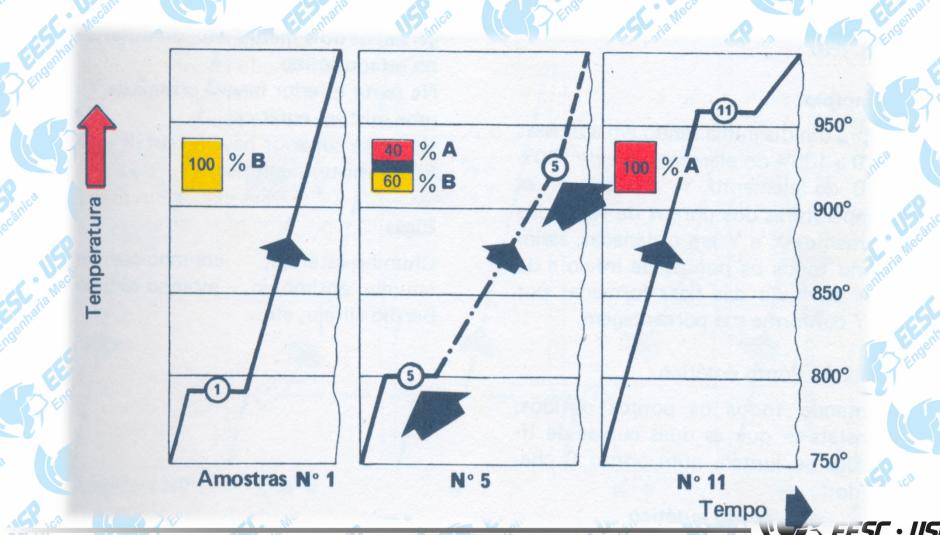


MATERIAIS DE ENGENHARIA - (SEM 5908) -

Aula 04 – Diagrama de Equilíbrio entre as Fases

Prof. Dr. João Manuel Domingos de Almeida Rollo

Prof. Dr. Carlos Alberto Fortulan


Diagrama de Equilíbrio entre as Fases

O fenômeno de fusão e solidificação para um só elemento, metal puro, é feito a uma temperatura constante chamada ponto de fusão. Para a mistura de metais, a liga começa a fundir a uma temperatura e passa inteiramente ao estado líquido a uma temperatura mais elevada ou inversamente, do seu estado líquido ao estado sólido, a um temperatura mais baixa. Entre estas duas temperaturas a liga forma uma massa pastosa constituída de metal líquido e de cristais sólidos, cujas proporções variam em função da temperatura.

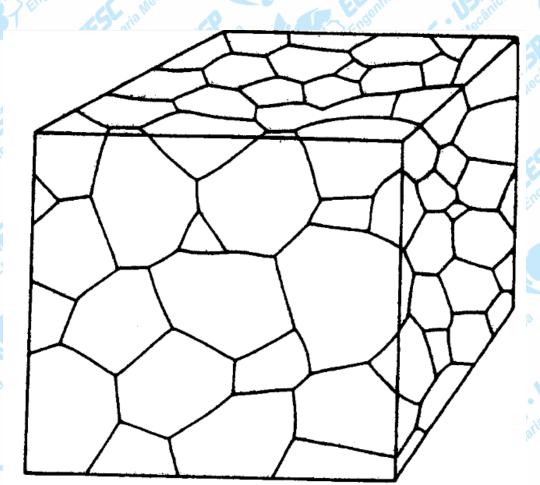
^rEngenharia Mecânica

Figura 10a – curvas de aquecimento para três composições de uma liga dando uma solução sólida

Para as amostras de número 1 e 11, temos cada elemento puro e seus respectivos pontos de fusão dados pelas ordenadas, onde a temperatura permanece constante durante o processo.

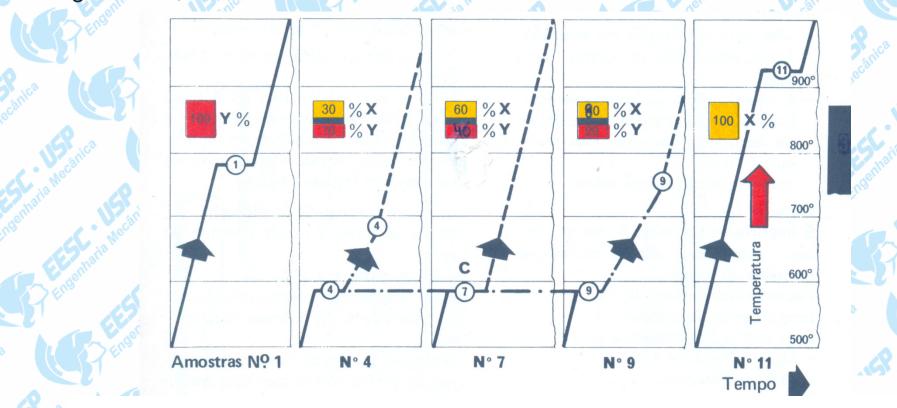
Para a amostra de número 5, temos uma mistura dos dois elementos (A+B) e podemos observar que a fusão não ocorre a uma temperatura constante e sim, varia de acordo com a reta tracejada.

Um diagrama de equilíbrio nos dá informações sobre o estudo dos metais ou ligas metálicas e suas respectivas transformações para cada composição da liga.


Para traçar um diagrama de equilíbrio, coloca-se em abscissas de 0 a 100 % do elemento A e 100 % a 0 do elemento B, sendo A + B = 100 %. Em ordenadas, coloca-se as temperaturas, depois anotam-se todos os pontos de início e fim da fusão chamada "solidus", uma outra curva de fim de fusão chamada "liquidus".

Sistema isoformo é aquele que seus componentes são completamente solúveis (miscíveis) tanto no estado líquido quanto no estado sólido, ou seja, é uma liga de solução sólida simples (figuras 10a, 10b e 10c).

A figura 10c ilustra uma liga de Ni-Cu que forma uma solução sólida quaisquer que sejam as porcentagens dos elementos.


A figura 10c – microestrura monofásica policristalina vista em três

dimensões

Diagrama de Equilíbrio entre as Fases

Uma mistura eutética se solidifica como uma mistura de duas fases, com exceção de uma faixa de composição onde os metais são completamente solúveis; isto ocorre no ponto eutético, conforme as figura 10d, 10e e 10f.

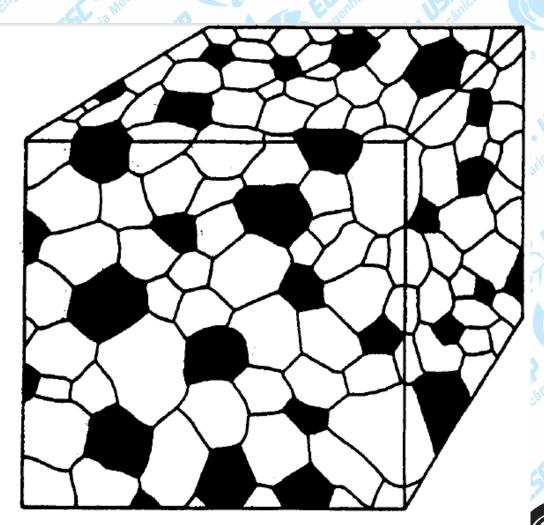

Engenharia Mecânica

Diagrama de Equilíbrio entre as Fases

A figura 10f — microestrutura bifásica policristalina vista em três Materiais de Engenharia (SEM 5908) - ROLLO JMDA, FORTULAN CA (2017)

Engenharia Mecânica

No diagrama Cd-Zn, observamos que há um ponto onde o líquido (L) transforma-se diretamente em sólido (a+b) sem passar por uma fase intermediária. A este ponto damos o nome de eutético, onde para essa liga equivale a uma composição aproximada de 26,5% de Zn e 73,5% para diferentes composições.

- a) 0,5% Zn e 99,5% Cd (em porcentagem em peso): ao baixar a temperatura, atingindo a linha líquidos, começam a se formar os primeiros cristais de cádmio. Neste caso, como temos uma baixa porcentagem de Zn, podemos considerar cádmio puro (composição hipoeutética).
- b) 3% Zn e 97% Cd (em porcentagem em peso): caso quase análogo ao anterior, ocorrendo pequenas precipitações do elemento zinco nos contornos dos grãos do cádmio. Observe que o limite do zinco do cádmio já foi ultrapassado.

- c) 10% Zn e 90% Cd (em porcentagem em peso): a medida que a liga se resfria, ela forma alguns cristais (primários) da fase α ou dentritas ricas em Cd (não facetadas), em um líquido remanescente. Neste caso estamos na faixa de solidificação da liga 10% de Zn e 90 % de Cd. A fase líquida tem agora a composição eutética e ao alcançar a temperatura eutética sofre reação L→ α + β. Ao completar a reação, digamos a 260º, todo líquido eutético mudou para uma mistura das fases α e β , o chamado microconstituinte eutético. A aparência da fotomicrografia é: dentritas não facetadas ricas em Cd dentro ou em uma matriz eutética.
- d) 15% Zn e 85% Cd (em porcentagem em peso): caso análogo ao anterior, só que as dentritas de Cd são em menores quantidades.

- e) Liga eutética: temos o típico microconstituinte eutético, sendo a mistura dos dois elementos em forma de lamelas alternadas das duas fases presentes. Aplicando a regra de Gibbs no ponto eutético temos que C=2 e P=3, portanto, F=1, ou seja, a transformação dará a uma temperatura constante, como em um metal puro.
- f) 23% Zn e 77% Cd (em porcentagem em peso): liga hipereutética. Dentritas de Zn em uma matriz eutética.
- g) 40% Zn e 60% Cd (em porcentagem em peso): Caso análogo ao anterior, só que as dentritas de Zn são em maiores quantidades.

Engenharia Mecânica

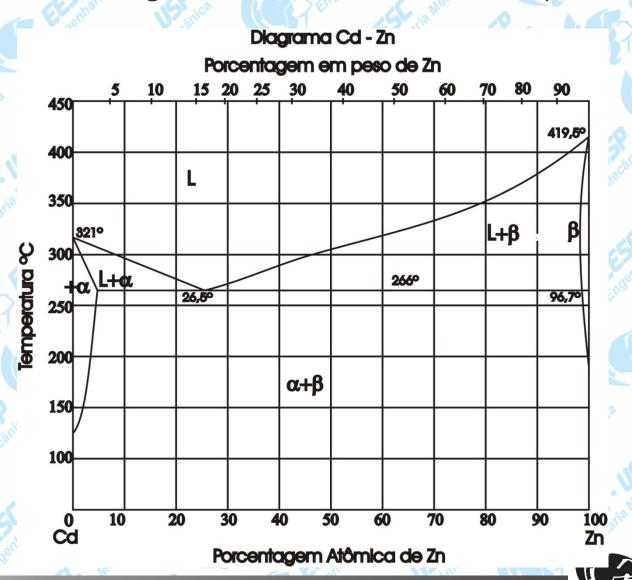
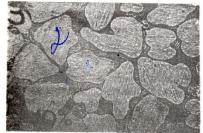


Figura b



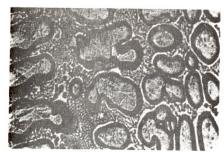

Figura d

Figura e

Regra das Fases de Gibbs

Quando metais ou ligas metálicas são submentidas a modificações de pressão, temperatura ou concentração, estas podem sofrer transformações as quais, no fim de determinado período de tempo, mantidas as condições, atingem o equilíbrio, e a Regra das Fases de Gibbs requer que nesse instante:

$$F = C + 2 - P$$

Onde: F= graus de liberdade;

C = componentes e;

P= número de fases.

Exemplo:

Para um metal puro que possui fase sólida e líquida em equilíbrio, temos:

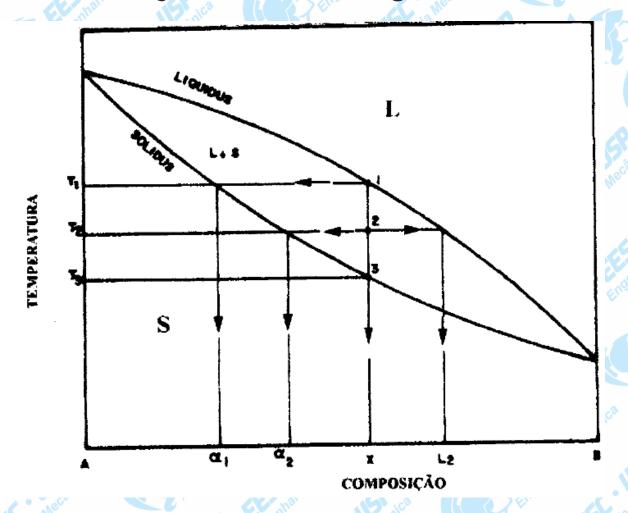
$$C = 1 e P = 2$$

 $F = 1 + 2 - 2$
 $F = 1$

Portanto, temos um grau de liberdade e se nos utilizarmos deste grau de liberdade para fixar a pressão, a temperatura é então automaticamente determinada.

Notamos que o inverso também é válido, já que para este caso fixamos a temperatura, teremos a pressão em que o sistema deverá estar para o equilíbrio (sólido + líquido).

Suponhamos agora , um sistema metálico de dois componentes com fases líquidas e sólidas em equilíbrio:


$$C = 2 e P = 2$$

 $F = 2 + 2 - 2$
 $F = 2$

Teremos então 2 graus de liberdade e se fixarmos a pressão, teremos ainda um grau de liberdade que pode ser a temperatura; portanto para este caso, para cada pressão fixada podemos ter várias temperaturas, nas quais há (sólido + líquido) em equilíbrio.

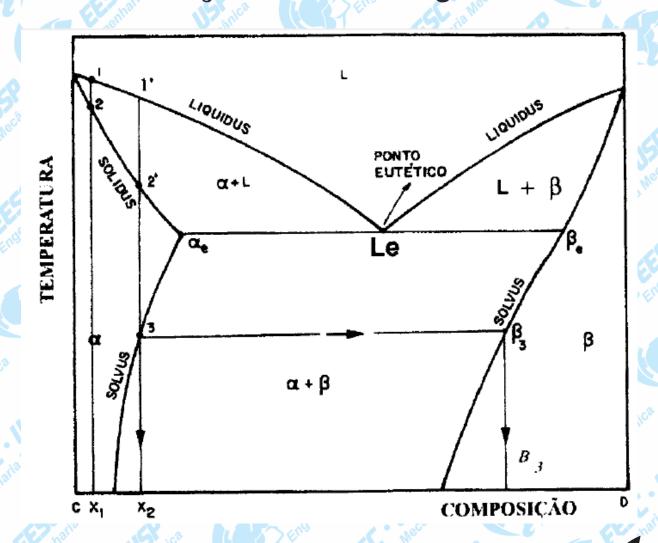
Estudo da Solidificação de uma Liga do Sistema Isoformo

A figura 11 – diagrama de equilíbrio para uma liga isoforma

Estudo da Solidificação de uma Liga do Sistema Isoformo

Tomamos uma liga de concentração X do elemento B e (1 - X) do elemento A no estado líquido, a figura 11a, quando resfriamos, obtemos:

- a) **Isotérmica T₁ (ponto 1):** α_1 é a composição do primeiro cristal a solidificar, que é obtida prolongando a isoterma desta temperatura até atingir a linha solidus.
- b) Isotérmica T_2 : continuando o resfriamento e estando no ponto 2, a composição da fase líquida será L_2 que é obtida prolongando a isoterma desta temperatura até atingir a linha liquidus. A composição da fase sólida será α_2 .
- c) **Isotérmica T₃:** não há mais modificação de fase (ponto 3) e sua composição será X% de sólido.


OBSERVAÇÃO:

- 1) Neste caso (sistema isoformo), temos uma solução sólida dos elementos A e B, para qualquer composição. Ex.: Cu-Ni
- 2) Observe que a fase sólida e líquida contém elementos A e B dissolvidos.

Engenharia Mecânica

Estudo da Solidificação de uma Liga Eutética

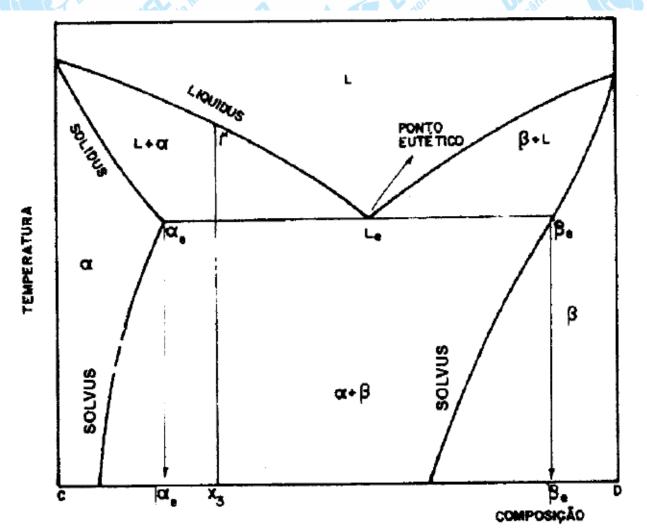
A figura 11b – diagrama de equilíbrio para uma liga eu

Estudo da Solidificação de uma Liga Eutética

Com o abaixamento da temperatura imposta à composição x₁, cruzamos a linha líquidus (ponto 1) e já estando no começo do campo α+L, iniciam a formação dos primeiros cristais da fase a, figura 11b. Prosseguindo o resfriamento, as composições irão variar segundo as linhas solidus e líquidos (Trecho 1 a 2, sentido vertical).

Ao atingir o ponto 2 na linha solidus, o restante do líquido se solidifica e toda a massa no estado sólido fica com a composição x₁; com o abaixamento da temperatura não há modificações de fases.

Consideremos outra liga com composição x_2 , também no estado líquido (figura 11b). As transformações são idênticas às anteriores até ser atingido o ponto 3.


Ao ser atingido o ponto 3 sobe a linha solvus, começam a aparecer os primeiros cristais da fase de composição β_3 , pois as linhas solvus delimitam os máximos de um elemento que podem estar dissolvidos no outro.

Portanto, temos para a liga de composição, uma estrutura monofásica a e para a liga de composição x_2 uma estrutura bisfásica $\alpha + \beta$, onde no ponto 3 temos $\alpha = x_2$ e $\beta = \beta_3$. Com o abaixamento da temperatura, as composições irão variar segundo as duas linhas solvus.

A figura 11c – diagrama de equilíbrio de uma liga eutética (visando a composição X₃)

A figura 11c mostra a solidificação de uma liga de composição x₃, inicialmente na fase líquida.

Ao ser atingida a linha líquidus (ponto 1"), inicia-se a solidificação que prossegue de maneira semelhante a anterior. Os cristais da fase a vão se enriquecendo do elemento D, ao mesmo tempo que o líquido; as proporções entre sólido e líquido variam até ser atingida a temperatura do eutético (T_e).

O líquido remanescente a essa temperatura tem composição eutética L_e e se solidifica apresentando duas fases a e b, cujas composições são datadas pelos pontos a₂ e b₂.

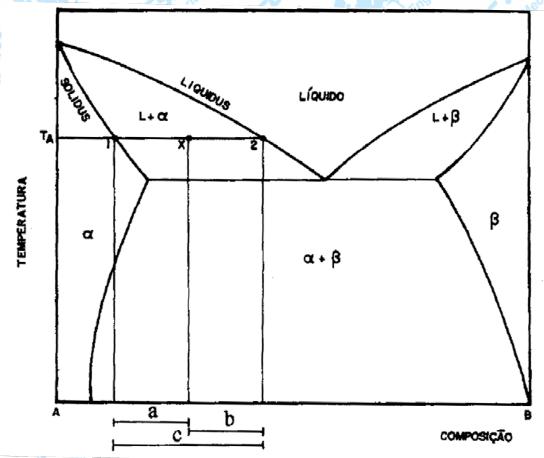
Com o resfriamento posterior das fases presentes, a e b têm suas composições alteradas, segundo as duas linhas solvus.

As ligas cujas composições estão compreendidas a esquerda do ponto eutético são denominadas hipoeutéticas e as de composição localizadas a direita, hipereutéticas.

A transformação $L = \alpha + \beta$, ou seja, um líquido dando dois sólidos diferentes, caracteriza o sistema eutético, por outro lado, se o diagrama analisado apresentar as transformações descritas abaixo, temos os seus respectivos sistemas:

$$\gamma = \alpha + \beta$$
 (sistema eutetóide)
L+ $\alpha \rightarrow \beta$ (sistema peritético)
 $\beta + \alpha \rightarrow \gamma$ (sistema peritetóide)
L \rightarrow \alpha + L_1 (sistema monotético)
L_1 + L_2 \rightarrow \beta (sistema sintético)

OBSERVAÇÃO:


as letras gregas representam as fases sólidas presentes e os símbolos L, L_1 e L_2 , as fases líquidas.

Regra da Alavanca

Consideremos o diagrama hipotético de uma liga do sistema eutético com a composição X e na temperatura T_A.

Supondo a liga no campo L + α (ponto X), como determinar as porcentagens de líquido (L) e sólido (a) nessa situação?

- 1. Traçamos a isotérmica T_A, passando por X;
- 2. Quando a isotérma cruza a linha líquida temos neste ponto de cruzamento 100% de líquido (ponto 2);
- Quando a isoterma cruza a linha solidus temos neste ponto de cruzamento 100 % de sólido (ponto 1)
- 4. O seguimento "a" nos dá a proporcionalidade com relação à fase sólida analogamente o seguimento "b" à fase líquida e finalmente "c" o total de fases $(L+\alpha)$;
- 5. % de líquido no ponto X: $x = \frac{segmento "a"}{segmento "c"}$
- 6. % de sólido no ponto X: $x = \frac{segmento "b"}{segmento "c"}$

Essa relação inversa que toma como ponto de apoio o X (daí o nome Regra da Alavanca) e a composição total das fases, funciona como uma regra simples para calcular as quantidades relativas de fases em equitorio.