of a site prior
to using this method. This is because the image map is data driven and the methodology identifies
meaningful patterns in the data. The characteristics of the image mapping classes have been derived
from summary measures of the input variables. When used as a first-pass analysis tool, the objective
mapping method can provide a basis for targeted field work to further describe and characterize
regolith units.

Although most classifications of landforms are attempting to replicate a manual classification [64],
an objective method that provides similarities to a traditional map does have its place. In this case,
the objective mapping method illustrates the effectiveness of using easily and freely accessible data
and simple methodology. The image mapping could also be accomplished on open source software
such as QGis. It can be argued that this method is faster, taking only days versus weeks of field work
followed by quality control, meaning turnaround time of a regional regolith-landform product is
reduced and that publication of products to be used in a number of applications, such as mineral
exploration, are more accessible.

While this method results in faster production of regolith-landform maps, it is not intended to be
a replacement for ‘boots on ground’ mapping. The objective mapping method presented here gives an
indication of the distribution of broad scale regolith-landform features. Therefore, if the traditional
mapping method were to be discarded detailed descriptions and interpretations of regolith and soil
types would be lost. This highlights why ‘boots on ground’ mapping and regolith expertise will always
be useful and could be incorporated into a data-driven methodology. Other research comparable to
this study primarily focused on providing descriptive attributes for each defined class rather than an
overview and statistical measure of fit e.g., [19,65,66]. Supervised classification methods, including
machine learning methods such as fuzzy k-means or Self-Organizing Maps, provide continuity between
classes and are described as more of a continuous classification method [24,32,67]. However, they
require training data or an accuracy assessment to verify their resulting product unlike this study
which used a statistical measure to evaluate the objective method.

The relationships between the image map classes and regolith types mapped by traditional
methods for the southern Gawler Ranges study area demonstrates that this mapping method based on
digital data analysis could be implemented in other regolith dominated terrains. In regions of sporadic
or no coverage of regolith mapping, this method could be used prior to a field campaign to gain insight
and understanding of the landscape without the time or expense required for traditional mapping.
Digital data including geology and high-resolution satellite imagery that provide insights to alternative
landform features are example avenues that could be considered as additional input datasets.

5.4. Application for Mineral Exploration

Objective mapping methods can be beneficial in expanding geological understanding prior to
entering an area for purposes such as mineral exploration. As knowledge of the geomorphology and
landscape is improved with mapping, exploration models can be adapted to be better suited for the
environment of the explorer [68]. The extensive, and in places very deep, sedimentary cover across
regions such as the Gawler Craton can be a huge barrier to explorers considering exploration targets.
This method could assist in identifying a specific regolith-landform type and identifying areas of rock
exposure with negligible time and monetary expense.
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It is advantageous to integrate both regolith and landforms to enhance possible geochemical
exploration success by identifying appropriate sampling media once a regolith-landform map has been
produced [12,25,26]. For some initial geochemical soil sampling, this image mapping could provide an
intuitive guide to the regolith-landform characteristics and highlight where sampling could take place.
For example, if a company wanted to employ a stream-sediment geochemical survey within the study
area, this objective regolith-landform map could indicate that Class 16 might be the most appropriate
sampling unit.

Other types of remotely sensed data at a variety of spatial and spectral resolutions are also
becoming increasingly available, including ASTER imagery at a national and state level plus a range
of standard spectral data products that are regularly used in mineral exploration. These data have the
potential to be incorporated into an objective mapping method such as the one presented here.

6. Conclusions

Characterizing and interpreting regolith and landforms is vital for exploration success. This work
has shown that an unsupervised objective mapping method can produce a regolith-landform map
with a relationship to a traditionally derived map that could be used for first-pass mineral exploration.
The Goodness-of-Fit indicates the similarity of mapping methods but also highlights the additional
information that is possible to interpret from the objective regolith-landform map. Using open access
data and an accessible unsupervised classification makes this method is easily useable for a variety
of applications. This objective method has the advantage of removing much of the subjectivity in
regolith-landform mapping. The spatial extent of the data used suggests that this method could be
used across much of Australia with traditional regolith and additional remote sensing data being
integrated to create a final product.

Author Contributions: Concept devised by A.S.C., K.D.C., C.J.T., M.M.L. and methodology by A.S.C., K.D.C.,
C.J.T., S.D., M.M.L. Data obtained and processed by A.S.C. and S.D., interpretation by A.S.C., K.D.C., C.J.T., S.D.
and M.M.L. A.S.C., K.D.C., C.J.T., and M.M.L. contributed to manuscript preparation, editing and proofreading.

Funding: This research received no external funding.

Acknowledgments: The support received for this research through the provision of an Australian Government
Research Training Program Scholarship is kindly acknowledged. A.S.C. wishes to acknowledge S.D., A. Jeanneau
and L. Caruso for their assistance with R scripting for this work. The authors would also like to acknowledge
three anonymous reviewers who provided valuable comments that greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eggleton, R.A.; Anand, R.R.; Butt, C.R.M.; Chen, X.Y.; Craig, M.A.; de Caritat, P.; Field, J.B.; Gibson, D.L.;
Greene, R.; Hill, S.M.; et al. Surficial geology, soils and landscapes. In The Regolith Glossary; Cooperative
Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Perth, Australia, 2001;
p. 144, ISBN 978-0-731-53343-5.

2. Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing disciplines and scales to understand the Critical
Zone. Elements 2007, 3, 307–314. [CrossRef]

3. Brantley, S.L.; Lebedeva, M. Learning to read the Chemistry of Regolith to understand the Critical Zone.
Annu. Rev. Earth Planet. Sci. 2011, 39, 387–416. [CrossRef]

4. Wilford, J.R.; Pain, C.F.; Dohrenwend, J.C. Enhancement and integration of airborne gamma-ray
spectrometric and Landsat imagery for regolith mapping—Cape York Peninsula. Explor. Geophys. 1992, 23,
441–446. [CrossRef]

5. Anand, R.R.; Paine, M. Regolith geology of the Yilgarn Craton, Western Australia: Implications for
exploration. Aust. J. Earth Sci. 2002, 49, 3–162. [CrossRef]

6. Taylor, G.; Eggleton, R.A. Regolith Geology and Geomorphology; John Wiley & Sons: Chichester, UK, 2001;
p. 392, ISBN 978-0-471-97454-4.

http://dx.doi.org/10.2113/gselements.3.5.307
http://dx.doi.org/10.1146/annurev-earth-040809-152321
http://dx.doi.org/10.1071/EG992441
http://dx.doi.org/10.1046/j.1440-0952.2002.00912.x


Geosciences 2018, 8, 318 17 of 19

7. Anand, R.R.; Butt, C.R.M. A guide for mineral exploration through the regolith in the Yilgarn Craton,
Western Australia. Aust. J. Earth Sci. 2010, 57, 1015–1114. [CrossRef]

8. Pain, C.F.; Pillans, B.J.; Roach, I.C.; Worrall, L.; Wilford, J.R. Old, flat and red—Australia’s distinctive
landscape. In Shaping a Nation: A Geology of Australia; Blewett, R.S., Ed.; Geoscience Australia and ANU E
Press: Canberra, Australia, 2012; pp. 227–275, ISBN 978-1-921-86282-3.

9. Smith, R.E. Regolith research in support of mineral exploration in Australia. J. Geochem. Explor. 1996, 57,
159–173. [CrossRef]

10. Butt, C.R.M.; Robertson, I.D.M.; Scott, K.M.; Cornelius, M. Regolith Expression of Australian Ore Systems;
Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Perth,
Australia, 2005; p. 431, ISBN 978-1-921-03928-7.

11. Anand, R.R.; Smith, R.E. Regolith distribution, stratigraphy and evolution in the Yilgarn Craton-implications
for exploration. In An International Conference on Crustal Evolution, Metallogeny and Exploration of the
Eastern Goldfields; Williams, P.R., Haldane, J.A., Eds.; Australian Geological Survey Organisation: Kalgoolie,
Australia, 1993; pp. 187–193.

12. Craig, M.A.; Wilford, J.R.; Tapley, I.J. Regolith-landform mapping in the Gawler Craton. MESA J. 1999, 12,
17–21.

13. Lintern, M.J. Calcrete sampling for mineral exploration. In Calcrete: Characteristics, Distribution and
Use in Mineral Exploration; Chen, X.Y., Lintern, M.J., Roach, I.C., Eds.; Cooperative Research Centre
for Landscape Environments and Mineral Exploration (CRC LEME): Perth, Australia, 2002; pp. 31–109,
ISBN 978-0-958-11450-9.

14. Pain, C.F.; Chan, R.; Craig, M.A.; Gibson, D.; Kilgour, P.; Wilford, J. RTMAP Regolith Database Field Book
and Users Guide, 2nd ed.; CRC LEME Open File Report 231; Cooperative Research Centre for Landscape
Environments and Mineral Exploration (CRC LEME): Perth, Australia, 2007; p. 98.

15. Worrall, L.; Gray, D.J. Regolith in the central Gawler, through and through. In Gawler Craton: State of Play;
Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME): Adelaide,
Australia, 2004.

16. Saadat, H.; Bonnell, R.; Sharifi, F.; Mehuys, G.; Namdar, M.; Ale-Ebrahim, S. Landform classification from a
digital elevation model and satellite imagery. Geomorphology 2008, 100, 453–464. [CrossRef]

17. Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain
mapping—A review. Geoderma 2011, 162, 1–19. [CrossRef]

18. Dent, D.; Young, A. Soil Survey and Land Evaluation; George Allen & Unwin: London, UK, 1981; p. 278,
ISBN 978-0-046-31013-4.

19. Blaszczynski, J.S. Landform characterization with Geographic Information Systems. Photogramm. Eng.
Remote Sens. 1997, 63, 183–191.

20. Dehn, M.; Gartner, H.; Dikau, R. Principles of semantic modeling of landform structures. Comput. Geosci.
2001, 27, 1005–1010. [CrossRef]

21. Pain, C.F.; Chan, R.; Craig, M.A.; Hazell, M.; Kamprad, J.; Wilford, J. RTMAP: BMR Regolith Database Field
Handbook; Geoscience Australia: Canberra, Australia, 1991.

22. Irvin, B.J.; Ventura, S.J.; Slater, B.K. Fuzzy and isodata classification of landform elements from digital terrain
data in Pleasant Valley, Wisconsin. Geoderma 1997, 77, 137–154. [CrossRef]

23. Seijmonsbergen, A.C.; Hengl, T.; Anders, N.S. Semi-Automated Identification and Extraction of
Geomorphological Features Using Digital Elevation Data. In Geomorphological Mapping: Methods and
Applications; Smith, M.J., Paron, P., Griffiths, J.S., Eds.; Elsevier Science: Oxford, UK, 2011; Volume 15,
pp. 297–335, ISBN 978-0-444-53446-0.

24. Burrough, P.A.; Van Gaans, P.F.M.; MacMillan, R.A. High-resolution landform classification using fuzzy
k-means. Fuzzy Set Syst. 2000, 113, 37–52. [CrossRef]

25. Salama, W.; González-Álvarez, I.; Anand, R.R. Significance of weathering and regolith/landscape evolution
for mineral exploration in the NE Albany-Fraser Orogen, Western Australia. Ore Geol. Rev. 2016, 73, 500–521.
[CrossRef]

26. Salama, W.; Gazley, M.F.; Bonnett, L.C. Geochemical exploration for supergene copper oxide deposits, Mount
Isa Inlier, NW Queensland, Australia. J. Geochem. Explor. 2016, 168, 72–102. [CrossRef]

http://dx.doi.org/10.1080/08120099.2010.522823
http://dx.doi.org/10.1016/S0375-6742(96)00032-5
http://dx.doi.org/10.1016/j.geomorph.2008.01.011
http://dx.doi.org/10.1016/j.geoderma.2010.12.018
http://dx.doi.org/10.1016/S0098-3004(00)00138-2
http://dx.doi.org/10.1016/S0016-7061(97)00019-0
http://dx.doi.org/10.1016/S0165-0114(99)00011-1
http://dx.doi.org/10.1016/j.oregeorev.2015.07.024
http://dx.doi.org/10.1016/j.gexplo.2016.05.008


Geosciences 2018, 8, 318 18 of 19

27. Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine
learning algorithms, their response to variations in the spatial distribution of training data and the use of
explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [CrossRef]

28. Cracknell, M.J.; Reading, A.M.; McNeill, A.W. Mapping geology and volcanic-hosted massive sulfide
alteration in the Hellyer–Mt Charter region, Tasmania, using Random Forests™ and Self-Organising Maps.
Aust. J. Earth Sci. 2014, 61, 287–304. [CrossRef]

29. Kuhn, S.; Cracknell, M.J.; Reading, A.M. Lithologic mapping using Random Forests applied to geophysical
and remote-sensing data: A demonstration study from the Eastern Goldfields of Australia. Geophysics 2018,
83, B183–B193. [CrossRef]

30. Metelka, V.; Baratoux, L.; Jessell, M.W.; Barth, A.; Jezek, J.; Naba, S. Automated regolith landform mapping
using airborne geophysics and remote sensing data, Burkina Faso, West Africa. Remote Sens. Environ. 2018,
204, 964–978. [CrossRef]

31. Wilford, J.; de Caritat, P.; Bui, E. Modelling the abundance of soil calcium carbonate across Australia using
geochemical survey data and environmental predictors. Geoderma 2015, 259, 81–92. [CrossRef]

32. Cracknell, M.J.; Reading, A.M.; de Caritat, P. Multiple influences on regolith characteristics from
continental-scale geophysical and mineralogical remote sensing data using Self-Organizing Maps.
Remote Sens. Environ. 2015, 165, 86–99. [CrossRef]

33. Department of the Environment and Energy. Interim Biogeographic Regionalisation for Australia,
Version 7. Available online: https://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-
820c-e370572b2520/files/bioregions-new.pdf (accessed on 9 February 2018).

34. Kenny, S.D. A Vegetation Map of the Gawler Craton Region South Australia; Department for Environment and
Heritage: Adelaide, Australia, 2008; p. 122.

35. Daly, S.J.; Fanning, G.M.; Fairclough, M.C. Tectonic evolution and exploration potential of the Gawler Craton,
South Australia. AGSO J. Aust. Geol. Geophys. 1998, 17, 145–168.

36. Hoek, J.D.; Schaefer, B.F. Palaeoproterozoic Kimban mobile belt, Eyre Peninsula: Timing and significance of
felsic and mafic magmatism and deformation. Aust. J. Earth Sci. 1998, 45, 305–313. [CrossRef]

37. Hand, M.; Reid, A.; Jagodzinski, L. Tectonic framework and evolution of the Gawler Craton, Southern
Australia. Econ. Geol. 2007, 102, 1377–1395. [CrossRef]

38. Jagodzinski, E.A. Compilation of SHRIMP U-Pb Geochronological Data, Olympic Domain, Gawler Craton, South
Australia, 2001–2003; Geoscience Australia: Canberra, Australia, 2005; p. 197.

39. Fanning, C.M.; Reid, A.J.; Teale, G.S. A Geochronological Framework for the Gawler Craton, South Australia;
South Australian Department of Primary Industries and Resources: Adelaide, Australia, 2007; p. 258,
ISBN 978-0-7590-1392-6.

40. Jagodzinski, E.A.; Reid, A.J.; Crowley, J.L. Precise Zircon U-Pb Dating of a Mesoproterozoic Silicic Large
Igneous Province: The Gawler Range Volcanics and Benagerie Volcanic Suite, South Australia. In AESC
2016—Australian Earth Sciences Convention; Geological Society of Australia: Adelaide, Australia, 2016.

41. Allen, S.R.; McPhie, J.; Ferris, G.; Simpson, C. Evolution and architecture of a large felsic Igneous Province in
western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia. J. Volcanol. Geotherm. Res. 2008, 172,
132–147. [CrossRef]

42. Krapf, C.B.E. Regolith Map of the Southern Gawler Ranges Margin (YARDEA and PORT AUGUSTA 1:250,000
Map Sheets), 1st ed.; Geological Survey of South Australia: Adelaide, Australia, 2016.

43. Forbes, C.; Giles, D.; Freeman, H.; Sawyer, M.; Normington, V. Glacial dispersion of hydrothermal monazite
in the Prominent Hill deposit: An exploration tool. J. Geochem. Explor. 2015, 156, 10–33. [CrossRef]

44. Smith, R.E. Regolith evolution and exploration significance. In An International Conference on Crustal Evolution,
Metallogeny and Exploration of the Eastern Goldfields: Excursion Guidebook; Williams, P.R., Haldane, J.A., Eds.;
Australian Geological Survey Organisation: Canberra, Australia, 1993; pp. 181–186.

45. Department of State Development. Metadata: Regolith Map of the Southern Gawler Ranges Margin (YARDEA and
PORT AUGUSTA 1:250,000 Map Sheets); The Geological Survey of South Australia: Adelaide, Australia, 2016.

46. Blissett, A.H.; Parker, A.J.; Crooks, A.F.; Allen, S.R.; Simpson, C.J.; McPhie, J.; Daly, S.J.; Benbow, M.C.;
Giles, C.W.; Ambrose, G.J.; et al. Yardea, Geological Survey of South Australia; Geological Survey of South
Australia: Adelaide, Australia, 2017.

47. Gallant, J.C.; Dowling, T.I.; Read, A.M.; Wilson, N.; Tickle, P.; Inskeep, C. 1 Second SRTM Derived Digital
Elevation Models User Guide; Geoscience Australia: Canberra, Australia, 2011.

http://dx.doi.org/10.1016/j.cageo.2013.10.008
http://dx.doi.org/10.1080/08120099.2014.858081
http://dx.doi.org/10.1190/geo2017-0590.1
http://dx.doi.org/10.1016/j.rse.2017.08.004
http://dx.doi.org/10.1016/j.geoderma.2015.05.003
http://dx.doi.org/10.1016/j.rse.2015.04.029
https://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-820c-e370572b2520/files/bioregions-new.pdf
https://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-820c-e370572b2520/files/bioregions-new.pdf
http://dx.doi.org/10.1080/08120099808728389
http://dx.doi.org/10.2113/gsecongeo.102.8.1377
http://dx.doi.org/10.1016/j.jvolgeores.2005.09.027
http://dx.doi.org/10.1016/j.gexplo.2015.04.011


Geosciences 2018, 8, 318 19 of 19

48. Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the ESRI User Conference,
San Diego, CA, USA, 9–13 July 2001.

49. Jenness, J. Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v 1.2. Available online:
http://jennessent.com/arcview/tpi.htm (accessed on 18 November 2016).

50. Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution.
Plant Ecol. 1999, 143, 107–122. [CrossRef]

51. De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.;
De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes.
Geomorphology 2013, 186, 39–49. [CrossRef]

52. Dilts, T.E. Topography Tools for ArcGis 10.1. Available online: http://arcgis.com/home/item.html?id=
b13b3b40fa3c43d4a23a1a09c5fe96b9 (accessed on 18 November 2016).

53. Singh, G.; Williard, K.J.; Schoonover, J.E. Spatial relation of apparent soil electrical conductivity with crop
yields and soil properties at different topographic positions in a small agricultural watershed. Agronomy
2016, 6, 57. [CrossRef]

54. Minty, B.; Franklin, R.; Milligan, P.; Richardson, M.; Wilford, J. The Radiometric Map of Australia.
Explor. Geophys. 2009, 40, 325–333. [CrossRef]

55. Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

56. Hargrove, W.W.; Hoffman, F.M.; Hessburg, P.F. Mapcurves: A quantitative method for comparing categorical
maps. J. Geogr. Syst. 2006, 8, 187–208. [CrossRef]

57. Williams, C.L.; Hargrove, W.W.; Liebman, M.; James, D.E. Agro-ecoregionalization of Iowa using multivariate
geographical clustering. Agric. Ecosyst. Environ. 2008, 123, 161–174. [CrossRef]

58. Edler, D.; Guedes, T.; Zizka, A.; Rosvall, M.; Antonelli, A. Infomap bioregions: Interactive mapping of
biogeographical regions from species distributions. Syst. Biol. 2017, 66, 197–204. [CrossRef] [PubMed]

59. Moore, N.; Messina, J. A landscape and climate data logistic model of tsetse distribution in Kenya. PLoS ONE
2010, 5, 7. [CrossRef] [PubMed]

60. Van Loon, E. Mapcurves Algorithm. Available online: https://staff.fnwi.uva.nl/e.e.vanloon/paco.html
(accessed on 11 May 2018).

61. Minty, B.R.S. Fundamentals of airborne gamma-ray spectrometry. AGSO J. Aust. Geol. Geophys. 1997, 17,
39–50.

62. Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry, 1st ed.;
Rudnik, R.L., Ed.; Pergamon Press: Oxford, UK, 2003; Volume 3, pp. 1–64, ISBN 978-0-080-44847-3.

63. Antonetti, M.; Buss, R.; Scherrer, S.; Margreth, M.; Zappa, M. Mapping dominant runoff processes:
An evaluation of different approaches using similarity measures and synthetic runoff simulations.
Hydrol. Earth Syst. Sci. 2016, 20, 2929–2945. [CrossRef]

64. MacMillan, R.A.; Shary, P.A. Landforms and Landform Elements in Geomorphometry. In Geomorphometry:
Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Elsevier: Oxford, UK, 2009; Volume 33,
pp. 227–254, ISBN 978-0-123-74345-9.

65. Prima, O.D.A.; Echigo, A.; Yokoyama, R.; Yoshida, T. Supervised landform classification of Northeast Honshu
from DEM-derived thematic maps. Geomorphology 2006, 78, 373–386. [CrossRef]

66. Summerell, G.K.; Vaze, J.; Tuteja, N.K.; Grayson, R.B.; Beale, G.; Dowling, T.I. Delineating the major
landforms of catchments using an objective hydrological terrain analysis method. Water Resour. Res. 2005,
41, 12. [CrossRef]

67. Carneiro, C.D.C.; Fraser, S.J.; Crósta, A.P.; Silva, A.M.; Barros, C.E.D.M. Semiautomated geologic mapping
using Self-Organizing Maps and airborne geophysics in the Brazilian Amazon. Geophysics 2012, 77, 17–24.
[CrossRef]

68. Craig, M.A. Regolith mapping for geochemical exploration in the Yilgarn Craton, Western Australia.
Geochem. Explor. Environ. Anal. 2001, 1, 383–390. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://jennessent.com/arcview/tpi.htm
http://dx.doi.org/10.1023/A:1009841519580
http://dx.doi.org/10.1016/j.geomorph.2012.12.015
http://arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9
http://arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9
http://dx.doi.org/10.3390/agronomy6040057
http://dx.doi.org/10.1071/EG09025
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1007/s10109-006-0025-x
http://dx.doi.org/10.1016/j.agee.2007.06.006
http://dx.doi.org/10.1093/sysbio/syw087
http://www.ncbi.nlm.nih.gov/pubmed/27694311
http://dx.doi.org/10.1371/journal.pone.0011809
http://www.ncbi.nlm.nih.gov/pubmed/20676406
https://staff.fnwi.uva.nl/e.e.vanloon/paco.html
http://dx.doi.org/10.5194/hess-20-2929-2016
http://dx.doi.org/10.1016/j.geomorph.2006.02.005
http://dx.doi.org/10.1029/2005WR004013
http://dx.doi.org/10.1190/geo2011-0302.1
http://dx.doi.org/10.1144/geochem.1.4.383
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Geological Setting 
	Regolith Mapping 

	Materials and Methods 
	Clustering of Traditional Regolith Map 
	Regolith-Landform Analysis 
	Spatial Data and Transforms 
	Gamma-Ray Radiometrics 

	Unsupervised Classification 
	Relationship between Mapping Methods 

	Results 
	Aggregation of Traditional Regolith-Landform Map 
	Aggregated Unsupervised Classification 
	Composition and Distribution of the Image Mapping Classes 
	Spatial Concordance between Mapping Methods 

	Discussion 
	Relationship between Maps and Input Variables 
	Mapcurves for Comparison of Regolith-Landform Maps 
	Regolith-Landform Mapping without Prior Knowledge 
	Application for Mineral Exploration 

	Conclusions 
	References

