

An Introduction to Floating Wind Turbines

Alexandre Nicolaos Simos

alesimos@usp.br

Naval Arch & Ocean Eng. Dept. EPUSP

INTRODUCTION

Cenário: fontes de geração elétrica - Europa

Wind Power Global Capacity and Annual Additions, 2005-2015

+2.6 +0 +1 +1.5 +1.1 +0.8 +2.8

Italy

Brazil

France

Canada

BRAZIL 10.6 GW (installed) + 7.4 GW (contracted) Onshore Potential ~500GW

Source: FAPESP 2016

Source: Renewables 2015 Global Status Report

+5.7

Germany

India

Spain

United

Kingdom

+8.6

United

States

90

60

30

0

China

Matriz Elétrica Brasileira (GW)

BRAZIL 10.6 GW (installed) + 7.4 GW (contracted) Onshore Potential ~500GW

Source: FAPESP 2016

Fonte: ABEEólica - Dados mensais de Dezembro 2016

OFFSHORE WIND: MAIN ADVANTAGES*

- greater area available for siting large projects;
- proximity to cities and other load centers;
- generally higher wind speeds compared with onshore locations;
- lower intrinsic turbulence intensities;
- lower wind shear.

*Manwell, McGowan, Rogers Wind Energy Explained

vox.com

*Manwell, McGowan, Rogers Wind Energy Explained

OFFSHORE WIND: MAIN CHALLENGES*

- higher project costs due to a necessity for specialized installation and service vessels and equipment and more expensive support structures;
- more difficult working conditions;
- more difficult and expensive installation procedures;
- decreased availability due to limited accessibility for maintenance;
- necessity for special corrosion prevention measures

Moving further offshore: Floating Offshore Wind Turbines

Source: windpowerengineering.com

Fixed (jaquets or monopiles)

Floating

Design: New Concerns

- Seakeeping
- Effects of floater motions on the turbine performance
- Mooring design

Concepts adopted for the FWTs come from the offshore oil&gas industry. Brazil is one of the leaders in R&D for the analysis and design of deep water offshore systems;

WindFloat (Portugal)

FWT concepts: from oil&gas to wind power extraction

semi-submersible

Fukushima's demonstration project Japan (mitshubishicorp.com)

FWT concepts: from oil&gas to wind power extraction

FWT concepts: from oil&gas to wind power extraction

SPAR

Statoil's Hywind (Norway)

AERODYNAMICS

Aerodynamics

Aerodynamic models

FWT design: Blade Element Momentum theory

Refined R&D analysis : CFD simulations

Mariana Lopes Pinto: Analyzing scale effects on NREL's 5MW turbine

Aerodynamics

Tower motions (6dof) *must be considered*: relative instantaneous wind velocities along the blades

SEAKEEPING

Intact and Damaged Stability

Criteria usually applied to floating offshore units.

Class. Soc. Rules, e.g.: DNV OS-J103 – Design of Floating Wind Turbine Structures (2013)

Methods:

Frequency-domain analysis

Radiation-Diffraction codes

Time-domain analysis

- Radiation-Diffraction codes
- Morison Equation

• CASE-STUDY: NREL's OC4

OC4-DeepCwind	floating win	d system design
---------------	--------------	-----------------

Depth of platform base below SWL (total draft)	20 m
Elevation of main column (tower base) above SWL	10 m
Elevation of offset columns above SWL	12 m
Length of upper columns	26 m
Length of base columns	6 m
Depth to top of base columns below SWL	14 m
Diameter of main column	6.5 m
Diameter of offset (upper) columns	12 m
Diameter of base columns	24 m
Diameter of pontoons and cross braces	1.6 m
Platform mass, including ballast	1.3473E+7 kg
Platform CM location below SWL	13.46 m
Platform roll inertia about CM	6.827E+9 kg-m2
Platform pitch inertia about CM	6.827E+9 kg-m ²
Platform yaw inertia about CM	1.226E+10 kg-m ²
Number of mooring lines	3
Angle between adjacent lines	120°
Depth to anchors below SWL (water depth)	200 m
Depth to fairleads below SWL	14 m
Radius to anchors from platform centerline	837.6 m
Radius to fairleads from platform centerline	40.868 m
Unstretched mooring line length	835.5 m
Mooring line diameter	0.0766 m
Equivalent mooring line mass density	113.35 kg/m
Equivalent mooring line mass in water	108.63 kg/m
Equivalent mooring line extensional stiffness	7.536E+8 N

Source: Definition of the Semisubmersible Floating System for Phase II of OC4 (NREL)

• USP METIS

CARMO, L.H.S., Application of Morison's Equation to the Hydrodynamic Modelling of FWT, Final Project in Naval Eng., EPUSP, 2016 (in portuguese)

• USP METIS x WAMIT®

CARMO, L.H.S., Application of Morison's Equation to the Hydrodynamic Modelling of FWT, Final Project in Naval Eng., EPUSP, 2016 (in portuguese)

Low Frequency Motions (slow drifts)

Slow-drift forces: non-linear (second-order) forces induced by waves with low frequencies of oscillation

Small magnitudes if compared to the 1st order (wave frequency) loads, but induce resonant responses of the moored system

Dynamic offset in waves: mean-drift + slow-drifts

Must be considered in the mooring system design

Low Frequency Motions (slow drifts)

Example of surge response in irregular waves (Hs=2m; Tp=10s)

Low Frequency Motions (slow drifts)

Previous joint R&D project:

Investigation on the wave drift forces on a FWT semi-submersible floater and applications to mooring system design

(1) Hydrodynamics

- Semi-submersible floater for a 1.5MW wind turbine under design as part of AZIMUT project (Spanish CENIT R&D program)
- To be installed in Spanish North Coast, in a water depth of 100m
- Mooring system composed of 3 catenary chain lines

- Extreme sea states
 - Wave Hs up to 13,4m
 - Current up to 1.2 m/s

(1) Hydrodynamics

USP team responsible for the hydrodynamic modelling of the FWT

Experimental verification campaigns:

- CEHIPAR *El Pardo* (fixed model)
- EC Nantes (moored model)

LOPEZ-PAVON, C.; WATAI, R.A.; RUGGERI, F.; SIMOS, A.N.; SOUTO-IGLESIAS, A., **Influence of wave induces second-order forces in semi-submersible FOWT mooring design**. J. Offshore Mechanics and Arctic Engineering 137 (3) 031602, 2015

SIMOS, A.N.; RUGGERI, F.; WATAI, R.A.; SOUTO-IGLESIAS, A.; LOPEZ-PAVON, C., **Slow-drift of** a floating wind turbine: An assessment of frequency-domain methods based on model tests, Renewable Energy 116, pp.133-154, 2018

(1) Hydrodynamics

Ξ

A thorough analysis of the performance of available approximations for computing the nonlinear force QTFs was made, with the help of extensive model tests

