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INTRODUCTION
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Motivation (1)

Wind Power Global Capacity and Annual Additions, 2005-2015
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Motivation (1)

Matriz Elétrica Brasileira (GW)
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Motivation (1)

OFFSHORE WIND: MAIN ADVANTAGES®

greater area available for siting large projects;

proximity to cities and other load centers;

generally higher wind speeds compared with onshore locations;
lower intrinsic turbulence intensities;

lower wind shear.

*Manwell, McGowan, Rogers
Wind Energy Explained

siemens.com



Motivation (1)

*Manwell, McGowan, Rogers
Wind Energy Explained

OFFSHORE WIND: MAIN CHALLENGES®

higher project costs due to a necessity for specialized installation and
service vessels and equipment and more expensive support structures;

more difficult working conditions;

more difficult and expensive installation procedures;

decreased availability due to limited accessibility for maintenance;
necessity for special corrosion prevention measures




Motivation (1)

Moving further offshore: Floating Offshore Wind Turbines

H H TEP Semi-Sub Spar
Monopile Jacket/Tripod Floating Structures Floating Structures
0-30m, 1-2 MW  25-50m, 2-5 MW >50m, 5-10MW >120m, 5-10MW

Source: windpowerengineering.com
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Fixed (jaguets or monopiles)

Floating
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Motivation (2)

Concepts adopted for

the FWTs come from
the offshore oil&gas
industry. Brazil is one of
the leaders in R&D for
the analysis and design
of deep water offshore

systems;

WindFloat (Portugal)
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FWT concepts: from oil&gas to wind power extraction

Fukushima’s
semi-submersible demonstration project

Japan

(mitshubishicorp.com)




Motivation (2)

FWT concepts: from oil&gas to wind power extraction
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Motivation (2)

FWT concepts: from oil&gas to wind power extraction

Statoil’s Hywind (Norway)
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Motivation (2)

Hywind Scotland

15t floating wind farm

nationalgeographic.com


https://www.youtube.com/watch?reload=9&v=sgCA5e7K7r8

AERODYNAMICS




Aerodynamics

Aerodynamic models

FWT design:
Blade Element Momentum
theory

Refined R&D analysis :
CFD simulations

Turbulent Viscosity Ratio
50.000 90.000 130.00 170.00 210.00 250.00

Mariana Lopes Pinto: Analyzing scale
effects on NREL's 5SMW turbine




Aerodynamics

Tower motions (6dof) must be considered: relative instantaneous
wind velocities along the blades
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Intact and Damaged Stability

Criteria usually applied to floating offshore units.

Class. Soc. Rules, e.g.:
DNV 0S-J103 — Design of Floating Wind Turbine Structures (2013)

* Righting moment

Heeling Downflooding
moment

angle

Second
intercept

Moment

Angle of inclination




Wave Frequency Motions

Assessment of:

Example of industry common practice:

Himiting r'notlons and — Max axial accel. nacelle: 0.2g — 0.3g
accelerations on tower-top

Structural loadings | Nacelle cover
Operation uptime/downtime Control

Hub

Rotor

th.'e train Generator

Mam frame yaw system

Forces/Moments applied here Gearbox housing

Torque/Speed
controlled here

Motions i |
(Applied on bedplate) . |

FIGURE 3. MBS MODEL OF 5-MW REE GEARBOX [8]. Nejad et al. (2017) OMAE2017-62314




Wave Frequency Motions

Methods:

Frequency-domain analysis
* Radiation-Diffraction codes

Time-domain analysis
e Radiation-Diffraction codes
* Morison Equation




Wave Frequency Motions
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Wave Frequency Motions

* CASE-STUDY: NREL's OC4

Summary of semisubmersible properties

Depth of platform base below S\L (total draft) 20 m
Elevation of main column (lower base) above SWL | 10m
Elevation of offset columns above SWL 12m
Length of upper columns 26 m
Length of base columns 8m
Depth to top of base columns below SWL 14m
Diameter of main column 65m
Diameter of offset (upper) columns 2m
' Diameter of base columns 24 m
FORRtt Diameter of pontoons and cross braces 16m
Platform mass, including ballast 13473E+7 kg
{ Platform CM location below SWL 1346 m
/ Piatiorm roll inertia about CM 5.82TE+¢S b‘.g-m’
Platform pitch inertia about CM §.827E+9 kg m*
776m Platform yaw inertia about CM 1226E+10 kg-m;
+ Heave Number of mooring lines 3
Angle between adjacent lines 120°
Deplth to anchars below SWL (waler depth) 200 m
Towerfreeboard Depth to fairleads balow SWL 14m
Radius to anchors from platform centerline 8376m
+ Surge
E Radius to faireads from platform centerline 40.868 m
SWL Unstretched moorng line length 835.5m
26m Mooring line diameter 00766 m
20m Equivalent mooring line mass density 11335 kg/m
Equivalent mooring line mass in water 108.63 kg/m
fm Equivalent mooring line extensicnal stiffness 7536E+@ N

OC4-DeepCwind floating wind system design

Source: Definition of the Semisubmersible Floating System for Phase Il of OC4 (NREL)




Wave Frequency Motions
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Wave Frequency Motions

. Heave
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Low Frequency Motions (slow drifts)

Slow-drift forces: non-linear (second-order) forces induced by
waves with low frequencies of oscillation

Small magnitudes if compared to the 1%t order (wave

frequency) loads, but induce resonant responses of the
moored system

Dynamic offset in waves: mean-drift + slow-drifts

Must be considered in the mooring system design




Low Frequency Motions (slow drifts)

* Example of surge response in irregular waves (Hs=2m; Tp=10s)

Surge - Time Domain

—Matriz Modificada
—NMatriz Padrao

Frequency (rad/s)
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Low Frequency Motions (slow drifts)

Previous joint R&D project:

Investigation on the wave drift forces
on a FWT semi-submersible floater
and applications to mooring system
design
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(1) Hydrodynamics

* Semi-submersible floater for a 1.5MW
wind turbine under design as part of
AZIMUT project (Spanish CENIT R&D
program)

* To be installed in Spanish North Coast, in
a water depth of 100m

* Mooring system composed of 3 catenary
chain lines

* Extreme sea states
* Wave Hs up to 13,4m
* Currentupto 1.2 m/s
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(1) Hydrodynamics

Experimental verification campaigns:
USP team responsible for the * CEHIPAR El Pardo (fixed model)
hydrodynamic modelling of the  EC Nantes (moored model)
FWT -y = oy

LOPEZ-PAVON, C.; WATAI, R.A.; RUGGERI, F.; SIMOS, A.N.; SOUTO-IGLESIAS, A., Influence of
wave induces second-order forces in semi-submersible FOWT mooring design. J. Offshore
Mechanics and Arctic Engineering 137 (3) 031602, 2015

SIMOS, A.N.; RUGGERI, F.; WATAI, R.A.; SOUTO-IGLESIAS, A.; LOPEZ-PAVON, C., Slow-drift of
a floating wind turbine: An assessment of frequency-domain methods based on model
tests, Renewable Energy 116, pp.133-154, 2018




(1) Hydrodynamics

A thorough analysis of the performance of available approximations
for computing the nonlinear force QTFs was made, with the help of

extensive model tests

Renewalble Energy

Surge Response Spectrum Hs=5m Tp=10s (=10-15%
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