See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/274068376

A classification system for regolith in Western Australia

Book · January 2001

citations 5		reads 184		
7 authoi	's , including:			
	Roger M. Hocking Geological Survey of Western Australia 70 PUBLICATIONS 713 CITATIONS SEE PROFILE		Richard L. Langford 50 PUBLICATIONS 109 CITATIONS SEE PROFILE	
0	Paul Morris Geological Survey of Western Australia 54 PUBLICATIONS 858 CITATIONS SEE PROFILE			
Some of the authors of this publication are also working on these related projects:				
Project	Regolith-terrain mapping in the Tanami Region, WA and NT View project			

All content following this page was uploaded by Richard L. Langford on 12 March 2017.

Volcanic geochemistry of the Youanmi Terrane View project

RECORD 2001/4

A CLASSIFICATION SYSTEM FOR REGOLITH IN WESTERN AUSTRALIA

by R. M. Hocking, R. L. Langford, A. M. Thorne, A. J. Sanders, P. A. Morris, C. A. Strong, and J. R. Gozzard

DEPARTMENT OF MINERALS AND ENERGY

GEOLOGICAL SURVEY OF WESTERN AUSTRALIA

GEOLOGICAL SURVEY OF WESTERN AUSTRALIA

Record 2001/4

A CLASSIFICATION SYSTEM FOR REGOLITH IN WESTERN AUSTRALIA

by

R. M. Hocking, R. L. Langford, A. M. Thorne, A. J. Sanders, P. A. Morris, C. A. Strong, and J. R. Gozzard

MINISTER FOR STATE DEVELOPMENT The Hon. C. M. Brown, MLA

DIRECTOR GENERAL L. C. Ranford

DIRECTOR, GEOLOGICAL SURVEY OF WESTERN AUSTRALIA Tim Griffin

REFERENCE

The recommended reference for this publication is:

HOCKING, R. M., LANGFORD, R. L., THORNE, A. M., SANDERS, A. J., MORRIS, P. A., STRONG, C. A., and GOZZARD, J. R., 2001, A classification system for regolith in Western Australia: Western Australia Geological Survey, Record 2001/4, 22p.

National Library of Australia Card Number and ISBN 0 7307 5675 0

Printed by AusDoc On Demand, Perth, Western Australia

Copies available from:

Information Centre Department of Minerals and Energy 100 Plain Street EAST PERTH, WESTERN AUSTRALIA 6004 Telephone: (08) 9222 3459 Facsimile: (08) 9222 3444 www.dme.wa.gov.au

Contents

Appendix

Figures

1.	Generalized distribution of duricrust (ferricrete, silcrete, and calcrete), alluvium, eolian	
	deposits, and weathered and fresh bedrock in Western Australia	2
2.	Diagrammatic relationships of regolith units in Western Australia, showing likely primary	
	regolith codes	6
3.	Selection of secondary code	12
4.	Selection of secondary code (igneous and high-grade metamorphic rocks)	13
5.	Palaeodrainage systems in Western Australia	17

Tables

1.	Definitions of regimes in the RED scheme, adapted from Anand et al. (1993a,b)	3
2.	Primary regolith codes for GSWA maps	5
3.	Landform (primary) code qualifiers	7
4.	Secondary codes and qualifiers for regolith composition	10
5.	Tertiary codes and qualifiers for parent rock or cement type	11
6.	Summary of climatic and regolith changes from the Mesozoic to the present day	15

iv 🗌

A classification system for regolith in Western Australia

by

R. M. Hocking, R. L. Langford, A. M. Thorne, A. J. Sanders, P. A. Morris, C. A. Strong, and J. R. Gozzard

Abstract

This Record presents a comprehensive classification system for regolith units in Western Australia that can be used on a wide variety of map types and scales produced by the Geological Survey of Western Australia (GSWA). The system is based on the landform position and principal regolith-forming process, qualified by the composition of the regolith. The classification rationalizes previous GSWA schemes for Cainozoic units, and expands the RED (Residual–Erosional–Depositional) regolith–landform mapping scheme developed by CSIRO. The classification aims for a uniform, comprehensive, flexible, and reasonably intuitive approach to mapping regolith in Western Australia.

The classification has a defined set of primary codes that describe the landform setting and process: R (residual or relict), X (exposed), C (colluvial), W (sheetwash), A (alluvial), L (lacustrine), E (eolian), S (sandplain; mixed and eolian origins), B (beach, or wave-dominated coastline), T (tide-dominated coastline), and M (marine).

C, *W*, *A*, and *L* can be grouped into a higher level of *V* (valley); *B*, *T*, and *M* into *K* (coastal); and all of these into *D* (depositional), that, along with *R* and *X*, roll up to a simplified classification suitable for summary maps. Subdivision of the primary landform codes is achieved using subscripts.

Optional secondary codes specify regolith composition and, again, subscripts allow for more precise description. Tertiary codes, also optional, can be used to specify parent rock and cement type.

Numbers are employed to differentiate relative age of regolith.

The use of combined primary, secondary, and tertiary codes provides a flexible hierarchical system for description of the regolith in Western Australia, applicable to maps at many scales.

KEYWORDS: regolith, environmental setting, superficial sediments, residual sediments, Cainozoic, stratigraphy, palaeoclimatology, climatology

Introduction

Regolith is the layer of mineral and organic material, of diverse origin, that nearly everywhere forms the surface of the land and rests on bedrock. It is commonly unconsolidated, and comprises a wide range of materials, including alluvium, windblown deposits, accumulations of vegetation (such as peat), volcanic ash, glacial drift, and soil (Bates and Jackson, 1980). On Geological Survey of Western Australia (GSWA) maps, both superficial sediments and calcrete, silcrete, or ferricrete (hard ferruginous duricrust, also referred to as laterite; Appendix 1; Fig. 1) have been identified as separate regolith units.

Parameters that can be used to classify regolith include material type and properties, structural characteristics, landform slope and morphology, evidence of process, and evidence of relative or absolute age. Anand et al. (1993a)

Figure 1. Generalized distribution of duricrust (ferricrete, silcrete, calcrete), alluvium, eolian deposits, and weathered and fresh bedrock in Western Australia. After Hocking and Cockbain (1990, fig. 6-1)

Regime	Characteristics	Examples
Residual	Remnant, reworked, or degraded materials derived both from, and situated on, an ancient weathered land surface	Sand above granitoid plateaus, ferricrete-capped mesas, and siliceous cappings on the edges of breakaways
Erosional	Areas of erosion and removal of material to a level where the mottled zone, clay zone, saprolite, or bedrock are exposed, concealed beneath thin soil, or concealed beneath locally derived, associated sediments	Scattered to abundant rock exposures and areas of relatively high relief, often covered with poorly sorted stony debris
Depositional	Widespread sediments that are increasingly reworked and redistributed relative to the residual or erosional source, and that can be many metres thick	Sheetwash plains, colluvial fans, saline playas, sandplains, and drainage channels

Table 1. Definitions of regimes in the RED scheme, adapted from Anand et al. (1993a,b)

described and classified regolith according to its composition and position in an idealized landscape profile, and differentiated three major regimes: Residual, Erosional, and Depositional (RED scheme; Table 1; also see Fig. 1). Their classification was formulated in the arid interior of Western Australia, where an extensive, deeply weathered mantle above bedrock has been subsequently modified by erosion and deposition to form a variety of regolith types. Fundamental to their approach is the recognition of regolith–landform mapping units, which are areas characterized by a particular association of regolith materials, bedrock geology, and landforms. The GSWA classification extends the approach of Anand et al. (1993a) by expanding the depositional regime into its constituent categories (e.g. lakes, streams, and slope deposits), and specifies compositional and provenance attributes using optional secondary and tertiary codes.

Classification system

Regolith materials maps result from the synthesis of ground observations and remotely sensed data from sources such as aerial photographs and Landsat, and airborne radiometrics and magnetics, although the balance of direct observation and remote data interpretation varies between both maps and map series. A uniform regolith classification scheme for geological maps of Western Australia should be objective, simple, and logical, but also flexible enough to allow a detailed regolith subdivision when required. The scheme should also be compatible with published regolith classifications on GSWA maps wherever possible, and complement established formal lithostratigraphic nomenclature applied to named rock units.

Environment of formation and process (landform setting), composition, and relative age emerged as the most significant criteria for displaying regolith on most GSWA maps. This information is presented using a primary code letter for environment and process (Table 2), which can be subdivided using a series of subscripts (Table 3). A relative age number (increasing from 1) can be used where more than one generation of regolith is distinguished (see **Regolith age**). An optional secondary code can be used to designate regolith composition (Table 4), and an optional tertiary code indicates either parent rock type or cement (Table 5).

Primary code (environment and process) — mandatory

Secondary code (characteristic composition) — optional
A1bC
Relative age qualifier — optional

Tertiary code (parent rock or cement type) — optional

The primary, secondary, and tertiary codes summarize a broad range of environment and process plus compositional information. More detail or greater precision is available through subscript qualifiers.

$A1_ab_bc_c$

Each subscript qualifier (a, b, and c) has a fixed position in the code string, and relates only to the preceding primary, secondary or tertiary code (*A*, *b*, and *c* in the above example). Thus, any regolith code could have a maximum of six letters (three of which are subscripted) plus one relative age qualifier. Only the primary code, describing the broad environmental setting or process, is compulsory. For universality, the primary, secondary, and tertiary codes, and many qualifiers, are predefined. These are presented in Tables 3 to 5. Additions to these codes are inevitable, and should be submitted to the GSWA Chief Geoscientist and the Regolith Database Custodian.

Landform codes (primary level)

The primary landform code (Table 2) specifies the environment (landform position) and/or process responsible for the formation or deposition of the regolith (e.g. alluvial, lacustrine, or tidal coastline). This is determined by identifying the slope and shape of the landscape, and the material present. Following from this is an assessment of whether the regolith reflects the current (active) climatic regime or is a relict of an older regime (Fig. 2). Most but not all relict features will be undergoing erosion. Patterns on aerial photographs and satellite images, remotely sensed geophysical data, and digital elevation models (DEMs) can all assist field observations in mapping these features.

Eleven primary code letters identify the dominant environment or process: R (residual or relict), X (exposed), C (colluvial), W (sheetwash), A (alluvial), L (lacustrine), E (eolian), S (sandplain; mixed and eolian origins), B (beach, or wave-dominated coastline), T (tide-dominated coastline), and M (marine). Three other letters are reserved for higher level groupings: D (depositional), V (valley) and K (coastal). These and other relevant terms are explained in Appendix 1 and Table 2. On 1:100 000- and 1:250 000-scale Geological Series maps, the order of the legend boxes should be as above and in Table 2, unless there are compelling extenuating reasons — such as stratigraphic position — for change.

Primary Environment and process Notes landform code R Residual or relict Remnant material overlying an ancient land surface. Residual material is derived by in situ weathering and shows no evidence of having undergone significant transport. Relict material comprises deposits of uncertain origin, either transported or residual, or a combination of both. The term relict should not be used if the original depositional process can be determined. In such cases the appropriate primary code (e.g. A, C, W), with a relative age qualifier, should be used instead Χ Exposed Used for rock (optional) and weathered rock. Includes subcrop and bouldery lag Colluvial С Proximal mass wasting deposits grading into sheetwash with a significant to perceptible slope W Low-gradient slope Distal slope deposits (sheetwash and sheet flood) where the gradient is minimal, and drainage is not clearly defined Alluvial/fluvial Alluvium in channels and floodplains. Includes deltaic deposits A L Lacustrine Inland lakes, dune and playa terrain, and some coastal lakes. Includes saline and freshwater playas and claypans, and minor eolian deposits directly associated with the lake system (e.g. fringing gypsiferous dunes) Ε Eolian Eolian dunes, interdune areas, and sandplain S Sandplain May be of mixed origin, including residual, sheetwash, and eolian sands В Coastal (wave-dominated) Beaches, beach ridges, barrier bars and lagoons, and back-beach dunes, coastal cliffs and other erosional features (e.g. blowouts) T Coastal (tide-dominated) Intertidal and supratidal flats and channels, estuaries, and mangrove flats М Marine Subtidal, shoreface, and offshore marine deposits such as coralgal reefs, shell banks, and sea-grass banks VValley Higher level category; includes lacustrine, alluvial, floodplain, sheetwash, and colluvial K Coastal Higher level category; includes wave- and tide-dominated coastal, and marine D Depositional Highest level category; includes all depositional systems

Table 2. Primary regolith codes for GSWA maps

The choice of primary code is largely determined by the amount and type of information available. Note that R is used for both residual or relict material. 'Residual' is used where regolith is a product of in situ weathering. 'Relict' is used for landforms (e.g. mesas) where regolith is of uncertain origin, either transported or residual. For relict material, in which the original process of formation *can* be determined, the unit should be classified with another appropriate primary code. For example, a dissected portion of an old alluvial terrace, should be classified as an older generation of alluvium or valley deposit (A2, A3, V2, etc).

It should be possible to reduce a regolith unit to primary code levels and thus produce a seamless join between maps, although inevitably there will be differences in the choice of some primary codes (e.g. W vs C vs A).

Figure 2. Diagrammatic relationships of regolith units in Western Australia, showing likely primary regolith codes

Landform code qualifiers

Optional subscripts can be used to achieve greater discrimination or precision for primary codes. The meaning of a subscript is set by its associated primary code, as shown by the examples in Table 3. Common usage of subscript letters between the primary landform elements is preserved where possible, but differences will arise. The system of subscript qualifiers also allows a summary of textural information, mostly grain size, to be shown on the map. This can be achieved where the information is specific to a certain landform and process sub-unit, as in an alluvial channel, where it would be possible to distinguish both sand bars (A_s) and gravel bars (A_g) on the basis of their morphology as well as grain size.

Landform element or pattern	Sugge primary and cod	ested 1 subscript 1e
	R	
In situ weathered (residual)		Ri
Duricrust (residual or relict)		R _r
Sand (residual or relict)		Rs
Transported (relict)		Rt
Deeply weathered	Х	Xw
	C	
Cliff-foot slope	C	Ca
Footslope		C _f
Landslide		C_1
Scarp-foot slope		C _s
Talus		Ct
stal slope)	W	
Sheet-flood fan		Wf
Playa, pan		Wn
Scarp-foot slope		W _s
	А	
Alluvial plain		Aa
Stream bed		Ab
Stream channel		Ăc
Drainage depression/swale		Ad
Delta		Ae
Floodplain		A_{f}
Gravel bar		Ag
Channel bench		A _h
Stream bank		A _k
Levee		Al
Meander plain		Am
Backplain		An
Playa, pan		Ap
Stream bar		A _r
Sand bar		As
Ierrace		A _t
Superficial channel		Au
Fan/flood-out		Av
Swamp Oxbow		A _w A _v
	-	- - A
Fringing dunes	L	La
Fringing bedded deposits		La
Lake, excluding fringing deposits		L
Dune and playa terrain		L _m
Playa		Ln
Saline lake		L
Subcropping bedrock in lake		L _x
	Е	
Parabolic dunefield		Ea
Blow-out		Eb
Dunefield		Ed
Dune		Ee
Longitudinal dunefield		El
Mobile dune		Em
Net-like dunefield		En
Sand and playa terrain		Ep
Lunette		Eu
Interdune pavements		Ev
Swampy swale		E_W
	Lanajorm element or pattern In situ weathered (residual) Duricrust (residual or relict) Sand (residual or relict) Transported (relict) Deeply weathered Cliff-foot slope Footslope Landslide Scarp-foot slope Talus tal slope) Sheet-flood fan Playa, pan Scarp-foot slope Alluvial plain Stream bed Stream channel Drainage depression/swale Delta Floodplain Gravel bar Channel bench Stream bank Levee Meander plain Backplain Playa, pan Stream bar Sand bar Terrace Superficial channel Fan/flood-out Swamp Oxbow Fringing dunes Fringing bedded deposits Lake, excluding fringing deposits Dune and playa terrain Playa Saline lake Sub	Landjorn element or pattern Stage primary and consistent of pattern In situ weathered (residual) R Duricrust (residual or relict) Sand (residual or relict) Transported (relict) X Deeply weathered C Cliff-foot slope K Footslope Landstide Scarp-foot slope W Sheet-flood fan Playa, pan Scarp-foot slope A Alluvial plain A Stream bed Stream constrained Drainage depression/swale Delta Ploodplain Gravel bar Channel bench Stream bank Levee Meander plain Backplain Playa, pan Stream bar Sand bar Terrace Superficial channel Fan/flood-out Swamp Oxbow L Fringing dunes E Fringing bedded deposits Lake, excluding fringing deposits Dune and playa terrain Playa Saline lake Subcropping bedrock in lake E Parabolic dunefield Blow-out Dune

Table 3. Landform (primary) code qualifiers

Primary landform or process	Landform element or pattern	Sugge primary and cod	ested l subscript le
Sandplain; residual, uncertain, an	nd mixed origin	S	
. , , , ,	Blow-out		Sb
	Dune		Sd
	Gravel deflation pavement		Sg
	Longitudinal dunefield		SI
	Net-like dunefield		Sn
	Sand and playa terrain Undulating		Sp Su
Coastal (wave-dominated)		В	
	Beach (foreshore and backshore)		Bb
	Cliffs		B _c
	Foredune		Bd
	Foreshore		B_{f}
	Backshore		Bk
	Back-barrier lagoon		Bl
	Mobile dunes Boulder booch		B _m
	Boulder beach		D ₀ р
	Storm beach gravels		B_{s}
Coastal (tide-dominated)		Т	
	Tidal bar, in channel		Tb
	Tidal channel (subtidal base)		T _c
	Tidal delta		Td
	Estuary		Te
	Tidal flat (intertidal and supratidal)		Tf
	Untertided flat		Ih т.
	Lagoon		т _і
	Mangrove flats		T
	Superficial channel (intertidal)		т _т
	Supratidal flat		Tu
Marine		М	
	Coral reef		M _c
	Shell bank		M _k
	Plain, nearshore		M _n
	Plain, ollshore Boof flat, bookroof, or rook flat		Mp
	Shoreface		M
	Talus slope or foot slope		M.
	Relict channel		M.
	ivenet channel		TATA

Table 3. (continued)

NOTE: These combinations should be followed where possible; however, the list is not exhaustive. Landform elements and patterns largely follow McDonald et al. (1990)

Regolith age

The age of regolith is commonly poorly constrained where marine sediments do not interfinger, and parts of the regolith (particularly relict) could be older than Cainozoic. On past GSWA maps, unconsolidated regolith generally has been designated as Quaternary whereas relict or residual material, or deposits known or suspected to include a significant thickness of both Quaternary and older Cainozoic material, have been grouped as undivided Cainozoic.

Because of the poor constraints on the absolute age of many regolith units, absolute age information is shown in the map reference but not included as a

code letter in the map polygon label. This allows units to be assigned a specific age where this is known, or given an age range where dating is less precise. Where several generations of poorly dated regolith are present, relative ages can be specified more flexibly than before, by using a whole number (with 1 being the youngest) after the primary landform code letter; thus, the codes A1, A2, and A3 differentiate increasingly older alluvium. The rationale for assigning the number 1 to the youngest deposit is that these are usually the most widespread and easily recognized. The degree to which older deposits can be identified will vary across the mapped area, often making it difficult to assess how many generations are present during the early stages of mapping. In this situation, if the youngest deposit is given the highest number then all labels will have to be changed each time a new 'oldest' unit is recognized. Assigning 1 to the youngest deposit should ensure that this code, at least, is more likely to remain unchanged during any subsequent re-evaluation of regolith stratigraphy. Other features of this numbering system are:

- Regolith codes without a number are undivided in terms of relative age. Units in which relative ages can be recognized should always contain the number 1 for the youngest deposit i.e. use the sequence A1, A2, A3 and not A, A2, A3. In situations where several generations of a regolith type are recognized but where it is not always possible to assign each deposit to a particular generation, the unnumbered regolith code letter can be used as an unassigned category. For example, in areas where three generations of alluvial deposit (A1, A2, A3) are recognized, the code letter A could be used for alluvium which cannot be confidently assigned to any one of these three generations. The code list for alluvial deposits in this area would therefore be A, A1, A2, A3.
- There is no implied correlation between different regolith units with the same numerical age qualifier. Conversely, regolith units which are numbered differently may be of similar age. For example, a fluvial unit labelled A2 might be younger than a colluvial deposit labelled C2. In this case A2 would be placed above C2 in the map reference. On the other hand, the unit labelled C2 might be the same age as an older alluvial deposit, A3, and as such, would be shown alongside it on the reference.
- Care should be taken in the placement of the relative age number within the regolith code. In most cases the age qualifier immediately follows the primary code (e.g. A1g, A2_cq). In other situations, particularly when labelling residual units that require use of the secondary code to accurately convey the type of regolith, it may be more appropriate to place the number immediately after the secondary code, e.g. Rk1, Rk2. In this example, the number qualifier differentiates two ages of relict or residual carbonate-rich material, as the age qualifier relates directly to the code immediately to the left.

A broad, relative stratigraphy based on the climatic evolution of Western Australia is discussed below; this can help to establish local relationships for some regolith components.

Compositional codes (secondary and tertiary)

The compositional codes (Tables 4 and 5) are optional, but their use is encouraged where significant information is available. They are used to describe the characteristic composition (secondary), and parent rock or cement type (tertiary), of regolith material. In the map code, they appear to the right of the primary landform code and its qualifier. As with the landform code, they consist of a

Table 4. Secon	idary codes a	and qualifiers	for regolith	composition
	•			

Code	Composition	Co	omposition qualifier
с	clay	cb cc cg ck ci cm cs	black soil/gilgai chlorite glauconite kaolin illite montmorillonite smectite
d	undivided		
e	evaporite	e _a e _g e _h	anhydrite gypsum halite
f	ferruginous	f _g f _h f _l f _o	gossan hematite limonite goethite
g	quartzofeldspathic		
h	heavy mineral	ha hg hi hl hm ho hr hz	apatite garnet ilmenite leucoxene magnetite monazite rutile zircon
k	carbonate	k _a k _c k _d k _m	aragonite calcite dolomite magnesite
1	heterogeneous		
m	ferrogmagnesian		
q	quartz		
r	carbonaceous/organic	r _c r _h r _p r _y	coal humus peat pyritic
t	lithic (rock fragments)		
u	ultramafic		
х	other mineral	x _a x _i x _m	aluminous/bauxite mica manganese
z	siliceous		

limited number of generic categories. A subscript qualifier may be used to give greater discrimination and precision or to extend the information offered. It is clear that no list of this sort will ever be complete; for example, the 'other mineral' category could contain a multitude of entries, but the aim is to cover most of the compositional variation seen in Western Australian regolith. Examples of the use of secondary and tertiary qualifiers are given below:

Code Parent rock or cement Parent rock		rock qualifier	
a	aluminous cement		
с	chemical/biochemical sedimentary deposit	cc	chert
		cd	dolomite
		ci	iron formation
		cj	limestone
		ct	diatomite
h	hypabyssal	hd	dolerite
		hp	porphyry
i	iron cement		
k	carbonate cement		
m	metamorphic	m _n	gneiss
	-	mp	pelite
		m _m	psammite
		ms	schist
0	fossiliferous	0 _S	shells
		o _c	coral/coralgal
р	plutonic	pa	alkali granite
-	-	pr	gabbro
		Pd	diorite
		pg	granite
		p _m	monzogranite/monzonite
		po	granodiorite
		ps	syenogranite/syenite
		Pt	tonalite
r	duricrust		
S	siliciclastic sedimentary rock	s _c	conglomerate
		sm	mudstone, siltstone, shale
		s _s	sandstone, arenite, wacke
u	ultramafic	ud	dunite
		uk	komatiite
		up	peridotite
		uy	pyroxenite
		us	serpentinite/talc rock
v	volcanic	va	andesite
		vb	basalt
		vd	dacite
		vr	rhyolite
		vt	trachyte
		v_{V}	volcaniclastic
Z	silica cement		

Table 5. Tertiary codes and qualifiers for parent rock or cement type

Akk	Carbonate-cemented calcareous alluvium (groundwater/phreatic calcrete, generally abbreviated to Ak)
A _p c	Claypan in alluvial system
Bh _z	Heavy mineral-rich beach deposit (principally zircon)
Leg	Lacustrine deposit with evaporitic gypsum
Amv _b	Alluvium derived from ferromagnesian volcanic rock (basalt) fragments

Group 1 Specific component	Heavy minerals >5%	(Y)			· h
at low level (by colour index or volume%)	Other minerals >5% (apart from components identified in Groups 2-4)	(Y)			×
	Carbonaceous >5%	(Y)			· r
Group 2. Dominant mineral component (by colour index or volume%)	Ferromagnesian >90%	(Y)			u
	Quartz >90%	(Y)			q
	Feldspar >10%		Plus >10% of any other Group 3 or 4 component		l g
Group 3. Other components at low level (by colour index or volume%)	Mafics >10%	(Y)	Plus >10% of any other Group 3 or 4 component		∘I ∘m ∘I
	Lithics >10%	(Y)	Plus >10% of any other Group 3 or 4 component >50% lithics?		• • t •
	Carbonate >50%	<u> (Y) </u>		>	• k
		Ċ			
	Evaporite >50%	(Y)			е
Group 4. Dominant component (by colour index or volume%)	Clay >50%	(Y)			C
	Ferruginous >50%	(Y)			f
	Siliceous >50%	(Y)			Z
Group E. No dominant Oraci	Heterogeneous	(Y)			·]
4 component	Undivided	(Y)			· d
PAM210					08.02.01

Figure 3. Selection of secondary code (Y = yes, N = no)

Assigning secondary codes

Assigning secondary codes relies on estimating the proportions of components in regolith. In order to emphasize the importance of some compositional elements, secondary codes are assigned in a hierarchical fashion, as detailed in Figures 3 and 4. The most common approach is that shown in Figure 3, but where there is a need to assign a regolith composition to exposed (X) igneous or highgrade metamorphic rocks, the classification system in Figure 4 should be used. It is intended for use in regolith material mapping, where a representation of the overall composition of the bedrock is required rather than its specific lithology. The secondary code 'd' (undivided) can be used to indicate that the nature of the regolith is known through direct observation (e.g. undivided colluvium is Cd).

Named lithostratigraphic units

Formally named lithostratigraphic units of Cainozoic age are common near the coast, and are also scattered through the interior of the State, and the conventions for coding lithostratigraphic rock units should be followed. The age of most of these units is reasonably constrained. Previously, Quaternary Q and Tertiary T, or less commonly Cainozoic Cz, have been used to specify age. In keeping with current IUGS recommendations, Tertiary is generally no longer used. However, Neogene and Palaeogene have not been adopted for GSWA maps pending widespread acceptance and usage of these divisions. Instead the series is used after a Cz prefix, thus: *Czi* Pliocene, *Czm* Miocene, *Czo* Oligocene, *Cze* Eocene, and *Czp* Paleocene. The mnemonic letters for named units are mostly well

Figure 4. Selection of secondary codes for exposed regolith (X) derived from igneous and high-grade metamorphic rock

established from previously published maps. Formally named units get a lithostratigraphic code, and a different font so there can be no conflict with a primary process code as it does not form part of the code.

Units derived from named rock units are locally distinguished on GSWA maps. For example, colluvium derived from the Pallinup Siltstone, versus colluvium derived from granitoid rocks. In such cases, the code letter used for the formation can be used as a qualifier to the compositional code, to indicate the specific named derivation. Potential ambiguity is avoided by the description in the map reference.

Regolith stratigraphy

This system for regolith classification is largely descriptive and does not rely on an interpretation of age, but an understanding of the climatic development of Western Australia is necessary to utilize the scheme to its fullest, especially when two or more generations of regolith can be recognized. The relationship between two regolith units, in particular their relative ages, may be discerned if the possible or probable age of development of each can be established. In turn, the nature and relationships of two units may allow inferences about the prevailing climate of either or both. The following summary provides a guide as to where local observations on the regolith may fit in a broader, climatological context.

A broad stratigraphy for the regolith of Western Australia can be established using both dated horizons and intercalations, as well as known trends in Western Australia's climate since the end of the Mesozoic (Table 6). Unfortunately, even with this broad history, the age of development of an area's landscape is uncertain in many cases. The range in possible age for some regolith components in interior areas is from Pleistocene to Mesozoic, and there are some land surfaces (fossil and exhumed) in Western Australia that are known to be of Mesozoic or Palaeozoic age. Examples of these are: the present-day surface of the Devonian reef complexes of the West Kimberley, which is largely an exhumed Late Carboniferous (pre-Gondwana glaciation) surface (P. E. Playford, written comm. 1996); the Ashburton Surface in northern Australia, which is probably pre-Jurassic (Hays, 1967) and possibly even Cambrian–Precambrian (Stewart et al., 1986); and the oldest Hamersley Surface (Pilbara region), which Twidale et al. (1985) considered to be Mesozoic. Pillans (1998) has argued for subaerial exposure as far back as the Permian over parts of the Yilgarn Craton, and Pillans and Bateman (2000) used palaeomagnetism to date regolith components near Kalgoorlie as Late Cretaceous - Early Cainozoic, Jurassic, and Early Carboniferous. Taylor and Shirtliff (2000) concluded that the weathering process has been essentially continuous rather than episodic throughout the Phanerozoic. Suggestions by Finkl and Fairbridge (1979) that much of the surface of the Yilgarn Craton is of Permian or older age, refuted by van de Graaff (1981), have recently been supported by the work of Sircombe and Freeman (1999), who considered that the thick Perth Basin succession adjacent to the craton is in large part *not* derived from it, based on detrital zircon populations.

Churchill (1961, 1968, 1973) was the first to research Western Australia's climatic history. Later, Kemp (1978), and Christophel and Greenwood (1989) made advances in understanding Cainozoic climatic evolution, and a Quaternary chronology was developed through the work of Bowler (1976, 1977, 1986), Bowler et al. (1976), and Rognon and Williams (1977). Kemp used climatic models derived from sea-surface temperatures, land and sea positions, and the

Table 6.	Summary of climatic and regolith changes from the Mesozoic to the present-day. Absolute ages based on Young and Laurie
	(1996)

Age	Climate	Regolith events
Cretaceous (65–141 Ma)	-	Marine deposits in the Eucla Basin, major marine transgression over most Phanerozoic basins
Late Cretaceous – Paleocene (c. 95–55 Ma)	-	Well-developed inland drainage (palaeodrainage) system. Undulating duricrust surface. Chains of playa lakes
Late Cretaceous – Early Miocene (c. 95–20 Ma)	_	Ferricrete and silcrete development in the interior of Western Australia
		Major palaeodrainage systems active
Paleocene–Eocene (c. 60–35 Ma)	Moist, temperate-tropical	Marine deposition on coastal plains
Eocene (55–34 Ma)	_	Hamersley Surfaces with pockets of pisolitic iron that could be remnants of a pre-Eocene surface
		Widespread marine deposition along southern margin
Middle–Late Eocene (c. 45–35 Ma)	-	Deposition in major palaeodrainages. Sea level up to 300 m above present-day
		Extensive silcrete and ferricrete development
Late Eocene (c. 40–35 Ma)	Beginning to dry out	Limestone in the Carnarvon Basin, deposited with numerous ferruginous pisoliths
Oligocene	Seasonally moist climate	Ferricrete and silcrete on the west coast and in the Pilbara
(c. 35–25 Ma)		Sea levels generally lower
Miocene (c. 25–12 Ma)	More seasonally extreme climate with significant variations in temperature. Last major transgression	Marine limestones in the Carnarvon and Eucla Basins
Late Miocene (c. 12–5 Ma)	Cooler, though still temperate	Eolian deposition in Carnarvon Basin and inner North West Shelf
Pliocene	Prevailing continental climate appears	Much pedogenic calcrete development
(5–2 Ma)	to indicate increasing desiccation	Lacustrine carbonates of the Lawford and Nadarra Formations developed in stagnant drainages. Eolian sands and soils on the top of Kennedy Range and similar plateaus
Early-Middle Pleistocene	Predominantly dry with slightly wetter periods. Exposure of the continental shelf during glacial periods	Development of thick coastal dunes (Tamala Limestone and equivalents). Remnants of inland dune fields are preserved locally
		Calcrete formation continued, as did dissection of pre- existing calcrete surfaces
Late Pleistocene (more than 40 000 years BP)	Marginally drier and probably cooler than today	Dunes presumably active in Western Australia. Extensive alluvial deposition in the flood-dominated, arid environ- ment of the Geraldton area
40 000 - 30 000 years BP	Onset of the last major glacial advance. Significantly wetter climate	High water levels in lakes and increased fluvial activity
25 000 - 15 000 years BP	Last glacial maximum	Lakes dried completely. Lunette development around playas was completed. Major unconsolidated dunefields of Western Australia developed
15 000 years BP - present-day	Transition from intense arid conditions to humid conditions	Mainly erosional
About 10 000 years BP	Temperatures slightly higher and rain- fall substantially higher than today	Mainly erosional

extent of the Antarctic ice cap correlated with palynological data to reconstruct Paleocene to Miocene climates. Christophel and Greenwood (1989) used both palynological and megafossil floras to reconstruct Eocene to Pliocene–Pleistocene climates. Much of the following summary is drawn from a review by Cockbain and Hocking (1990).

Late Mesozoic – Early Cainozoic

In the Paleocene and Eocene, Western Australia had a moist, temperate to tropical climate. Australia and an ice-free Antarctica were still linked in the Paleocene, via Tasmania, and lay in high southern latitudes (Kemp, 1978). The oceans around Western Australia at these latitudes were warmer than those of today. High evaporation over this warmer sea surface resulted in deep inland penetration of rain-bearing westerly winds from the Indian Ocean. The climate would have been much warmer and wetter than today, and more typical of tropical to subtropical regimes (Churchill, 1973). Marine deposition extended onto the coastal plains in two depositional episodes; Paleocene – Early Eocene and Middle–Late Eocene. Sea level was about 300 m above the present-day level in the Middle–Late Eocene.

Marine deposits of Cretaceous and younger age in the Eucla Basin indicate that a westward-opening gulf existed along Western Australia's southern margin in the Cretaceous, prior to complete separation of Antarctica and Australia in the Eocene (McGowran, 1973, 1978). Fed by warm Indian Ocean waters, this gulf would have had a significant effect on the climate of southern Australia by producing summer storms that penetrated far inland (Kemp, 1978).

Inland, a well-developed drainage system (van de Graaff et al., 1977) was active over a land surface that developed in the Late Cretaceous or Paleocene (Fig. 5). The drainages were active prior to the Late Eocene, and significant flow ceased before the Late Miocene. They are outlined by undulating duricrust surfaces and by chains of playa lakes. Some drainage is now internal but, when active, all the networks drained externally. The present internal drainages were shown by van de Graaff et al. (1977) to have been affected by a gentle Cainozoic epeirogeny after they became inactive.

Extensive silcrete and ferricrete developed approximately coevally (van de Graaff, 1983) during the Middle to Late Eocene, although in some areas duricrusts were formed earlier. Van de Graaff et al. (1977) and Jackson and van de Graaff (1981) argued that ferricrete and silcrete in the interior of Western Australia developed while the major drainage systems were active. This gives a period of formation that spanned the Early Cainozoic, and may have extended from Late Cretaceous to Early Miocene. Twidale et al. (1985) suggested that the earliest of the Hamersley Surfaces (their 'upland surface', stripped in the Eocene) contained pockets of pisolitic iron that could be remnants of a pre-Eocene laterite surface.

Deposits in the major palaeodrainages of Western Australia are primarily Eocene, and are little dissected except in the Pilbara area. Adjacent to the Pilbara, Late Eocene limestone in the Carnarvon Basin contains numerous ferruginous pisoliths, but younger units do not. This suggests that Western Australia as a whole was beginning to dry out in the Late Eocene, and that major drainages in the interior mostly had stopped flowing regularly by the latest Eocene. However, Oligocene ferricrete and silcrete on the west coast (Hocking et al., 1987) and in the Pilbara (Butt, 1985) indicate a seasonally moist climate.

Figure 5. Palaeodrainage systems in Western Australia. Modified after van de Graaff et al. (1977)

Middle Cainozoic

Circum-polar circulation of ocean water was initiated during the Oligocene as Australia continued to move further northward, away from Antarctica (Kemp, 1978). This drift continued during the Miocene. This, and the growing Antarctic ice cap, caused a deterioration to a more seasonally extreme climate with significant variations in temperature. The southern half of Australia became increasingly arid as general levels of precipitation decreased and temperatures fell. The last major transgression to affect near-coastal areas took place in the Middle Miocene, when marine limestones were deposited in the Carnarvon and Eucla Basins. In the Late Miocene, the climate became even cooler, though still temperate, as the Antarctic ice-sheet extended 300 to 400 km beyond its present limits (Kemp and Barrett, 1975). The Late Miocene cooling was short-lived, and temperatures in the Southern Ocean subsequently increased rapidly.

Late Cainozoic (Pliocene and Quaternary)

The climate of the Pliocene is less well known. The sparse data on the prevailing continental climate appear to indicate increasing desiccation (Bowler, 1976; Galloway and Kemp, 1977). We infer that much pedogenic calcrete development took place at this time. Other depositional episodes that probably occurred in the Pliocene are the widespread lacustrine carbonates of the Lawford Formation (Kimberley) and the Nadarra Formation (Carnarvon Basin), which developed in stagnant drainages, and the consolidated eolian sands and soils at the top of Kennedy Range and similar plateaus, which pre-date the present dissection of the plateaus.

During the Early to Middle Pleistocene the climate seems to have been predominantly dry (Galloway and Kemp, 1977), although slightly wetter periods, when the climate was not very different from the climate of today, are inferred from palaeosols in the coastal Tamala Limestone sequence. Periods of alternating aridity and humidity were caused largely by glacial maxima and minima. Near the coast, exposure of the continental shelf during glacial periods resulted in extensive, thick, coastal dunes. Remnants of inland dune fields are preserved locally. Calcrete formation continued, as did dissection of pre-existing calcrete surfaces.

In the Late Pleistocene (c.800 000–40 000 years BP) conditions were marginally drier and probably cooler than today. In eastern Australia there are indications of eolian activity at 300 000 and 120 000 years BP (Bowler, 1976), although the extent of activity and degree of aridity is less than in the period between 25 000 and 13 000 years BP; dunes were presumably also active in Western Australia. Wyrwoll (1979) considered that aridity in central coastal areas may have begun about 80 000 years BP. Extensive alluvial deposition occurred in a flood-dominated, arid environment in the Geraldton area between 80 000 and 40 000 years BP (Wyrwoll, 1984).

The period from 40 000 to 30 000 years BP represents the onset of the last major glacial advance, during which southern Australia experienced a significantly wetter climate. Regolith processes are dominated by both high water levels in lakes and increased fluvial activity.

The last period of significant activity of dunefields was during the last glacial maximum, between 25 000 and 15 000 years BP (Bowler, 1976; Wyrwoll, 1979). Maximum aridity was between 17 500 and 16 000 years BP, when lakes dried

completely, lunette development around playas was completed, and the major unconsolidated dunefields of Western Australia developed (Bowler, 1976).

Conditions generally remained dry between 15 000 and 10 000 years BP, but precipitation increased slightly as temperatures slowly rose (Bowler, 1976). This period is essentially transitional between the earlier intense arid conditions and later humid conditions nearer to those of today. About 10 000 years BP, temperatures were slightly higher and rainfall was substantially higher than today. This peak was followed by drier conditions culminating in today's climate.

Rognon and Williams (1977) disagreed slightly with Bowler's (1976) chronology by placing maximum aridity between 17 000 to 12 000 years BP, but they confirmed the general sequence. Wyrwoll (1979) noted that the climatic record for the period from 10 000 years BP to the present is very incomplete. He suggested that from 7400 to 6000 years BP the northwest underwent a humid phase, with higher rainfall than today. Between 6000 and 4500 years BP there was an arid phase in the southwest. In the extreme southwest there was higher rainfall between 6000 and 5000 years ago, followed by drier conditions until 2500 BP.

References

- ANAND, R. R., CHURCHWARD, H. M., SMITH, R. E., SMITH, K., GOZZARD, J. R., CRAIG, M. A., and MUNDAY, T. J., 1993a, Classification and atlas of regolith–landform mapping units: CSIRO/AMIRA Project P240A, Exploration and Mining Restricted Report 440R (unpublished).
- ANAND, R. R., PHAND, C., SMITH, R. E., MUNDAY, T. J., 1993b, Excursion 3. The regolith and its exploration and economic significance, *in* An international conference on crustal evolution, metallogeny and exploration of the Eastern Goldfields, Excursion Guidebook *compiled by* P. R. WILLIAMS and J. A. HALDANE: AGSO Record 1993/53, p. 75–100.
- BATES, R. L., and JACKSON, J. A., (editors), 1980, Glossary of Geology, Second edition: Falls Church, Virginia, American Geological Institute, 749p.
- BOWLER, J. M., 1976, Aridity in Australia: age, origins and expression in aeolian landform and sediments: Earth Science Review, v. 12, p. 279–310.
- BOWLER, J. M., 1977, Recent developments in reconstructing late Quaternary environments in Australia, in The Origin of the Australians edited by R. L. KIRK and A. G. THORNE: Australian Institute for Aboriginal Studies, Canberra.
- BOWLER, J. M., 1986, Spatial variability and hydrological evolution of Australian lake basins: analogue for Pleistocene hydrological change and evaporite formation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 21–41.
- BOWLER, J. M., HOPE, G. S., JENNINGS, J. N., SINGH, G., and WALKER, D., 1976, Late Quaternary climates of Australia and New Guinea: Quaternary Research, v. 6, p. 359–394.
- BUTT, C. R. M., 1985, Granite weathering and silcrete formation on the Yilgarn Block, Western Australia: Australian Journal of Earth Sciences, v. 32, p. 415–432.
- CHRISTOPHEL, D. C., and GREENWOOD, D. R., 1989, Changes in climate and vegetation in Australia during the Tertiary: Review of Palaeontology and Palynology, v. 58, p. 95–109.
- CHURCHILL, D. M., 1961, The Tertiary and Quaternary vegetation and climate in relation to the living flora of South Western Australia: University of Western Australia, PhD thesis (unpublished).
- CHURCHILL, D. M., 1968, The distribution and prehistory of *Eucalyptus diversicolor*, F. Muell., *E. marginata*, Donn ex Sm., and *E. calophylla*, R. Br. in relation to rainfall: Australian Journal of Botany, v. 16, p. 125–151.
- CHURCHILL, D. M., 1973, The ecological significance of tropical mangroves in the Early Tertiary floras of southern Australia: Geological Society of Australia, Special Publication no. 4, p. 79–86.
- COCKBAIN, A. E., and HOCKING, R. M., 1990, Chapter 8, Geological evolution; Phanerozoic, *in* Geology and mineral resources of Western Australia: Western Australia Geological Survey, Memoir 3, p. 750–755.
- FINKL, C. W., jnr, and FAIRBRIDGE, R. W., 1979, Palaeogeographic evolution of a rifted cratonic margin — S.W. Australia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 26, p. 221–252.
- GALLOWAY, R. W., and KEMP, E. M., 1977, Late Cainozoic environments in Australia: Australia BMR (now Australian Geological Survey Organisation), Record 1977/40 (unpublished) 34p.
- HAYS, J., 1967, Surfaces and laterites in the Northern Territory, *in* Landform studies from Australia and New Guinea *edited by* J. N. JENNINGS and J. A. MABBUTT: Canberra, Australian National University Press, p. 182–210.
- HOCKING, R. M., and COCKBAIN, A. E., 1990, Chapter 6, Regolith, *in* Geology and mineral resources of Western Australia: Western Australia Geological Survey, Memoir 3, p. 591–602.
- HOCKING, R. M., MOORS, H. T., and van de GRAAFF, W. J. E., 1987, The geology of the Carnarvon Basin, W.A.: Western Australia Geological Survey, Bulletin 133, 289p.
- JACKSON, M. J., and van de GRAAFF, W. J. E., 1981, Geology of the Officer Basin, Western Australia: Australia BMR (now Australian Geological Survey Organisation), Bulletin 206, 102p.
- KEMP, E. M., 1978, Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 24, p. 169–208.
- KEMP, E. M., and BARRETT, P. J., 1975, Antarctic glaciation and early Tertiary vegetation: Nature, v. 258, p. 507–508.
- McDONALD, R. C., ISBELL, R. F., SPEIGHT, J. G., WALKER, J., and HOPKINS, M. S., 1990, Australian soil and land survey field handbook, 2nd edition: Melbourne, Encarta Press Pty Ltd, 198p.
- McGOWRAN, B., 1973, Rifting and drift of Australia and the migration of Mammals: Science, v. 180, p. 759–761.
- McGOWRAN, B., 1978, The Tertiary of Australia, *in* Stratigraphic sequences and episodic geohistory: Third Regional Conference on Geology and Mineral Resources of Southeast Asia, Bangkok, Thailand, 1978, p. 73–80.

- PILLANS, B., 1998, Ancient weathering in an ancient landscape?: Australian National University Research School of Earth Sciences Annual Report, 1998, p. 107.
- PILLANS, B., and BATEMAN, R., 2000, Paleomagnetic dating of Phanerozoic weathering imprints, Mount Percy mine, Kalgoorlie, Western Australia, *in* Understanding planet earth: searching for a sustainable future *edited by* C. G. SKILBECK and T. C. T. HUBBLE: Australian Geological Convention, 15th, Sydney, NSW, 2000, Geological Society of Australia, Abstracts, no. 59, p. 390.
- ROGNON, R., and WILLIAMS, M. A. J., 1977, Late Quaternary climatic changes in Australia and North Africa: a preliminary interpretation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 21, p. 285–327.
- SIRCOMBE, K. N., and FREEMAN, M. J., 1999, Provenance of detrital zircons on the Western Australian coastline — implications for the geologic history of the Perth Basin and denudation of the Yilgarn Craton: Geology, v. 27, p. 879–882.
- STEWART, A. J., BLAKE, D. H., and OLLIER, C. D., 1986, Cambrian river terraces and ridgetops in central Australia — oldest persisting landforms?: Science, v. 233, p. 758–761.
- TAYLOR, G., and SHIRTLIFF, G., 2000, Weathering: cyclical or continuous? A southern perspective, *in* Understanding planet earth: searching for a sustainable future *edited by* C. G. SKILBECK and T. C. T. HUBBLE: Australian Geological Convention, 15th, Sydney, NSW, 2000, Geological Society of Australia, Abstracts, no. 59, p. 494.
- TWIDALE, C. R., HORWITZ, R. C., and CAMPBELL, E. M., 1985, Hamersley landscapes of the northwest of Western Australia: Revue de geologie dynamique et de geographie physique, v. 26, fasc. 3, p. 173–186.
- van de GRAAFF, W. J. E., 1981, Palaeogeographic evolution of a rifted cratonic margin S.W. Australia, discussion: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 34, p. 163–172.
- van de GRAAFF, W. J. E., 1983, Silcrete in Australia: geomorphological settings, textures, structures, and their genetic implications, *in* Residual deposits: surface related weathering processes and materials *edited by* R. C. L. WILSON: Geological Society, Special Publication no. 11, p. 159–166.
- van de GRAAFF, W. J. E., CROWE, R. W. A., BUNTING, J. A., and JACKSON, M. J., 1977, Relict early Cainozoic drainages in arid Western Australia: Zeitschrift für Geomorphologie, v. 21, p. 379–400.
- WYRWOLL, K. H., 1979, Late Quaternary climates of Western Australia evidence and mechanisms: Royal Society of Western Australia, Journal, v. 62, p. 129–142.
- WYRWOLL, K. H., 1984, The sedimentology, stratigraphy and paleoenvironmental significance of a Late Pleistocene alluvial fill central coastal areas of Western Australia: Catena, v. 11, p. 201–218.
- YOUNG, G. C., and LAURIE, J. R. (eds), 1996, An Australian Phanerozoic Timescale: Melbourne, Oxford University Press, 279p.

Appendix

Glossary

alluvium	unconsolidated detrital deposit formed in a stream or floodplain; deposited by a stream or running water (adj. alluvial)
black soil	grey to black clayey and silty soil, commonly with expansive clays; may have a gilgai pattern
breccia	a coarse-grained clastic rock composed of angular, broken rock fragments, either cemented or with a matrix
calcrete	calcareous duricrust
chemical rock	formed by precipitation; non-clastic; <50% detritus
coastal	located at or near the coast
colluvium	a) loose soil or rock fragments deposited by mass wasting at the base of a steep slope; b) alluvium deposited by runoff and sheet erosion at the base of a slope
debris	loose material detached from rock masses by chemical or mechanical means, consisting of rock fragments, soil material and sometimes organic matter
deflation	removal of clay- and silt-size particles by wind action. A form of wind erosion
detritus	loose material derived by mechanical erosion from older rocks and moved from its place of origin (adj. detrital)
duricrust	hard layer in the soils of semiarid climates formed by precipitation; see also ferricrete, silcrete, and calcrete
eluvium	a) fine soil deposited by wind; b) weathering residue (adj. eluvial)
eolian	transported and deposited by wind
erosional	pertaining to or produced by erosion
estuarine	deposited in estuaries
ferricrete	ferruginous duricrust
fluvial	produced by the action of a stream or river
gibber	stony/pebbly plain, commonly formed by deflation
gilgai	microrelief associated with expansive clays
lacustrine	formed in a lake, on a lake margin; or a region characterized by lakes
mangrove swamp	marine swamp characterized by mangrove vegetation
marine sediments	dominated by marine processes or provenance
mass wasting	down-slope transport of material by gravity; not dominated by water
regolith	layer or mantle of loose, non-cohesive or cohesive rock material comprising rock wastes of all sorts
relict	surviving landform, after decay and disintegration
residual	a) feature remaining after erosion; b) material left after weathering
residue	accumulation of rock debris formed by weathering, essentially in place, with soluble components removed (syn. residuum)
rubble	loose mass of angular rock fragments, commonly overlying outcropping rock; the unconsolidated equivalent of a breccia
sandplain	sand-covered plain of uncertain, or mixed eolian and residual, origin
scree	loose talus; loose fragmental material lying on or mantling a slope
sheetwash	material transported by the water of a sheetflood
silcrete	siliceous duricrust
talus	loose rock fragments at the base of a steep slope, deposited chiefly by gravitational falling, rolling or sliding
transported	carried by natural agents

Reference

BATES, R. L., and JACKSON, J. A., (editors), 1980, Glossary of Geology, Second edition: Falls Church, Virginia, American Geological Institute, 749p.