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Abstract. The counterfactual decomposition technique popularized by Blinder
(1973) and Oaxaca (1973) is widely used to study mean outcome differences be-
tween groups. For example, the technique is often used to analyze wage gaps by
sex or race. The present paper summarizes the technique and addresses a num-
ber of complications such as the identification of effects of categorical predictors
in the detailed decomposition or the estimation of standard errors. A new Stata
command called oaxaca is introduced and examples illustrating its usage are given.
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1 Introduction

An often used methodology to study labor market outcomes by groups (sex, race, and
so on) is to decompose mean differences in log wages based on regression models in
a counterfactual manner. The procedure is known in the literature as the Blinder-
Oaxaca decomposition (Blinder 1973; Oaxaca 1973) and divides the wage differential
between two groups into a part that is “explained” by group differences in productivity
characteristics such as education or work experience and a residual part that cannot
be accounted for by such differences in wage determinants. This “unexplained” part is
often used as a measure for discrimination, but it also subsumes the effects of group
differences in unobserved predictors. Most applications of the technique can be found
in the labor market and discrimination literature (for meta studies see, e.g., Stanley
and Jarrell 1998 or Weichselbaumer and Winter-Ebmer 2005). However, the method
may also be useful in other fields. In general, the technique can be employed to study
group differences in any (continuous and unbounded) outcome variable. For example,
O’Donnell et al. (2008) use it to analyze health inequalities by poverty status.

The purpose of this article is to give an overview of the Blinder-Oaxaca decomposi-
tion and introduce a new command implementing the technique in Stata called oaxaca.
In the next section, the most common variants of the procedure are summarized and a
number of issues such as the identification of the contribution of categorical predictors
or the estimation of standard errors are addressed. The third section then describes
the syntax and options of the new oaxaca command and the fourth section provides
examples for its application using labor market data.
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2 Methods and formulas

Given are two groups A and B, an outcome variable Y, and a set of predictors. For
example, think of males and females, (log) wages as the outcome variable, and human
capital indicators such as education and work experience as predictors. The question
now is how much of the mean outcome difference

R=FE(Ya) - E(Yp) (1)
where E(Y) denotes the expected value of the outcome variable, is accounted for by
group differences in the predictors.

Based on the linear model
Y =X,80+¢€, F(e)=0, (e€{A B} (2)

where X is a vector containing the predictors and a constant, 8 contains the slope
parameters and the intercept, and € is the error, the mean outcome difference can be
expressed as the difference in the linear prediction at the group-specific means of the
regressors. That is

R=E(Ya) — E(Yg) = E(X4) 84— E(Xp)fs (3)
since
E(Yy) = E(XiBe + e0) = E(XyB;) + E(er) = E(X0)'Be
with E(8¢) = B¢ and E(ep) = 0 by assumption.

To identify the contribution of group differences in predictors to the overall outcome
difference, equation (3) can be rearranged, for example, as follows (see Winsborough
and Dickinson 1971; Jones and Kelley 1984; Daymont and Andrisani 1984):

R =[E(Xa)— E(Xp)]' B85 + E(XB) (Ba — Bp) + [E(Xa) — E(XB)] (Ba — Bp) (4)

This is a “three-fold” decomposition, that is, the outcome difference is divided into three
parts:
R=E+C+1I

The first summand
E = [E(Xa) — E(XB)]' B

amounts to the part of the differential that is due to group differences in the predictors
(the “endowments effect”). The second component

C = E(XB) (64— BB)

measures the contribution of differences in the coeflicients (including differences in the
intercept). The third summand

I=[E(Xa)— E(Xp)| (Ba— Bp)
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is an interaction term accounting for the fact that differences in endowments and coef-
ficients exist simultaneously between the two groups.

Decomposition (4) is formulated from the viewpoint of Group B. That is, the group
differences in the predictors are weighted by the coefficients of Group B to determine the
endowments effect (E). In other words, the E component measures the expected change
in Group B’s mean outcome, if Group B had Group A’s predictor levels. Similarly,
for the second component (C), the differences in coefficients are weighted by Group
B’s predictor levels. That is, the second component measures the expected change
in Group B’s mean outcome, if Group B had Group A’s coefficients. Naturally, the
differential can analogously be expressed from the viewpoint of Group A, yielding the
reverse three-fold decomposition

R=[BE(X4) — E(Xp)]' Ba+ B(Xa) (B4 — B5) — [E(Xa) — E(Xp)]' (B4 — 85) (5)

Now the “endowments effect” amounts to the expected change of Group A’s mean
outcome, if Group A had Group B’s predictor levels. The “coefficients effect” quantifies
the expected change in Group A’s mean outcome, if Group A had Group B'’s coefficients.

An alternative decomposition that is prominent in the discrimination literature re-
sults from the concept that there is some nondiscriminatory coefficients vector that
should be used to determine the contribution of the differences in the predictors. Let
8* be such a nondiscriminatory coefficients vectors. The outcome difference can then
be written as

R=[E(Xa) — E(Xp)]' 8" + [B(Xa) (B4 — B°) + E(Xp)' (5" — Bp)] (6)
We now have a “two-fold” decomposition
R=Q+U
where the first component
Q= [BE(Xa) - E(Xp)]' 6

is the part of the outcome differential that is “explained” by group differences in the
predictors (the “quantity effect”) and the second summand

U=E(Xa)(Ba—p") +E(Xp)' (8" — )

is the “unexplained” part. The latter is usually attributed to discrimination, but it
is important recognize that it to also captures all potential effects of differences in
unobserved variables.

The “unexplained” part in (6) is sometimes further decomposed. Let 84 = 6* + 4
and B = 0" + dp with d4 and d4 as group-specific discrimination parameter vectors
(positive or negative discrimination, depending on sign). U can then be expressed as

U=E(Xa)das—E(Xp)dp (7)
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that is, the unexplained component of the differential can be subdivided into a part
Ua=E(X4) 04
that measures discrimination in favor of Group A and a part
Ug=—-E(Xg)dép

that quantifies discrimination against Group B.' Again, however, this interpretation
hinges on the assumption that there are no relevant unobserved predictors.

The estimation of the components of the three-fold decompositions (4) and (5) is
straightforward. Let B 4 and BB be the least squares estimates for 34 and (g, obtained
separately from the two group-specific samples. Furthermore, use the group means X 4
and Xp as estimates for F(X,4) and F(Xp). Based on these estimates the decomposi-
tions (4) and (5) are computed as

R=Ys—Yp=(Xa—Xp)0p+X5(Ba—08)+ (Xa—Xp)(Ba—Bs) (8
and
R=Ys—Yp=(Xa—Xp)fBa+X4(Ba—0)— (Xa—Xp)(Ba—08) (9

The determination of the components of the two-fold decomposition (6) is more
involved because an estimate for the unknown nondiscriminatory coefficients vector 5*
is needed. Several suggestions have been made in the literature. For example, there may
be reason to assume that discrimination is directed towards one of the groups only, so
that 5* = 84 or B* = Op (see Oaxaca 1973, who speaks of an “index number problem”).
Again assume that Group A are males and Group B are females. If, for instance, wage
discrimination is only directed against women and there is no (positive) discrimination
of men, then we may use B 4 as an estimate for 8* and compute decomposition (6) as

R=(Xa—Xp)Ba+Xp(Ba— ) (10)

Similarly, if there is no discrimination of women, but only (positive) discrimination of
men, the decomposition is

R=(Xa—Xp)Bs+X4(Ba—0p) (11)
Often, however, there is no specific reason to assume that the coeflicients of one or
the other group are nondiscriminating. Moreover, economists have argued that the
undervaluation of one group comes along with an overvaluation of the other (e. g. Cotton

1988). Reimers (1983) therefore proposes to use the average coefficients over both groups
as an estimate for the nondiscriminatory parameter vector, that is

3* = 0584+ 0.50p (12)

1. U4 and Up have opposite interpretations. A positive value for U4 reflects positive discrimination
of Group A; a positive value for Ug indicates negative discrimination of Group B.
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Similarly, Cotton (1988) suggests to weight the coefficients by the group sizes n4 and

npg, that is
~ na ~ ng ~
* + 13
p nA+nB/8A nA+nBﬂB (13)

Furthermore, based on theoretical derivations, Neumark (1988) advocates the usage of
the coefficients from a pooled regression over both groups as an estimate for 3*.

Note that, as has been pointed out by Oaxaca and Ransom (1994) and others,
decomposition (6) can also be expressed as

R = [E(X4) ~ E(Xz)] [Wha + (I— W)3s]+[(1 - W)'E(X4) + WE(Xp)]' (3a—55)

(14)
where W is a matrix of relative weights given to the coefficients of Group A and I is
the identity matrix. For example, choosing W = I is equivalent to setting 8* = (4.
Similarly, W = 0.5I is equivalent to 8* = 0.564 + 0.58p. Furthermore, Oaxaca and
Ransom (1994) show that

W =0= (XX, +XpXp) ' X, X, (15)

with X as the observed data matrix, is equivalent to using the coefficients from a pooled
model over both groups as the reference coefficients.?

An issue with the approach by Neumark (1988) or Oaxaca and Ransom (1994) is
that it may inappropriately transfer some of the unexplained part of the differential into
the explained component, although this does not seem to have received much attention
in the literature.®> Assume a simple model of log wages (In W) on education (Z) with
sex-specific intercepts ap; and ap due to discrimination. The model is

Z 'f“ 177
mWZ{aM+7 e 1 male (16)

ap +vZ + ¢ if “female”

Let aps = a and ap = a+ 4, where § is the discrimination parameter. Then the model
may also be expressed as
InW=a+~vZ+0F +¢€ (17)

with F' as an indicator for “female”. Assume that v > 0 (positive relation between
education and wages) and 0 < 0 (discrimination against women). If we now use v* from
a pooled model

InW =ao"++"Z +¢€ (18)

in decomposition (6), then, following from the theory on omitted variables (see, e.g.,
Gujarati 2003, 510f.), the explained part of the differential is

(19)

Q=[E(Zy) — E(Zp)|v" = [E(ZM) — E(ZF))] <7+5CM(Z’G))

Var(2)

2. Another solution is to set W = diag(8 — 8g) -diag(84 — g) !, where 3 without subscript denotes
the coefficients from the pooled model. Note that, although the decomposition results are the same,
this approach yields a weighting matrix that is quite different from Oaxaca and Ransom’s €. For
example, whereas W computed as described in this footnote is a diagonal matrix, Q2 has off-diagonal
elements unequal zero and is not even symmetric.

3. An exception its Fortin (2006)
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with Var(Z) as the variance of Z and Couv(Z, G) as the covariance between Z and G. If
men on average are better educated than women, then the covariance between Z and
G is negative and the explained part of the decomposition gets overstated (given v > 0
and § < 0). In essence, the difference in wages between men and women is explained
by sex.

To avoid such a distortion of the decomposition results due to the residual group dif-
ference spilling over into the slope parameters of the pooled model, my recommendation
is to always include a group indicator in the pooled model as an additional covariate.

Estimation of sampling variances

Given the popularity of the Blinder-Oaxaca procedure it is astonishing how little at-
tention has been paid to the issue of statistical inference. Most studies in which the
procedure is applied only report point estimates for the decomposition results, but do
not make any indication about sampling variances or standard errors.* However, for an
adequate interpretation of the results approximate measures of statistical precision are
indispensable.

Approximate variance estimators for certain variants of the decomposition were first
proposed by Oaxaca and Ransom (1998) with Greene (2003, 53-54) making similar
suggestions. The estimators by Oaxaca and Ransom (1998) and Greene (2003) are a
good starting point, but they neglect an important source of variation. Most social-
science studies on discrimination are based on survey data where all (or most) variables
are random variables. That is, not only the outcome variable, but also the predictors
are subject to sampling variation (an exception would be experimental factors set by
the researcher). Whereas an important result for regression analysis is that it does not
matter for the variance estimates whether regressors are stochastic or fixed, this is not
true for the Blinder-Oaxaca decomposition. The decomposition is based on multiplying
regression coefficients by means of regressors. If the regressors are stochastic, then the
means have sampling variances. These variances are of the same asymptotic order than
the variances of the coefficients (think of the means as the intercepts from regression
models without covariates). To get consistent standard errors for the decomposition
results it seems therefore important to take the variability induced by the randomness
of the predictors into account.

Consider the expression X
Y —X'8 (20)

where X is the vector of mean estimates for the predictors and ﬁ contains the least-
squares estimates of the regression coefficients. If the predictors are stochastic, then X
and B are both subject to sampling variation. Assuming that X and B are uncorrelated
(which follows from the standard regression assumption that the conditional expectation
of the error is zero for all covariate values; of course this is only true if the model is

4. Exceptions are for example Oaxaca and Ransom (1994, 1998), Silber and Weber (1999), Horrace
and Oaxaca (2001), Fortin (2006), Heinrichs and Kennedy (2007) and Lin (2007). Furthermore, Jackson
and Lindley (1989) and Shrestha and Sakellariou (1996) propose statistical tests for discrimination.
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correctly specified), the variance of (20) can be written as
V(X'8) = E(X)'V(B)E(X) + EB)V(X)E(@) + trace [V(X)V(H)]  (21)

where V(X) and V(f3) are the variance-covariance matrices for X and (3 (see the proof
in Jann 2005b; for the variance of the product of two independent random variables also
see Mood et al. 1974, 180). By inserting estimates for the expectations and variance
matrices, we get the variance estimator

V(X'B) = X'V(HX + FV(X)5 + trace [V()V ()] (22)
V(B) is simply the variance-covariance matrix obtained from the regression procedure.

A natural estimator for V(X) is V(X) = X’X/[n(n — 1)], where X is the centered data
matrix, i.e. X =X — 1X’.

The variances for the components of the Blinder-Oaxaca decomposition can be de-
rived analogously. For example, ignoring the asymptotically vanishing® last term in (22)
and assuming that the two groups are independent, the approximate variance estimators
for the two terms of decomposition (10) are

V([Xa — Xp)'Ba) ~ (Xa — Xp)'V(Ba)(Xa— Xp) + B {V(XA) +V(Xp)| Ba (23)
and
V(Xp(8a — Bs]) ~ Xpy [V(Ba) + V(B8)| X6 + (B — 35)'V (Xe) (35 — B2)  (24)

where use of the fact is made that the variance of the sum of two uncorrelated random
variables is equal to the sum of the individual variances. An interesting point about
formulas (23) and (24) is that ignoring the stochastic nature of the predictors will
primarily affect the variance of the first term of the decomposition (the “explained”
part). This is because in most applications group differences in coefficients and means
are much smaller then the levels of coefficients and means.

It is possible to develop similar formulas for all the decomposition variants outlined
above, but derivations can get complicated once a pooled model is used and covariances
between the pooled model and the group models have to be taken into account or
if the assumption of independence between the two groups is loosened (e.g. if dealing
with a cluster sample). An alternative approach that is simple and general and produces
equivalent results is to estimate the joint variance-covariance matrix of all used statistics
(see Weesie 1999, [R] suest) and then apply the “delta method” (see [R] nlcom and
the references therein). In fact, in the case of independence between the two groups the
results of the delta method for decomposition (4) are formally equal to (23) and (24).
Furthermore, a general result for the delta method is that if the input variance matrix
is asymptotically normal, then also the variance matrix of the transformed statistics is

5. Whereas the first and second terms are of order O(n™!), the last term is O(n~2).
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asymptotically normal (see, e. g., Greene 2003, 70). That is, since asymptotic normality
holds for regression coefficients and mean estimates under very general conditions, the
variances obtained by the delta method can be used to construct approximate confidence
intervals for the decomposition results in the usual manner.

Detailed decomposition

Often not only is the total decomposition of the outcome differential into an explained
and an unexplained part of interest, but also the detailed contributions of the single
predictors or sets of predictors are subject to investigation. For example, one might want
to evaluate how much of the gender wage gap is due to sex differences in education and
how much is due to differences in work experience. Similarly, it might be informative to
determine how much of the unexplained gap is related to differing returns to education
and how much to differing returns to work experience.

Identifying the contributions of the individual predictors to the explained part of
the differential is easy because the total component is a simple sum over the individual
contributions. For example, for decomposition (10),

Q= (Xa — XB)Ba = (X1a— X18)01a + (Xoa — Xop)faa + - .. (25)

where X1, X, ... are the means of the single regressors and Bl, ﬁAg, ... are the associated
coefficients. The first summand reflects the contribution of the group differences in X,
the second of differences in Xs, and so on. Also the estimation of standard errors for
the individual contributions is straightforward.

Similarly, using decomposition (10) as an example, the individual contributions to
the unexplained part are the summands in

U=Xp(Ba—08) = Xip(Bia — i) + Xbp(Ban — Bon) + - .. (26)

Note, however, that other than for the explained part of the decomposition, the con-
tributions to the unexplained part may depend on arbitrary scaling decisions if the
predictors do not have natural zero points (e.g. Jones and Kelley 1984, 334). Without
loss of generality, assume a simple model with just one explanatory variable:

Yo = Boe+ freZe + e, €€{A B}
The unexplained part of the decomposition based on (10) then is
U = (Boa — Bo) + (B1a — Bi8)Zp

The first summand is the part of the unexplained gap that is due to “group membership”
(Jones and Kelley 1984); the second summand reflects the contribution of differing
returns to Z. Now assume that the zero point of Z is shifted by adding a constant a.
The effect of such a shift on the decomposition results is as follows:

ﬁ = [(BOA - 11/31,4) - (/308 - aBlB)} + (Bm - BlB)(ZB + a)
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Evidently, the scale shift changes the results; a portion amounting to a(Bl A - B) is
transferred from the group membership component to the part that is due to different
slope coefficients. The conclusion is that the detailed decomposition results for the
unexplained part only have a meaningful interpretation for variables for which scale
shifts are not allowed, that is, for variables that have a natural zero point.%

A related issue that has received much attention in the literature is that the decompo-
sition results for categorical predictors depend on the choice of the omitted base category
(Jones 1983; Jones and Kelley 1984; Oaxaca and Ransom 1999; Nielsen 2000; Horrace
and Oaxaca 2001; Gardeazabal and Ugidos 2004; Polavieja 2005; Yun 2005b). The ef-
fect of a categorical variable is usually modeled by including 0/1-variables (“dummy”
variables) for the different categories in the regression equation, where one of the cat-
egories (the “base” category) is omitted to avoid collinearity. It is easy to see that
the decomposition results for the single 0/1-variables depend on the choice of the base
category, since the associated coefficients quantify differences with respect to the base
category. If the base category changes, the decomposition results change.

For the explained part of the decomposition this may not be critical because the
sum of the contributions of the single indicator variables, that is, the total contribution
of the categorical variable is unaffected by the choice of the base category. For the
unexplained part of the decomposition, however, there is again a tradeoff between the
group membership component (the difference in intercepts) and the part attributed to
differences in slope coefficients. For the unexplained part changing the base category not
only alters the results for the singly dummy variables but also changes the contribution
of the categorical variable as a whole.

An intuitively appealing solution to the problem has been proposed by Gardeazabal
and Ugidos (2004) and Yun (2005b). The idea is to restrict the coefficients for the single
categories to sum to zero, that is, to express effects as deviations from the grand mean.
This can be implemented by restricted least squares estimation or by transforming
the dummy variables before model estimation as proposed by Gardeazabal and Ugidos
(2004).” A more convenient method in the context of the Blinder-Oaxaca decomposition
is to estimate the group models using the standard dummy coding and then transform
the coefficients vectors so that deviations from the grand mean are expressed and the
(redundant) coefficient for the base category is added (Suits 1984; Yun 2005b). If
applied to such transformed estimates, the results of the Blinder-Oaxaca decomposition
are independent of the choice of the omitted category. Furthermore, the results are equal
to the simple averages of the results one would get from a series of decompositions in
which the categories are used one after another as the base category (Yun 2005b).

6. The problem does not occur for the explained part of the decomposition or the interaction compo-
nent in the three-fold decomposition because a cancels out in these cases. Furthermore, stretching or
compressing the scales of the X variables (multiplication by a constant) does not alter any of the de-
composition results because such multiplicative transformations are counterbalanced by the coefficient
estimates.

7. In fact, the approach by Gardeazabal and Ugidos (2004) is simply what is known as the “effects
coding” (Hardy 1993, 64-71) or the “deviation contrast coding” (Hendrickx 1999).
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The deviation contrast transform works as follows. Given is the model
Y=08+6D1+..+Br-1Dp_1+e¢

where [ is the intercept and Dj, j = 1,...,k—1, are the dummy variables representing
a categorical variable with k categories. Category k is the base category. Alternatively,
the model may be formulated as

Y=0+5D1+...+Br-1Dp_1+ BpDy + ¢

where ) is constrained to zero. Now let

Cz(ﬂl+...+ﬂk)/k

and define R R
60:ﬂ0+6 and ﬁj:ﬂj—c, ]:1,,k
The transformed model then is

k
Y =0+ D1+ ...+ D +e, Y Bi=0
=1

Note that the transformed model is mathematically equivalent to the untransformed
model. For example, the two models produce identical predictions. The variance-
covariance matrix for the transformed model can be obtained by applying the general
formula for weighted sums of random variables given in, e.g., Mood et al. (1974, 179).
Models with several sets of dummy variables can be transformed by applying the for-
mulas to each set separately. Furthermore, the transformation can be applied to the
interaction terms between a categorical and a continuous variable in an analogous man-
ner except that now c is added to the main effect of the continuous variable instead of
the intercept. Also note that the application of the transform is not restricted to linear
regression. It can be used with any model as long as the effects of the dummies are
expressed as additive effects.

Other restrictions to identify the contribution of a categorical variable to the unex-
plained part of the decomposition are imaginable. For example, the restriction could

be
k ~
Z w]ﬂj =0
j=1

where w; are weights proportional to the relative frequencies of the categories, so that
the coefficients reflect deviations from the overall sample mean (Kennedy 1986; Haisken-
DeNew and Schmidt 1997). Hence, there is still some arbitrariness in the method by
Gardeazabal and Ugidos (2004) and Yun (2005b).

3 The oaxaca command

The methods presented above are implemented in a new command called oaxaca. The
command first estimates the group models and possibly a pooled model over both
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groups using regress ([R] regress) or any user specified estimation command. suest
is then applied, if necessary, to determine the combined variance-covariance matrix
of the models ([R] suest) and the group means of the predictors are estimated using
mean ([R] mean). Finally, the various decomposition results and their standard errors
(and covariances) are computed based on the combined parameter vector and variance-
covariance matrix of the models’ coefficients and the mean estimates.® The standard
errors are obtained by the delta method.”

3.1 Syntax

The syntax of the oaxaca command is

oaxaca depvar [indepvars] [zf} [zn] [weight] , by (groupvar) [ swap
getail[(dlist)] adjust (varlist) thﬁfold[(;everse)} weight (# [# ])
pooled[(model,opts)] gmega[(model,opts)] reference(name) split
x1(names_and_values) x2(names_and_values) categorical(clist)
svy[(svyspec)] vce (vcetype) cluster (varname) @ed[(varlist)] [no]suest

nose modell(model_opts) model2(model_opts) xb noisily level(#) eform ]

where depuvar is the outcome variable of interest (e.g. log wages) and indepvars are
predictors (e.g. education, work experience, etc.). groupvar identifies the groups to be
compared. oaxaca typed without arguments replays the last results.

fweights, aweights, pweights, and iweight are allowed; see [U] 11.1.6 weight.
Furthermore, bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10
Prefix commands. Weights are not allowed with the bootstrap prefix and aweights
are not allowed with the jackknife prefix. vce(), cluster(), and weights are not
allowed with the svy option.

3.2 Options

Main

by (groupvar) specifies the groupvar that defines the two groups that will be compared.
by () is not optional.

swap reverses the order of the groups.

detail[(dlist)} requests that the detailed results for the individual predictors be re-

8. The covariances between the models’ coefficients and the mean estimates are assumed zero in any
case. This assumption may be violated in misspecified models.

9. nlcom ([R] nlcom) could be used to compute the variance-covariance matrix of the decomposition
results. However, nlcom employs general methods based on numerical derivatives and is slow if the
models contain many covariates. oaxaca therefore has its own specific implementation of the delta
method based on analytic derivatives.
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ported. Use dlist to subsume the results for sets of regressors (variables not appear-
ing in dlist are listed individually). The syntax for dlist is

name : varlist [, name : varlist ]

The usual shorthand conventions apply to the warlists specified in dlist (see help
varlist; additionally, _cons is allowed). For example, specify detail (exp:exp*) to
subsume exp (experience) and exp2 (experience squared). name is any valid Stata
name and labels the set.

adjust (varlist) causes the differential to be adjusted by the contribution of the specified
variables before performing the decomposition. This is useful, for example, if the
specified variables are selection terms. Note that adjust () is not needed for heckman
models.

Decomposition type

threefold[(reverse)] computes the three-fold decomposition. This is the default
unless weight (), pooled, omega, or reference() is specified. The decomposition
is expressed from the viewpoint of Group 2 (B). Specify threefold(reverse) to
express the decomposition from the viewpoint of Group 1 (A).

weight (# [# ]) computes the two-fold decomposition where # [# ] are the
weights given to Group 1 (A) relative to Group 2 (B) in determining the refer-
ence coefficients (weights are recycled if there are more coefficients than weights).
For example, weight (1) uses the Group 1 coefficients as the reference coefficients,
weight (0) uses the Group 2 coeflicients.

pooled[(model,opts)] computes the two-fold decomposition using the coefficients from
a pooled model over both groups as the reference coefficients. groupvar is included
in the pooled model as an additional control variable. Estimation details may be
specified in parentheses; see the model1 () option below.

omega[(model,opts)] computes the two-fold decomposition using the coefficients from
a pooled model over both groups as the reference coefficients (without including
groupvar as a control variable in the pooled model). Estimation details may be
specified in parentheses; see the model1() option below.

reference(name) computes the two-fold decomposition using the coefficients from a
stored model. name is the name under which the model was stored; see [R] esti-
mates store. Do not combine the reference () option with bootstrap or jackknife
methods.

split causes the ”"unexplained” component in the two-fold decomposition to be split
into a part related to Group 1 (A) and a part related to Group 2 (B). split is
effective only if specified with weight (), pooled, omega, or reference().

Only one of threefold, weight (), pooled, omega, and reference () is allowed.
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X-Values

x1(names_and_values) and x2(names_and_values) provide custom values for specific
predictors to be used for Group 1 (A) and Group 2 (B) in the decomposition. The
default is to use the group means of the predictors. The syntax for names_and_values
is
varname H value H,] varname [=] value . .. ]

Example: x1(educ 12 exp 30)

categorical (clist) identifies sets of dummy variables representing categorical variables
and transforms the coefficients so that the results of the decomposition are invariant
to the choice of the (omitted) base category (deviation contrast transform). The
syntax for clist is

varlist [, varlist . . . ]

Each variable list must contain a variable for the base category (that is, the base
category indicator must exist in the data). The transform can also be applied to
interactions between a categorical and a continuous variable. Specify the continuous
variable in parentheses at the end of the list in this case, i.e.

varlist (varname) [, ]
and also include a list for the main effects. Example:
detail(dl d2 d3, xd1 xd2 xd3 (x))

where x is the continuous variable, and d1 etc. and xd1 etc. are the main effects
and interaction effects. The code for implementing the categorical() option has
been taken from the devcon user command (Jann 2005a).

SE/SVY

svy[( [Ucetype] [, svy,options} )} executes oaxaca while accounting for the survey set-
tings identified by svyset (this is essentially equivalent to applying the svy prefix
command, although the svy prefix is not allowed with oaxaca due to some technical
issues). vcetype and svy_options are as described in [SVY] svy.

vce (vcetype) specifies the type of standard errors reported. wvcetype may be may be
analytic (the default), robust, cluster clustvar, bootstrap, or jackknife; see
[R] vce_option.

cluster (varname) adjusts standard errors for intragroup correlation; this is Stata 9
syntax for vce(cluster clustvar).

fixed [(varlist)] identifies fixed regressors (all if specified without argument; an example
for fixed regressors are experimental factors). The default is to treat regressors as
stochastic. Stochastic regressors inflate the standard errors of the decomposition
components.
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[no} suest prevents or enforces using suest to obtain the covariances between the mod-
els/groups. suest is implied by pooled, omega, reference(), svy, vce(cluster),
and cluster (). Specifying nosuest may cause biased standard errors and is strongly
discouraged.

nose suppresses the computation of standard errors.

Model estimation

modell (model_opts) and model2(model_opts) specify the estimation details for the two
group-specific models. The syntax for model_opts is

[estcom} [, addrhs (spec) estcom,options]

where estcom is the estimation command to be used and estcom_options are options
allowed by estcom. The default estimation command is regress. addrhs(spec)
adds spec to the “right-hand side” of the model. For example, use addrhs () to add
extra variables to the model. Examples:

modell (heckman, select(varlist_s) twostep)
modell(ivregress 2sls, addrhs((varlist2=varlist_iv)))

Note that oaxaca uses the first equation for the decomposition if a model contains
multiple equations.

Furthermore, coefficients that occur in one of the model only are assumed zero for
the other group. It is important, however, that the associated variables contain
non-missing values for all observations in both groups.

noisily displays the models’ estimation output.

Reporting

xb displays a table containing the regression coefficients and predictor values on which
the decomposition is based.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The
default is 1evel (95) or as set by set level.

eform specifies that the results be displayed in exponentiated form.
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3.3 Returned results

Scalars
e(N)
e(N1)

Macros
e(cmd)
e(depvar)
e(groupl)
e(wtype)
e(clustvar)
e(vcetype)
Matrices
e(b)
e(b0)
Functions
e(sample)

number of observations
number of obs. in Group 1

oaxaca
name of dependent variable
value defining Group 1
weight type

name of cluster variable
title used to label Std. Err.

decomposition results
coefficients and X-values

marks estimation sample

4 Examples

Three-fold decomposition

e(N_clust)
e(N1)

e(by)
e(group2)
e (wexp)
e(vce)

number of clusters
number of obs. in Group 2

name group variable
value defining Group 2
weight expression
veetype specified in vce ()

e(properties) b V

e(V)
e(V0)

variance matrix of e(b)
variance matrix of e(b0)
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The standard application of the Blinder-Oaxaca technique is to divide the wage gap
between, say, men and women into a part that is explained by differences in determinants
of wages such as education or work experience and a part that cannot be explained by
such group differences. An example using data from the Swiss Labor Market Survey
1998 (Jann 2003) is as follows:

. use oaxaca, clear
(Excerpt from the Swiss Labor Market Survey 1998)

. oaxaca lnwage educ exper tenure, by(female) noisily

Model for group 1

Source SS df MS Number of obs = 751
F(C 3, 747) = 101.14
Model 49.613308 3 16.5377693 Prob > F = 0.0000
Residual 122.143834 747 .163512495 R-squared = 0.2889
Adj R-squared = 0.2860
Total 171.757142 750 .229009522 Root MSE = .40437
lnwage Coef.  Std. Err. t P>|t] [95% Conf. Intervall
educ .0820549 .0060851 13.48 0.000 .070109 .0940008
exper .0098347 .0016665 5.90 0.000 .0065632 .0131062
tenure .0100314 .0020397 4.92  0.000 .0060272 .0140356
_cons 2.24205 .0778703 28.79  0.000 2.08918 2.394921
Model for group 2
Source SSs df MS Number of obs = 683
F( 3, 679) = 40.34
Model 33.5197344 3 11.1732448 Prob > F = 0.0000
Residual 188.08041 679 .276996185 R-squared = 0.1513
Adj R-squared = 0.1475
Total 221.600144 682 .324926897 Root MSE .5263
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lnwage Coef.  Std. Err. t P>|t| [95% Conf. Intervall

educ .0877579  .0087108 10.07  0.000 .0706546 .1048611

exper .0131074  .0028971 4.52  0.000 .0074191 .0187958

tenure .0036577  .0035374 1.03 0.301 -.0032878 .0106032

_cons 2.097806  .1091691 19.22  0.000 1.883457 2.312156

Blinder-Oaxaca decomposition Number of obs = 1434
1: female = 0

2: female = 1

Coef. Std. Err. z P>|z| [95% Conf. Intervall]

Differential
Prediction_1 3.440222 .0174874 196.73  0.000 3.405947 3.474497
Prediction_2 3.266761 .0218522 149.49  0.000 3.223932 3.309591
Difference .1734607 .027988 6.20 0.000 .1186052 .2283163

Decomposit~n
Endowments .0852798 .015693 5.43 0.000 .0545222 .1160375
Coefficients .082563 .0255804 3.23 0.001 .0324263 .1326996
Interaction .005618 .010966 0.51 0.608 -.0158749 .0271109

As is evident from the example, oaxaca first estimates two group-specific regression
models and then performs the decomposition (the noisily option causes the group
models’ results to be displayed and is specified in the example for purpose of illustra-
tion). The default decomposition performed by oaxaca is the three-fold decomposition
according to equation (4). To compute the reverse three-fold decomposition given in
(5) specify threefold(reverse).

The decomposition output reports the mean predictions by groups and their differ-
ence in the first panel. In our sample, the mean of the log wages is 3.44 for men and
3.27 for women, yielding a wage gap of 0.17. In the second panel of the decomposition
output the wage gap is divided into three parts. The first part reflects the mean increase
in women’s wages if they had the same characteristics as men. The increase of 0.085
in the example indicates that differences in endowments account for about half of the
wage gap. The second term quantifies the change in women’s wages when applying the
men’s coefficients to the women’s characteristics. The third part is the interaction term
that measures the simultaneous effect of differences in endowments and coefficients.

Two-fold decomposition

Alternatively, a two-fold decomposition according to equation (6) can be requested,
where weight (), pooled, or omega determines the choice of the reference coefficients.
For example weight (1) corresponds to decomposition (10), weight (0) to decomposi-
tion (11). omega causes the coefficients from a pooled model over both samples to be
used as the reference coefficients, which is equivalent to Oaxaca and Ransom’s approach
based on (15). The pooled option also causes the coefficients from a pooled model to
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be used, but now the pooled models also contains a group membership indicator. Based
on the argumentation outlined in Section 2 my suggestion is to use pooled instead of
omega.

For our example data, the results with the pooled option are as follows:

. oaxaca lnwage educ exper tenure, by(female) pooled
Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

Robust

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Differential
Prediction_1 3.440222 .0174586 197.05  0.000 3.406004 3.47444
Prediction_2 3.266761 .0218042 149.82  0.000 3.224026 3.309497
Difference .1734607 .0279325 6.21 0.000 .118714 .2282075

Decomposit-~n
Explained .089347 .0137531 6.50 0.000 .0623915 .1163026
Unexplained .0841137 .025333 3.32 0.001 .034462 .1337654

Again the conclusion is that differences in endowments account for about half of the
wage gap.!?

A further possibility is to provide a stored reference model using the reference()
option. For example, for the decomposition of the wage gap between blacks and whites
the reference model is sometimes estimated based on all races, not just blacks and
whites. In such a case, the reference model would have to be estimated first using all
observations and then be provided to oaxaca via the reference() option.

Exponentiated results

The results in the example above are expressed on the logarithmic scale (remember that
log wages are used as the dependent variable) and it might be sensible to re-transform
the results to the original scale (Swiss francs in this case) using the eform option:

. oaxaca, eform
Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0O
2: female = 1

Robust
exp(b)  Std. Err. z P>|z| [95% Conf. Intervall

10. Note that unlike in the first example robust standard errors are reported (oaxaca uses suest to
estimate the joint variance matrix for all coefficients if pooled is specified; suest implies robust standard
errors). To compute robust standard errors in the first example you would have to add vce(robust)
to the command.
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Differential

Prediction_1 31.19388 .5446007 197.05 0.000 30.14454 32.27975

Prediction_2 26.22626 .5718438 149.82 0.000 25.12908 27.37135
Difference 1.189414 .0332234 6.21 0.000 1.126048 1.256346

Decomposit~n
Explained 1.09346 .0150385 6.50 0.000 1.064379 1.123336
Unexplained 1.087753 .027556 3.32 0.001 1.035063 1.143125

The (geometric) means of wages are 31.2 Swiss francs for men and 26.2 francs for women,
which amounts to a difference of 18.9 percent. Adjusting women’s endowments levels
to the levels of men would increase women’s wages by 9.3 percent. A gap of 8.8 percent
remains unexplained.

Survey estimation

oaxaca supports complex survey estimation, but svy has to be specified as an option
and is not allowed as a prefix command (which does not restrict functionality). For
example, variable wt provides sampling weights for the Swiss Labor Market Survey
1998. The weights (and strata or PSU’s if there were any) can be taken into account as
follows:

. svyset [pw=wt]
pweight: wt
VCE: linearized
Single unit: missing
Strata 1: <one>
SU 1: <observations>
FPC 1: <zero>

. oaxaca lnwage educ exper tenure, by(female) pooled svy

Blinder-Oaxaca decomposition

Number of strata = 1 Number of obs = 1647
Number of PSUs = 1434 Population size = 1424 .3797
Design df = 1433
1: female = 0
2: female = 1
Linearized
Coef. Std. Err. t P>t [95% Conf. Intervall
Differential
Prediction_1 3.405696 .0226315 150.48 0.000 3.361302 3.450091
Prediction_2 3.193847 .0276466 115.52 0.000 3.139615 3.248079
Difference .2118488 .0357284 5.93 0.000 .1417633 .2819344
Decomposit~n
Explained .1107614 .0189974 5.83 0.000 .0734956 .1480271
Unexplained .1010875 .0315911 3.20 0.001 .0391178 .1630572
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Detailed decomposition

Use the detail option to compute the individual contributions of the predictors to
the components of the decomposition. detail specified without argument reports the
contribution of each predictor individually. Alternatively, one can define groups of pre-
dictors for which the results be subsumed in parentheses. Furthermore, one might apply
the deviation contrast transform to dummy variable sets so that the contribution of a
categorical predictor to the unexplained part of the decomposition does not depended
on the choice of the base category. Example:

. tabulate isco, nofreq generate(isco)

. oaxaca lnwage educ exper tenure isco2-isco9, by(female) pooled ///
> detail (exp_ten: exper tenure, isco: isco?) categorical(isco?)
Blinder-Oaxaca decomposition Number of obs = 1434

1: female = 0
2: female = 1

Robust

Coef . Std. Err. z P>|z| [95% Conf. Intervall]

Differential
Prediction_1 3.440222 .0174589 197.05 0.000 3.406003 3.474441
Prediction_2 3.266761 .0218047 149.82 0.000 3.224025 3.309498
Difference .1734607 .0279331 6.21 0.000 .118713 .2282085

Explained

educ .0395615 .0097334 4.06 0.000 .0204843 .0586387
exp_ten .0399316 .0089081 4.48 0.000 .022472 .0573911
isco -.0056093 .012445 -0.45 0.652 -.0300009 .0187824
Total .0738838 .017772 4.16 0.000 .0390513 .1087163

Unexplained
educ -.1324971 .1788045 -0.74 0.459 -.4829475 .2179533
exp_ten .0129955 .0400811 0.32 0.746 -.0655619 .0915529
isco -.0159367 .0296549 -0.54 0.591 -.0740592 .0421858
_cons .2350152 .195018 1.21 0.228 -.1472132 .6172435
Total .0995769 .0266887 3.73 0.000 .047268 .1518859

Selectivity bias adjustment

In labor market research it is common to include a correction for sample selection bias
in the wage equations based on the procedure by Heckman (1976, 1979). Wages are
only observed for people who are participating in the labor force and this might be a
selective group. The most straightforward approach to account for selection bias in the
decomposition is to deduct the selection effects from the overall differential and then
apply the standard decomposition formulas to this adjusted differential (Reimers 1983;
an alternative approach is followed by Dolton and Makepeace 1986; see Neuman and
Oaxaca 2004 for an in-depth treatment of this issue).

If oaxaca is used with heckman, the decomposition is automatically adjusted for
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selection. For example, the following command includes a selection correction in the

A Stata implementation of the Blinder-Oaxaca decomposition

wage equation for women and decomposes the adjusted wage gap:

Comparing the results to the output in the first example reveals that the uncorrected
wages of women are slightly biased downwards (3.267 versus the selectivity corrected
3.276) and the wage gap is somewhat overestimated (0.173 versus the corrected 0.165).

. oaxaca lnwage educ exper tenure, by(female) model2(heckman, twostep ///

> select(1fp = age agesq married single divorced kids6 kids714))
Blinder-Oaxaca decomposition Number of obs 1434
1: female = 0
2: female = 1
Coef. Std. Err. z P>|z| [95% Conf. Interval]
Differential
Prediction_1 3.440222 .0174874 196.73  0.000 3.405947 3.474497
Prediction_2 3.275643 .0281554 116.34  0.000 3.220459 3.330827
Difference .164579 .0331442 4.97 0.000 .0996176 .2295404
Decomposit~n
Endowments .0858436 .0157566 5.45 0.000 .0549613 .116726
Coefficients .0736812 .031129 2.37 0.018 .0126695 .134693
Interaction .0050542 .0109895 0.46 0.646 -.0164849 .0265932

Alternatively, it is sometimes sensible to compute the selection variables outside of

oaxaca and then use the adjust () option to correct the differential. Example:

. probit 1fp age agesq married single divorced kids6 kids714 if female==

(output omitted )

. predict xb if e(sample), xb
(759 missing values generated)

= normalden(-xb) / (1 - normal(-xb))
(759 missing values generated)

. generate mills

. replace mills = 0 if female==
(759 real changes made)

. oaxaca lnwage educ exper tenure mills, by(female) adjust(mills)

Blinder-Oaxaca decomposition Number of obs 1434
1: female = 0O
2: female = 1
Coef. Std. Err. z P>zl [95% Conf. Intervall]
Differential
Prediction_1 3.440222 .0174874 196.73 0.000 3.405947 3.474497
Prediction_2 3.266761 .0218659 149.40 0.000 3.223905 3.309618
Difference .1734607 .0279987 6.20 0.000 .1185843 .2283372
Adjusted .164579 .033215 4.95 0.000 .0994788 .2296792
Decomposit-~n
Endowments .0858436 .0157766 5.44 0.000 .0549221 .1167651
Coefficients .0736812 .0312044 2.36 0.018 .0125217 .1348407
Interaction .0050542 .0110181 0.46 0.646 -.0165409 .0266493




Ben Jann 21

Using oaxaca with nonstandard models

You can also use oaxaca, for example, with binary outcome variables and employ a
command such as logit to estimate the models. You have to understand, however,
that oaxaca will always apply the decomposition to the linear predictions from the
models (based on the first equation if a model contains multiple equations). With
logit models, for example, the decomposition computed by oaxaca is expressed in
terms of log odds and not in terms of probabilities or proportions.!!
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