
The Comparison of Processing Efficiency of
Spatial Data for PostGIS and MongoDB

Databases

Dominik Bartoszewski, Adam Piorkowski2[0000−0003−4773−5322], and Michal
Lupa1[0000−0002−4870−0298]

1 Department of Geoinformatics and Applied Computer Science
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Cracow, Poland

mlupa@agh.edu.pl
2 Department of Biocybernetics and Biomedical Engineering

AGH University of Science and Technology,
A. Mickiewicza 30 Av., 30–059 Cracow, Poland

Abstract. This paper presents the issue of geographic data storage in
NoSQL databases. The authors present the performance investigation
of the non-relational database MongoDB with its built-in spatial func-
tions in relation to the PostgreSQL database with a PostGIS spatial
extension. As part of the tests, the authors designed queries simulating
common problems in the processing of point data. In addition, the main
advantages and disadvantages of NoSQL databases are presented in the
context of the ability to manipulate spatial data3

Keywords: spatial databases · NoSQL · GIS · PostGIS · MongoDB ·
query preformance.

1 Introduction

According to IBM estimates, 90% of the world’s data has been created in the last
two years. Other forecasts say that in 2025 there will be 175 ZB of data in the
world, which means an increase from 33 ZB in 2018. This data is big data. This
increase also applies to spatial data, which have particularly gained importance
due to mobile devices equipped with geolocations [28, 32, 18], constellations of
various geostationary and non-geostationary satellites [27, 23, 25, 20] Volunteer

3 This is the manuscript of:

Bartoszewski D., Piorkowski A., Lupa M.: The Comparison of Processing
Efficiency of Spatial Data for PostGIS and MongoDB Databases. BDAS 2019.
Springer, CCIS, vol. 1018, 2019, pp 291–302.

The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-19093-4_22 .

2 D. Bartoszewski et al.

Geographic Information [9], or finally Global Positioning System [14]. It should
also be added that spatial data have a decidedly different character than al-
phanumeric information, hence the increasing amount of this type of data forces
the use of a dedicated approach to handle it [6, 24, 19, 31, 12, 26, 17, 11].

The processing of spatial data has been discussed in the literature since
the beginnings of GIS [22]. Analyzing the solutions available in the literature,
it is worth paying attention to two issues. First, the strategies for optimizing
geospatial queries are very different from the classic optimization methods [7,
10]. The second issue is that all classical methods of geospatial queries are tested
on data whose size is significantly different from the size considered in the context
of Big Data.

The problem of large data amount is inseparably connected with the NoSQL
databases [30, 13, 16]. As recent years have shown, NoSQL is a great alternative
for RDBMS in the context of web applications based on large data sets [15,
8]. However, it should be borne in mind that the price for this is the lack of
fulfillment of assumptions ACID. In the field of NoSQL databases and spatial
data, it is worth quoting the authors’ research [33], where MongoDB capabilities
were tested for processing data from shapefiles. The article [21] presents the
method of indexing spatial data in document based NoSQL.

Analyzing the above issues, the question arises: what strategy do we have to
adopt when there is a need to process a dozen TB of GPS logs saved in the form
of PointGeometry? Is the replacement of RDBMS by NoSQL crucial in this case?
The natural answer to this question seems to be transferring the entire database
to the NoSQL. Nevertheless, as mentioned earlier, spatial data and the way they
are processed require a completely different approach. Moreover, as shown in
[29], even well-known RDBMS systems have problems with the implementation
of geospatial functions. Therefore, in addition to the profits related to queries
speed, there also should be examined the available geospatial functions offered
by NoSQL systems.

In this work we are clearing the abovementioned issues. First of all, the
performance of RDBMS and NoSQL for classic spatial queries, which are based
on point and polygon data, were compared. What is more, the functionalities
offered by the most popular free RDBMS and NoSQL systems were also verified.

2 Test environment

According to the DB-Engines ranking, the most popular open source and non-
relational data base for handling spatial information is the MongoDB document
database [1]. It is written in C ++ and is licensed under the GNU AGPL open
license [5]. It uses objects in the GeoJSON format to store spatial data. Mon-
goDB supports also geospatial indexes as (2D indexes) and spherical indexes
(2D Sphere). The RDBMS that has been selected for research purposes is Post-
greSQL with the PostGIS spatial extension. The PostgreSQL database is a pop-
ular object-relational database management system (ORDBMS).

The Comparison of Processing Efficiency of Spatial Data ... 3

The PostGIS extension provides more than a thousand geospatial functions
and contains all of the 2D and 3D spatial data types. Compared to PostGIS,
MongoDB has only three geospatial functions: geoWithin, geoIntersects and
nearSphere. The function geoWithin corresponds to the function S Within
in PostGIS, where the geoIntersects is related to the ST Intersection. The
nearSphere function, combined with the maxDistance parameter, returns all
of the geometries at a certain distance sorted by distance. PostGIS is able to
perform an analogous operation using the ST DWithin function (Tab. 1).

PostGIS MongoDB

ST Within $geoWithin

ST Intersection $geoIntersects

ST DWithin $nearSphere + $maxDistance
Table 1. Geospatial functions in the PostGIS and MongoDB databases.

PostGIS has a huge variety of geospatial functions. A full list and description
of these functions can be found in the PostGIS documentation [3].

3 Experiments

The document database MongoDB v3.6.3 and thePostgreSQL version 10.1 were
selected for the experiments. The queries were counted on a computer with the
following specification:

– Intel Core i7 2600 3,4 GHz,
– 4 GB RAM,
– 1000 GB HDD,
– Windows 7 Professional.

3.1 The experiments methodology

For both database systems, the authors were prepared scripts that performed the
appropriate commands after running. The purpose of the tests was to measure
the time of performing the queries. During the tests, all the processes requiring
high computing power and background systems tasks were excluded. Test scripts
were two .bat files - DOS/Windows shell scripts executed by the command inter-
preter (cmd). The first of them was used to test the PostgreSQL performance,
while the second one was used to test the performance of the MongoDB database.
The performance tests of both databases were done in the following way:

– each query has been repeated 10 times,
– the average and standard deviation were calculated for each query,
– the result of each script has been saved to a text file.

4 D. Bartoszewski et al.

3.2 Query efficiency tests

For the tests purposes were used the basic elements provided with a database
system. In the software downloaded with the system, you can find the pgbench
application, which provides the following possibilities:

– repeating the query a specified number of times,
– calculation of the average and standard deviation from the query times,
– counting the number of queries performed per unit of time,
– calculation of the query execution time,
– using the specified number of threads to process the query.

3.3 The MongoDB experiments

In the MongoDB database, the explain() method is used to check the perfor-
mance of the queries. It provides a lot of information about the query. The
explain() method can be called with or without a parameter. In the case of the
second option, we have three parameters available the ”queryPlanner”, the ”ex-
ecutionStats” and the ”allPlansExecution”. They determine the level of detail
of the displayed information. The default mode is the ”queryPlanner” [2].

3.4 The comparison of the query times

Test 1 The first test was to check whether the points are within a certain
polygon feature. The coordinates of the points were determined randomly, ac-
cording to the uniform distribution. The tests included collections that contained
1000, 5000, 10000, 50000, 100000, 500000 or 1,000,000 points. The code for both
queries is presented in the Table 2. The visualization of the query is shown on
Figure 1. Query times were collected in Table 3.

MongoDB

var alaska = db.alaska.findOne ();

var statsOt = db.otpoints.find({

geometry :{ $geoWithin: {$geometry: alaska.geometry }}}).

explain

("executionStats");

PostGIS
SELECT * FROM otpoints ,alaskasimple

WHERE ST_Within (otpoints.geom , alaskasimple.geom);

Table 2. Query #1 - selecting the points contained in the previously selected polygon.

This case gives a clear advantage to the NoSQL database. In MongoDB, the
same queries run on average 3x faster than in PostGIS. The standard deviation
is very low.

The Comparison of Processing Efficiency of Spatial Data ... 5

MongoDB PostGIS

Point number Time [ms] Std. dev. Time [ms] Std. dev.

TEST 1

1 000 51.41 0.51 112.21 0.51

5 000 196.77 1.33 496.53 2.58

10 000 396.23 2.29 987.61 3.75

50 000 1855.42 8.14 5282.78 29.58

100 000 3793.71 17.60 11895.12 55.90

500 000 18520.42 233.80 61195.34 257.01

1 000 000 38128.00 192.35 131895.52 725.42

TEST 4

5 000 52.27 0.63 304.66 5.35

10 000 103.71 0.94 612.33 32.44

50 000 515.84 1.87 3017.80 24.14

100 000 1037.41 3.50 6022.55 72.56

500 000 5166.74 14.62 30525.22 770.25
Table 3. The comparison of the test 1 queries.

Fig. 1. Visualization of the used polygon and randomly drawn points using the QGIS
[4]. The picture shows a case with a thousand points. The query will return only the
points inside the blue polygon.

6 D. Bartoszewski et al.

Test 2 The second test was to the points located within a given distance from the
selected coordinates. The collections included 50,000, 100,000, 500,000, 1,000,000
points. The authors were determined four test scenarios:

– points within a maximum distance of 100 km from centroid,
– points within a maximum distance of 200 km from centroid,
– points within a maximum distance of 500 km from centroid,
– points within a maximum distance of 1000 km from centroid.

The visualization of the query is shown on Figure 2, the code of queries in
the Table 4. Query times are collected in the Table 5.

MongoDB

var centroid = db.centroid.findOne ();

var statsOt = db.otpoints.find({

geometry : { $nearSphere:

$geometry: centroid.geometry , $maxDistance: 100000} } }).

explain

("executionStats");

PostGIS
SELECT * FROM otpoints WHERE ST_DWithin

(otpoints.geom , ST_GeographyFromText

(’SRID =4326;␣POINT (-153.138␣64.731) ’), 100000);

Table 4. Query #2 - selecting points within a certain distance from point.

The test performed faster in MongoDB, taking into account the radius of
100, 200 and 500 kilometers. In the case of the 1000 kilometers circle radius,
the PostGIS proved to be about 3 times faster. We observed very clearly that
the query time in the MongoDB database grows much faster with more and
more points to count. This situation presents completely different conclusions
in relation to the theoretical use of the NoSQL databases, which are tailored to
the processing of large amounts of data. The standard deviation is very low for
both database systems.

Test 3 The third query is based on a very similar scheme to the previous ones,
but now random polygons are examined instead of random points - each of
them is a square about 50 kilometers. The sets of 5000, 10000, 50000, 100000
and 500000 polygons were taken into account. The authors were determined four
test scenarios:

– polygons within a maximum distance of 100 km from centroid,
– polygons within a maximum distance of 200 km from centroid,
– polygons within a maximum distance of 500 km from centroid,
– polygons within a maximum distance of 1000 km from centroid.

The visualization of the query is shown on Figure 3, the code of queries in the
Table 6. Query times are collected in the Table 5.

The Comparison of Processing Efficiency of Spatial Data ... 7

Fig. 2. Visualization of the query using the QGIS [29]. The first circle represents 100km,
the second 200km, the third 500km, and the last 1000km from the central point. Visible
case concerns a thousand points.

Fig. 3. Visualization of the query using the QGIS [29]. The first circle represents 100km,
the second 200km, the third 500km, and the last 1000km from the central point. Visible
concerns a thousand polygons.

8 D. Bartoszewski et al.

MongoDB PostGIS

Circle radius/Num. of points Query time [ms] Std. dev. Query time [ms] Std. dev.

TEST 2

100 km

50 000 5.11 0 12.17 0.03

100 000 9.94 0 53.97 0.04

500 000 47.12 0.31 104.75 0.21

1 000 000 93.03 0.52 500.43 0.67

200 km

50 000 4.20 0.32 13.24 1.36

100 000 18.77 0.42 62.30 1.33

500 000 37.54 0.48 124.28 1.42

1 000 000 194.56 1.05 643.14 1.44

500 km

50 000 22.21 0 29.38 1.34

100 000 107.44 0.37 142.81 1.43

500 000 227.17 0.43 285.86 1.37

1 000 000 1208.36 1.50 1424.83 2.69

1000 km

50 000 320.21 0.42 56.37 0.18

100 000 677.45 0.51 275.75 0.32

500 000 3856.75 4.05 554.95 1.51

1 000 000 8489.68 11.95 2711.01 2.27

TEST 3

100 km

5000 5.13 0.14 29.48 0.62

10000 8.81 0.21 49.46 5.14

50000 44.17 0.91 250.95 11.31

100000 86.12 2.11 495.29 18.66

500000 708.45 18.24 2535.06 108.24

200 km

5000 15.37 0.67 46.37 0.94

10000 29.51 1.26 85.30 1.56

50000 163.15 4.40 362.23 7.34

100000 354.37 7.63 737.35 14.50

500000 2531.62 45.34 3629.29 72.44

500 km

5000 93.88 1.81 104.03 2.50

10000 184.11 7.13 209.69 4.18

50000 979.57 23.14 1029.64 20.36

100000 2136.14 64.69 2094.75 51.15

500000 12717.45 523.85 10329.26 210.67

1000 km

5000 248.67 3.54 104.03 3.22

10000 516.77 9.21 209.69 8.66

50000 2862.18 40.52 1029.64 108.51

100000 6041.14 112.47 2094.75 210.32

500000 36434.61 727.81 10329.26 410.22
Table 5. Test 3: query execution times comparison.

The Comparison of Processing Efficiency of Spatial Data ... 9

MongoDB

var centroid = db.centroid.findOne ();

var statsOt = db.otpolygons.find({

geometry : { $nearSphere:

{ $geometry: centroid.geometry , $maxDistance: 100000} } }).

explain

("executionStats");

PostGIS
SELECT * FROM otpolygons WHERE ST_DWithin

(otpolygons.geom , ST_GeographyFromText

(’SRID =4326;␣POINT (-153.138␣64.731) ’), 100000);

Table 6. Query #3 - selecting polygons within a set distance from point.

An analogous situation as in the previous test with points. When the number
of polygons is smaller, MongoDB has the advantage. However, when there is a
larger radius of a circle, MongoDB begins to clearly slow down.

Test 4 The fourth and last test case is a compound query. First, in the in-
ner query, the polygon closest to the centroid is selected, then it is investigated
whether the returned polygon does not intersect with other polygons. The visu-
alization of the query is shown on Figure 4, the code of queries in the Table 7.
Query times are collected in the Table 3.

MongoDB

var centroid = db.centroid.findOne ();

var statsOt = db.otpolygons.find({ geometry : {

$geoIntersects : { $geometry : db.otpolygons.findOne({

geometry : { $geoNear : { $geometry : db.centroid.findOne

()

.geometry , $maxDistance: 2500 } } }).geometry } } }).

explain("executionStats");

PostGIS

SELECT ST_Intersection

(otpolygons.geom , (SELECT otpolygons.geom FROM otpolygons

WHERE ST_DWithin

(otpolygons.geom , ST_GeographyFromText

(’SRID =4326;␣POINT (-153.138␣64.731) ’), 2500)

LIMIT 1)) FROM otpolygons;

Table 7. Query #4 - Compound query: selecting polygon closest to the certain point
and next checking if the polygon is intersecting with other polygons.

The tests gave results similar to those in test 1 - a clear advantage in favor
of MongoDB. The NoSQL queries take about 6 times shorter. The standard
deviation is too low to be visible on the graph (except for one result in PostGIS
for the 500,000 points).

10 D. Bartoszewski et al.

Fig. 4. Visualization of the query using the QGIS [29]. The green polygon represents
the result of the internal query (search polygon closest to centroid - here marked with
a green point), yellow polygons represent the result of an external query (searching for
the intersecting polygons).

4 Conclusions

NoSQL databases are a relatively new technology in the context of spatial data
processing. There are only a few such systems available that provide this kind of
data. This paper shows that the mechanisms for handling spatial data, compared
to relational systems, are much more limited. Support for geographical features
includes only the most basic functionalities. Performance tests show that queries
concerning within and intersection operations take less time in MongoDB, as
opposed to operations to select objects in the neighbourhood of another object,
where PostGIS has a big advantage.

This shows that many criteria should be used to work with geographic data.
One of them is to determine the operations that will have to be done using the
database. In the case of many different spatial analyzes, the most obvious choice
will be to use RDBMS, where there are several hundred geospatial functions.
Much smaller possibilities in the area of geospatial functions are provided by the
non-relational databases, where in the case of MongoDB (which seems to best
support the spatial data), there are only a few of these functions. Relational
databases also have the advantage of many years of presence on the market,
which led to their enormous popularity and the presence of many qualified pro-
fessionals familiar with this subject.

Non-relational databases can be an alternative when working in dispersed
environments that process a huge amount of data simultaneously. What is more,
it should be noted that non-relational systems are constantly evolving, which in
the future will probably result in an increase in the number of available geospatial
functions. This may cause non-relational bases to take over part of the spatial
data market.

The Comparison of Processing Efficiency of Spatial Data ... 11

Acknowledgement. This work was financed by the AGH - University of Sci-
ence and Technology, Faculty of Geology, Geophysics and Environmental Pro-
tection as a part of a statutory project.

References

1. Db-engines ranking, https://db-engines.com/en/ranking/
2. MongoDB Docs - geospatial query operators, https://docs.mongodb.com/

manual/reference/operator/query-geospatial/

3. PostGIS 2.5.2 dev manual, https://postgis.net/docs/
4. QGIS documentation, https://qgis.org/en/docs/
5. Agarwal, S., Rajan, K.: Performance analysis of mongodb versus postgis/postgresql

databases for line intersection and point containment spatial queries. Spatial In-
formation Research 24(6), 671–677 (2016)

6. Akulakrishna, P.K., Lakshmi, J., Nandy, S.: Efficient storage of big-data for real-
time gps applications. In: Big Data and Cloud Computing (BdCloud), 2014 IEEE
Fourth International Conference on. pp. 1–8. IEEE (2014)

7. Bajerski, P., Kozielski, S.: Computational model for efficient processing of geofield
queries. In: Man-Machine Interactions, pp. 573–583. Springer (2009)

8. Burzańska, M., Wísniewski, P.: How poor is the poor mans search engine? In:
International Conference: Beyond Databases, Architectures and Structures. pp.
294–305. Springer (2018)

9. Chmielewski, S., Samulowska, M., Lupa, M., Lee, D.J., Zagajewski, B.: Citizen sci-
ence and webgis for outdoor advertisement visual pollution assessment. Computers,
Environment and Urban Systems 67, 97–109 (2018)

10. Chromiak, M., Stencel, K.: A data model for heterogeneous data integration archi-
tecture. In: International Conference: Beyond Databases, Architectures and Struc-
tures. pp. 547–556. Springer (2014)

11. Chuchro, M., Franczyk, A., Dwornik, M., Lesniak, A.: A big data processing strat-
egy for hybrid interpretation of flood embankment multisensor data. Geology, Geo-
physics and Environment 42(3), 269–277 (2016)

12. Czerepicki, A.: Perspektywy zastosowania baz danych nosql w inteligentnych sys-
temach transportowych. Prace Naukowe Politechniki Warszawskiej. Transport
(92), 29–38 (2013)

13. Fraczek, K., Plechawska-Wojcik, M.: Comparative analysis of relational and non-
relational databases in the context of performance in web applications. In: Interna-
tional Conference: Beyond Databases, Architectures and Structures. pp. 153–164.
Springer (2017)

14. Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. Geo-
Journal 69(4), 211–221 (2007)

15. Harezlak, K., Skowron, R.: Performance aspects of migrating a web applica-
tion from a relational to a nosql database. In: International Conference: Beyond
Databases, Architectures and Structures. pp. 107–115. Springer (2015)

16. Hricov, R., Šenk, A., Kroha, P., Valenta, M.: Evaluation of xpath queries over
xml documents using sparksql framework. In: International Conference: Beyond
Databases, Architectures and Structures. pp. 28–41. Springer (2017)

17. Inglot, A., Koziol, K.: The importance of contextual topology in the process of har-
monization of the spatial databases on example bdot500. In: 2016 Baltic Geodetic
Congress (BGC Geomatics). pp. 251–256 (2016)

12 D. Bartoszewski et al.

18. Kopec, A., Bala, J., Pieta, A.: Webgl based visualisation and analysis of strati-
graphic data for the purposes of the mining industry. Procedia Computer Science
51, 2869–2877 (2015)

19. Kozio l, K., Lupa, M., Krawczyk, A.: The extended structure of multi-resolution
database. In: International Conference: Beyond Databases, Architectures and
Structures. pp. 435–443. Springer (2014)

20. Krawczyk, A.: A concept for the modernization of underground mining master
maps based on the enrichment of data definitions and spatial database technology.
In: E3S Web of Conferences. vol. 26, p. 00010. EDP Sciences (2018)

21. Li, Y., Kim, G., Wen, L., Bae, H.: Mhb-tree: A distributed spatial index method for
document based nosql database system. In: Ubiquitous Information Technologies
and Applications, pp. 489–497. Springer (2013)

22. Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W.: Geographic informa-
tion systems and science. John Wiley & Sons (2005)

23. Loor, J.S., Fdez-Arroyabe, P.: Aerial and satellite imagery and big data: Blending
old technologies with new trends. In: Big Data for Remote Sensing: Visualization,
Analysis and Interpretation, pp. 39–59. Springer (2019)

24. Lupa, M., Kozio l, K., Leśniak, A.: An attempt to automate the simplification of
building objects in multiresolution databases. In: International Conference: Beyond
Databases, Architectures and Structures. pp. 448–459. Springer (2015)

25. Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., Jie, W.: Re-
mote sensing big data computing: Challenges and opportunities. Future Generation
Computer Systems 51, 47–60 (2015)

26. Martins, P., Cećılio, J., Abbasi, M., Furtado, P.: Gisb: A benchmark for geographic
map information extraction. In: Beyond Databases, Architectures and Structures.
Advanced Technologies for Data Mining and Knowledge Discovery, pp. 600–609.
Springer (2015)

27. Mirek, K., Mirek, J.: Non-parametric approximation used to analysis of psinsar[tm]
data of upper silesian coal basin, poland. Acta Geodynamica et Geomaterialia 6(4),
405–410 (2009)

28. Pavlicek, A., Doucek, P., Novák, R., Strizova, V.: Big data analytics–geolocation
from the perspective of mobile network operator. In: International Conference on
Research and Practical Issues of Enterprise Information Systems. pp. 119–131.
Springer (2017)

29. Piorkowski, A.: MySQL Spatial and PostGIS–implementations of spatial data stan-
dards. EJPAU 14(1), 03 (2011)

30. P luciennik, E., Zgorza lek, K.: The multi-model databases–a review. In: Interna-
tional Conference: Beyond Databases, Architectures and Structures. pp. 141–152.
Springer (2017)

31. Wyszomirski, M.: Przeglad mozliwosci zastosowania wybranych baz danych nosql
do zarzadzania danymi przestrzennymi. Roczniki Geomatyki-Annals of Geomatics
16(1 (80)), 55–69 (2018)

32. Xu, G., Gao, S., Daneshmand, M., Wang, C., Liu, Y.: A survey for mobility big
data analytics for geolocation prediction. IEEE Wireless Communications 24(1),
111–119 (2017)

33. Zhang, X., Song, W., Liu, L.: An implementation approach to store gis spatial data
on nosql database. In: Geoinformatics (GeoInformatics), 2014 22nd International
Conference on. pp. 1–5. IEEE (2014)

