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Probabilistic model

Consider an observable random phenomenon. Suppose that this
phenomenon can be appropriately described by random variable X
with probability density function (pdf ) (or probability mass
function (pmf )) belonging to the family

Φ = {f (x ; θ); θ ∈ Θ}

where Θ is a subset of the k-dimensional Euclidean space Rk called
the parametric space. The family Φ is a probabilistic model.
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Gaussian model

Φ =

{
f (x ; θ) =

1√
2πσ2

e−
1
2 ( x−µ

σ )
2

; θ = (µ, σ2)′ ∈ Θ = R× R+

}
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Bernoulli model

Φ =
{
f (x ; θ) = θx(1− θ)1−x ; θ ∈ Θ = (0, 1)

}
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Poisson model

Φ =

{
f (x ; θ) =

e−θθx

x!
; θ ∈ Θ = (0,∞)

}
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Probabilistic model

The starting point of any inferential process is a probabilistic
model. Since the functional form of the density functions of the
probabilistic model is known, we have that all the uncertainty
concerning the random phenomenon is that concerning the
parameter θ.

In order to get information on θ, we will consider a sample from
the population described by our random variable. In particular, we
will consider a random sample. What is a random sample?
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Random sample

Definition 1. Let Xn = (X1,X2, ...,Xn)′ be a vector of n random
variables independent, identically distributed (i.i.d.) with pdf (or
pmf ) belonging to the family

Φ = {f (x ; θ); θ ∈ Θ} .

We say that Xn = (X1,X2, ...,Xn)′ is a random sample of size n
from f (x ; θ).

The distribution of the random sample Xn = (X1,X2, ...,Xn)′ is the
joint distribution of the random variables X1,X2, ...,Xn denoted by

f1,2,...,n(xn; θ) = f1,2,...,n(x1, x2, ..., xn; θ)

We have that

f1,2,...,n(x1, x2, ..., xn; θ) = f (x1; θ)f (x2; θ)...f (xn; θ) =
n∏

i=1

f (xi ; θ)
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An example

Let X = (X1,X2, ...,Xn) be a random sample from an N(µ, σ2)
distribution with µ and σ2 unknown.
In this case θ = (µ, σ2) ∈ R× R+, and the distribution of the
random sample is

f1,2,...,n(xn; θ) =
n∏

i=1

1√
2πσ2

exp

{
−1

2

(
xi − µ
σ

)2
}

=

(
1√

2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
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Likelihood Function

Definition 2.Let Xn = (X1,X2, ...,Xn) be a random sample of size
n from f (x ; θ). Given a realization xn = (x1, x2, ..., xn) of the
random sample Xn = (X1,X2, ...,Xn), the function

L : Θ→ [0,∞)

defined by L(θ; xn) = f1,2,...,n(xn; θ) is called the likelihood
function.
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An example

Let x = (x1, x2, ..., xn) be a realization of a random random sample
from an N(µ, σ2) distribution with µ and σ2 unknown.
In this case θ = (µ, σ2) ∈ R× R+, and the likelihood function is

L(µ, σ2; x) =

(
1√

2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
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Another example

Let xn = (x1, x2, ..., xn)′ be a realization of a random sample
X = (X1,X2, ...,Xn)′ from a Bernoulli distribution with probability
mass function

f (x ; θ) =

{
θ if x = 1
1− θ if x = 0

The likelihood function is

L(θ; xn) = θx1(1− θ)(1−x1)θx2(1− θ)(1−x2)...θxn(1− θ)(1−xn)

= θ
∑n

i=1 xi (1− θ)(n−
∑n

i=1 xi )
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Likelihood Function

Let xn = (x1, x2, ..., xn)′ and x∗n = (x∗1 , x
∗
2 , ..., x

∗
n )′ be two different

realizations of a random sample Xn = (X1,X2, ...,Xn)′.

The likelihood function at the point xn is (generally) a different
function from what it is at the point x∗n = (x∗1 , x

∗
2 , ..., x

∗
n )′, that is

L(θ; xn) 6= L(θ; x∗n)

Umberto Triacca Lesson 1: The Log-likelihood Function



Likelihood Function

Consider a realization x5 = (x1, x2, x3, x4, x5) of a random sample
X5 = (X1,X2,X3,X4,X5)′ from a Bernoulli distribution with
parameter θ.

Suppose x5 = (1, 0, 1, 0, 1)′. The likelihood function is:

L(θ; (1, 0, 1, 0, 1)′) = θ3(1− θ)2

Suppose x5 = (1, 0, 1, 0, 0)′. The likelihood function is:

L(θ; (1, 0, 1, 0, 0)′) = θ2(1− θ)3

Suppose x5 = (1, 0, 0, 0, 0)′. The likelihood function is:

L(θ; (1, 0, 0, 0, 0)′) = θ(1− θ)4
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Likelihood Function

The likelihood function at the point xn is (generally) a different
function from what it is at the point x∗n = (x∗1 , x

∗
2 , ..., x

∗
n )′, that is

L(θ; xn) 6= L(θ; x∗n)

Generally, but not always!

Consider again two realizations of a random sample
X5 = (X1,X2,X3,X4,X5)′ from a Bernoulli distribution,
x5 = (1, 0, 0, 0, 0)′ and x∗5 = (0, 0, 0, 0, 1)′. We have that x5 6= x∗5
but

L(θ; x5) = L(θ; x∗5) = θ(1− θ)4
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Likelihood Function

The likelihood function expresses the plausiblities of different
parameters after we have observed xn. In particular, for θ = θ∗,
the number L(θ∗; xn) is considered a measure of support that the
observation xn gives to the parameter θ∗.
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Likelihood Function

Consider a realization x5 = (x1, x2, x3, x4, x5) of a random sample
X5 = (X1,X2,X3,X4,X5)′ from a Bernoulli distribution with
parameter θ.

Suppose x5 = (1, 1, 1, 1, 1)′ and consider two possible values of θ:
θ1 = 1/3 and θ2 = 2/3. The plausibility of θ1 is:

L(θ1; (1, 1, 1, 1, 1)′) =

(
1

3

)5

= 0.004115226

The plausibility of θ2 is:

L(θ2; (1, 1, 1, 1, 1)′) =

(
2

3

)5

= 0.1316872

Clearly
L(θ2; (1, 1, 1, 1, 1)′) > L(θ1; (1, 1, 1, 1, 1)′)
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Likelihood Function

Now, suppose x5 = (0, 0, 0, 0, 0)′. The plausibility of θ1 is:

L(θ1; (0, 0, 0, 0, 0)′) =

(
2

3

)5

= 0.1316872

The plausibility of θ2 is:

L(θ2; (0, 0, 0, 0, 0)′) =

(
1

3

)5

= 0.004115226

Clearly
L(θ1; (0, 0, 0, 0, 0)′) > L(θ2; (0, 0, 0, 0, 0)′).
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The Log-likelihood Function

Often, we work with the natural logarithm of the likelihood
function, the so-called log-likelihood function:

l(x; θ) = lnL(x; θ) =
n∑

i=1

lnf (xi ; θ)
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An example

Let x = (x1, x2, ..., xn) be a realization of a random random sample
from an N(µ, σ2) distribution with µ and σ unknown.
In this case θ = (µ, σ2) ∈ R× R+, and the likelihood function is

L(µ, σ2; x) =

(
1√

2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}

=
1

σn(2π)
n
2

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]

and the log-likelihood function is given by

l(µ, σ2; x) = −nlnσ − n

2
ln2π − 1

2σ2

n∑
i=1

(xi − µ)2
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Score function

Definition 3. If the likelihood function, L(θ; x), is differentiable,
then the gradient of the log-likelihood

s(θ; x) =
δl(θ; x)

δθ
=
δlnL(θ; x)

δθ

is called the score function.

The score function can be found through the chain rule:

δl(θ; x)

δθ
=

1

L(θ; x)

δL(θ; x)

δθ
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Score function: An example

Let x = (x1, x2, ..., xn)′ be a realization of random sample from an
N(µ, σ2) distribution. Here θ = (µ, σ2). The score function is
given by

s(θ; x) =

(
Σ(xi − µ)

σ2
,

Σ(xi − µ)2

2σ4
− n

2σ2

)′
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Score vector

Definition 4. Evaluating the score function at a specific value of θ
and replacing the fixed values x = (x1, x2, ..., xn)′ by their
corresponding random variables X = (X1,X2, ...,Xn)′, the score
function becomes a random vector

s(θ; X) =
δl(θ; X)

δθ
=
δlnf (X; θ)

δθ
.

We call this random vector score vector.
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Score vector

Which is the expected value of the score vector? The expected
value of the score vector evaluated at the true parameter
value equals zero.

Theorem 1. Let X = (X1,X2, ...,Xn) be a random sample from a
distribution with p.d.f. belonging to the family

Φ = {f (x ; θ); θ ∈ Θ}

and let θ0 be the true value of the parameter θ, then under
suitable regularity conditions

E [s(θ0; X)] = 0

Umberto Triacca Lesson 2: Score vector and information matrix



Proof Theorem 1

In the following the single integral
∫
...dx, is used to indicate the

multiple integration over all elements of x.

Further, the range of integration is the whole range of x except for
the set of points where f (x; θ) = 0.

In the sequel we use often the phrase ‘under suitable regularity
conditions’. These conditions mainly relate to differentiability of
the density and the ability to interchange differentiation and
integration.
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Proof Theorem 1

Because f (x; θ) ∀θ ∈ Θ is a probability density function, we have
that: ∫

f (x; θ)dx = 1 ∀θ ∈ Θ (1)

Thus, differentiating (1) w.r.t. θ we get

δ

δθ

[∫
f (x; θ)dx

]
= 0 (2)

The regularity conditions guarantee that operations of
differentiation and integration can be interchanged. Thus, we have

δ

δθ

[∫
f (x; θ)dx

]
=

∫
δf (x; θ)

δθ
dx

So, (2) can be rewritten as∫
δf (x; θ)

δθ
dx = 0 (3)

Umberto Triacca Lesson 2: Score vector and information matrix



Proof Theorem 1

Because
δlnf (x; θ)

δθ
=

1

f (x; θ)

δf (x; θ)

δθ
.

we have that
δf (x; θ)

δθ
=
δlnf (x; θ)

δθ
f (x; θ)

and hence ∫
δlnf (x; θ)

δθ
f (x; θ)dx = 0 ∀θ ∈ Θ. (4)
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Proof Theorem 1

On the other hand, we have that∫
δlnf (x; θ0)

δθ
f (x; θ0)dx = E

[
δlnf (X; θ0)

δθ

]
= E [s(θ0; X)] . (5)

By equation (4) it follows that

E [s(θ0; X)] = 0 (6)

The score vector evaluated at the true parameter value has mean
zero.
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Score vector

Remark. Consider a vector of parameters θ1 6= θ0. We have that∫
δlnf (x; θ1)

δθ
f (x; θ1)dx = 0.

However
E [s(θ1; X)]

can be different from the null vector 0, being, in general,

E [s(θ1; X)] =

∫
δlnf (x; θ1)

δθ
f (x; θ0)dx 6=

∫
δlnf (x; θ1)

δθ
f (x; θ1)dx.
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Information matrix

Consider the variance-covariance matrix of the score vector

Var [s(θ; X)] = Var

[
δlnf (X; θ)

δθ

]
We note that it is a function of θ. We will denote this function
with In(θ).
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Information matrix

Definition 4. The variance-covariance matrix of the score,
evaluated at the true parameter value,

In(θ0) = Var

[
δlnf (X; θ0)

δθ

]
= E

[
δlnf (X; θ0)

δθ

δlnf (X; θ0)

δθ′

]
(7)

is called information matrix for θ0 (or Fisher’s information
measure on θ0 contained in the r.v. X).

It is important to note that the information does not depend on
the particular observation x.

In(θ0) measures the amount of information about θ0 contained (on
average) in a realization x of the r.v. X.
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Information matrix equality

Theorem 2. Let X = (X1,X2, ...,Xn) be a random sample from a
distribution with p.d.f. belonging to the family

Φ = {f (x ; θ); θ ∈ Θ}

and let θ0 be the true value of the parameter θ, then under some
regularity conditions

In(θ0) = −E
[
δ2lnf (X; θ0)

δθδθ′

]

This is called the information matrix equality. It provides an
alternative expression for the information matrix. The information
matrix equals the negative of the expected value of Hessian
(matrix of second partial derivatives) of the log-likelihood
evaluated at the true parameter θ0.
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Proof Theorem 2

We note that ∫
δlnf (x; θ)

δθ
f (x; θ)dx = 0 ∀θ ∈ Θ.

Thus, differentiating the above equation w.r.t. θ and evaluating
the derivative at θ0, we get∫ [

δ2lnf (x; θ0)

δθδθ′
f (x; θ0) +

δlnf (x; θ0)

δθ

δf (x; θ0)

δθ′

]
dx = 0 (8)

that is∫
δ2lnf (x; θ0)

δθδθ′
f (x; θ0)dx +

∫
δlnf (x; θ0)

δθ

δlnf (x; θ0)

δθ′
f (x; θ0)dx = 0

(9)
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Proof Theorem 2

Again, because derivatives are computed at θ0, and f (x; θ0) is the
probability density of the r. v. X, the two terms in equation (9)
are expectations, so

E

[
δ2lnf (X; θ0)

δθδθ′

]
+ E

[
δlnf (X; θ0)

δθ

δlnf (X; θ0)

δθ′

]
= 0 (10)
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Proof Theorem 2

The second term of the sum is the information matrix (7). Thus,
from (10) we get an alternative expression for the information
matrix

In(θ0) = E

[
−δ

2lnf (X; θ0)

δθδθ′

]
(11)

Umberto Triacca Lesson 2: Score vector and information matrix



The Hessian of the log-likelihood

The Hessian of the log-likelihood is

H(X; θ) =
δ2lnf (X; θ)

δθδθ′
=



δ2lnf (X;θ)
δθ2

1

δlnf (X;θ)
δθ1δθ2

· · · δlnf (X;θ)
δθ1δθn

lnf (X;θ)
δθ2δθ1

δ2lnf (X)
δθ2

2
· · · δlnf (X;θ)

δθ2δθk
...

...
. . .

...
lnf (X;θ)
δθkδθ1

δlnf (X;θ)
δθkδθ2

· · · δ2lnf (X;θ)
δθ2

k


By Theorem 2 it follows that if X = (X1,X2, ...,Xn)′ be a random
sample from a distribution with p.d.f. f (x ; θ0), then the
information matrix at θ0 is equal to the expected Hessian of the
log-likelihood, with the opposite sign,

In(θ0) = −E [H(X; θ0)] .
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Information matrix

It is important to note that the results presented do not depend on
the assumption of independence of the random variables
X1,X2, ...,Xn. This assumption can be used in order to get the
following result.
Let X = (X1,X2, ...,Xn) be a random sample from a distribution
with p.d.f. f (x ; θ0). We have that

In(θ0) = nI1(θ0)

The information in a random sample of size n is n times that in a
sample of size 1.
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An example

Let X = (X1,X2, ...,Xn) be a random sample from from a
distribution with p.d.f. belonging to the family

Φ =

{
f (x ; θ) =

1√
2πθ

exp

{
−1

2

(
x − 1√

θ

)2
}

; θ ∈ Θ

}
and let θ0 be the true value of the parameter θ.
We have that

L(θ; x) =
n∏

i=1

f (xi ; θ)

=

(
1√
2πθ

)n

exp

{
−1

2

n∑
i=1

(
xi − 1√

θ

)2
}

and

l(θ, x) =
n∑

i=1

lnf (xi ; θ) = −n

2
log2π − n

2
logθ − 1

2θ

n∑
i=1

(xi − 1)2
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An example

The score vector is given by

s(θ; X) = − n

2θ
+

∑n
i=1(Xi − 1)2

2θ2
.

We have that

E [s(θ0; X)] = − n

2θ0
+ E

[∑n
i=1(Xi − 1)2

2θ2
0

]
= − n

2θ0
+

∑n
i=1 E (Xi − 1)2

2θ2
0

= − n

2θ0
+

∑n
i=1 θ0

2θ2
0

= − n

2θ0
+

nθ0

2θ2
0

= 0
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An example

Now, consider the score vector evaluated in θ1 6= θ0

s(θ1; X) = − n

2θ1
+

∑n
i=1(Xi − 1)2

2θ2
1

.

We have that

E [s(θ1; X)] = − n

2θ1
+ E

[∑n
i=1(Xi − 1)2

2θ2
1

]
= − n

2θ1
+

∑n
i=1 E (Xi − 1)2

2θ2
1

= − n

2θ1
+

∑n
i=1 θ0

2θ2
1

= − n

2θ1
+

nθ0

2θ2
1

6= 0
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An example

Now, we calculate the information number In(θ0). Because
X = (X1,X2, ...,Xn) be a random sample, we have that

In(θ0) = nI1(θ0)

The information in a random sample of size n is n times that in a
sample of size 1.
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An example

I1(θ0) = Var (s(θ0;X1))

= Var

(
(X1 − 1)2

2θ2
0

)
=

1

4θ4
0

Var
(

(X1 − 1)2
)

=
1

4θ4
0

E

[(
(X1 − 1)2 − θ0

)2
]

=
1

4θ4
0

E
[
(X1 − 1)4 − 2θ0 (X1 − 1)2 + θ2

0

]
=

1

4θ4
0

(
E
[
(X1 − 1)4

]
− 2θ0E

[
(X1 − 1)2

]
+ θ2

0

)
=

1

4θ4
0

(
3θ2

0 − 2θ2
0 + θ2

0

)
= 1/(2θ2

0)
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An example

We can conclude that

In(θ0) =
n

2θ2
0
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The asymptotic information matrix

The matrix
Ia(θ0) = limn→∞In(θ0)/n

if it exists, is the asymptotic information matrix for θ0.
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The asymptotic information matrix

Ia(θ0) = lim
n→∞

In(θ0)

n

= lim
n→∞

nI1(θ0)

n

= I1(θ0)

The asymptotic information matrix is the Fisher information matrix
for one observation.
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Cramer-Rao inequality

Theorem 3. Let X = (x1, ..., xn) be a random sample of n
observations from the distribution with p.d.f. f (x ; θ) depending on
a real parameter θ. Let T (X) be an unbiased estimator of θ.
Then, subject to certain regularity conditions on f (x ; θ), the
variance of T (X) satisfies the inequality

Var[T (X)] ≥ 1

E

[(
δlnf (X;θ)

δθ

)2
]
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Proof

T (X) is an unbiased estimator of θ, so

E [T (X)] =

∫
T (x)f (x; θ)dx = θ (12)

Differentiating both sides of equation (1) with respect to θ, and
interchanging the order of integration and differentiation, gives∫

T (x)
δf (x; θ)

δθ
dx = 1 (13)

or ∫
T (x)

δlnf (x; θ)

δθ
f (x; θ)dx = 1 (14)
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Proof

Because∫
T (x)

δlnf (x; θ)

δθ
f (x; θ)dx = E

[
T (X)

δlnf (X; θ)

δθ

]
(15)

by (3) it follows that

E

[
T (X)

δlnf (X; θ)

δθ

]
= 1
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Proof

On the other hand, since

E

[
δlnf (X; θ)

δθ

]
= 0

we have that

E

[
T (X)

δlnf (X; θ)

δθ

]
= Cov

[
T (X),

δlnf (X; θ)

δθ

]
Hence

Cov

[
T (X),

δlnf (X; θ)

δθ

]
= 1
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Proof

Since the squared covariance cannot exceed the product of the two
variances, we have

1 =

(
Cov

[
T (X),

δlnf (X; θ)

δθ

])2

≤ Var [T (X)] Var

[
δlnf (X; θ)

δθ

]
or

1 =

(
Cov

[
T (X),

δlnf (X; θ)

δθ

])2

≤ Var [T (X)]E

[(
δlnf (X; θ)

δθ

)2
]

It follows that

Var[T (X)] ≥ 1

E

[(
δlnf (X;θ)

δθ

)2
]
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Remark

We have seen that the quantity

In(θ) = E

[(
δlnf (X; θ)

δθ

)2
]

is called information number or Fisher information. Now, we are
able to explain the reason of this terminology.

As In(θ) (the information number) gets bigger, we have a smaller
bound on the variance of the best unbiased estimator of θ.
Therefore, we might expect a smaller variance of the best
estimator.
On the other hand, we can obtain a smaller variance of the best
estimator if and only if the information about θ provided on
average by an observation in X is augmented. Thus, we can
conclude that the information number is a measure of this
information.
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Efficency

Definition 6. An unbiased estimator is efficient if its variance is
the lower bound of the inequality, that is

Var[T (X)] =
1

E

[(
δlnf (X;θ)

δθ

)2
]
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Efficiency: example

Let X = (X1,X2, ...,Xn) be a random sample from a distribution
with p.d.f.

f (x ; θ) =
1√
2πθ

exp

{
−1

2

(
x − 1√

θ

)2
}

Consider the unbiased estimator for θ

T (X) =
1

n

n∑
i=1

(Xi − 1)2.
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Efficiency: example

The variance of T (X) is

Var [T (X)] =
Var

[
(X − 1)2

]
n

=
1

n

{
E
[
(X − 1)4

]
−
(
E
[
(X − 1)2

])2
}

=
1

n

{
3θ2 − θ2

}
=

2θ2

n

We have seen that

In(θ) =
n

2θ2

We can conclude that T (X) is an efficient estimator for θ.
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Multidimensional Cramer-Rao inequality

The Cramer-Rao ineqality (Theorem 3) can be generalized to a
vector valued parameter θ

The generalization of the Cramer-Rao inequality states that, again
subject to regularity conditions, the variance-covariance matrix of
the unbiased estimator T (X), the k × k matrix Var(T (X)) is such
that Var(T (X))− I−1

n (θ) is positive semi-definite.

Thus I−1
n (θ) is in a sense a ‘lower bound’ for the variance matrix of

an unbiased estimator of θ.
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Maximum Likelihood Estimate

How can we estimate the unknown parameter θ? Given that the
likelihood function represents the plausibility of the various θ ∈ Θ
given the realization x, it is natural to chose as estimate of θ the
most plausible element of Θ.
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Maximum Likelihood Estimate

Definition 6. Let x = (x1, ..., xn) be a realization of a random
sample from a distribution with p.d.f. f (x ; θ) depending on an
unknown parameter θ ∈ Θ. A Maximum Likelihood Estimate
θ̂ = θ̂(x1, ..., xn) is an element of Θ that maximizes the value of
L(θ; x), i.e.,

L(θ̂; x) = maxθ∈ΘL(θ; x)
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Maximum Likelihood estimate

There may be one, none or many such MLE’s.

Proposition 1 (Sufficient condition for existence). If the
parameter space Θ is compact and if the likelihood function
L(θ; x) is continuous on Θ, then there exists an MLE.

Proposition 2 (Sufficient condition for uniqueness of MLE). If the
parameter space Θ is convex and if the likelihood function L(θ; x)
is strictly concave in Θ, then the MLE is unique when it exists.
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Maximum Likelihood estimate

The logarithm is a monotonic function, so the values that
maximize L(θ; x) are the same as those that maximize lnL(θ; x).

L(θ̂; x) = maxθ∈ΘL(θ; x)

m

lnL(θ̂; x) = maxθ∈ΘlnL(θ; x)
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Maximum Likelihood estimate

In the case where L(θ; x) is differentiable the MLE can be derived
as a solution of the equation

δlnL(θ; x)

δθ
= 0

called the likelihood equation.
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Maximum Likelihood estimator

The likelihood equation represents the first-order necessary
condition for the maximization of the log-likelihood function.

The second-order necessary condition for a point to be the
local maximum of the log-likelihood function is that the
Hessian be negative semidefinite at the point.
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Five steps for finding MLE

1 Find Likelihood function L(θ; x).

2 Get natural log of Likelihood function l(θ; x) = ln(L(θ; x).

3 Differentiate log-Likelihood function with respect to θ.

4 Set derivative to zero.

5 Solve for θ.
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Maximum Likelihood Estimate: an example

Let x = (x1, x2, ..., xn) be a realization of a random sample from an
N(µ, σ2) distribution with µ and σ unknown.
In this case θ = (µ, σ2) ∈ R× R+, and the likelihood function is

L(µ, σ2; x) =
1

(2πσ2)
n
2

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]

The log-likelihood function is given by

l(µ, σ2; x) = −n

2
ln2π − n

2
lnσ2 − 1

2σ2

n∑
i=1

(xi − µ)2
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Maximum Likelihood Estimate: an example

Taking the first derivative (gradient), we get

∂l(θ; x)

∂θ
=

(
Σ(xi − µ)

σ2
,

Σ(xi − µ)2

2σ4
− n

2σ2

)′
.

Setting
∂l(θ; x)

∂θ
= 0

and solve for θ = (µ, σ2) we have

θ̂ = (µ̂, σ̂2) = (x ,
n − 1

n
s2),

where x = Σxi/n is the sample mean and s2 = Σ(xi − x)2/(n − 1)
is the sample variance.
It is not difficult to verify that these values of µ and σ2 yield an
absolute (not only a local ) maximum of the log-likelihood
function, so that they are maximum likelihood estimates.
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Maximum Likelihood Estimate

Sometimes it is not possible to find an explicit solution of the
likelihood equation and so we have to use iterative algorithms to
maximize l(θ; x), as the Newton-Raphson or the Fisher-scoring,
which at any iteration update the parameter θ in appropriate way
until convergence.
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Maximum Likelihood estimator

Definition 7. Let X = (X1, ...,Xn) be a random sample from a
distribution with p.d.f. f (x ; θ) depending on an unknown
parameter θ ∈ Θ. An estimator θ̂n(X) = θ̂n(X1, ...,Xn) of θ is a
Maximum Likelihood Estimator if for any particular realization
x = (x1, ..., xn), the resulting estimate θ̂n(x) = θ̂n(x1, ..., xn) ∈ Θ is
a Maximum Likelihood estimate i.e.,

L(θ̂n(x); x) = maxθ∈ΘL(θ; x)

We will present some properties of MLE’s in the context in which θ
a single parameter, that is Θ ⊂ R.
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Maximum Likelihood estimator: Invariance

One of the most attractive properties of MLE’s is invariance.

Let θ̂n = θ̂n(X) be a MLE of θ. If g : Θ→ R is a continuous
function, then a MLE of g(θ) exists and is given by g(θ̂n(X)).

For example, if g(θ) = θ2 its MLE is g(θ̂n) = θ̂2
n.
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Maximum Likelihood estimator: Unbiasedness and
efficiency

It is possible to show that, under some regularity conditions, if
θ̂n(X) is an unbiased estimator of θ whose variance achieves the
Cramer-Rao bound, then the likelihood equation has a unique
solution equal to θ̂n(x).

In other terms, when there exists an unbiased estimator whose
variance attains the lower bound, this estimator is identical to the
ML estimator.
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Maximum Likelihood estimator: consistency

Definition 8. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a real parameter
θ ∈ Θ. An estimator θ̂n = θ̂n(X1, ...,Xn) is said to be consistent
for θ if

limn→∞P(|θ̂n − θ| < ε) = 1 ∀θ ∈ Θ

and we write θ̂n
P→ θ.
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Maximum Likelihood estimator: consistency

Theorem 3. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a real parameter
θ ∈ Θ. Under suitable regularity conditions, the ML estimator
θ̂n = θ̂n(X1, ...,Xn) is a consistent estimator for θ.
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Maximum Likelihood estimator: asymptotic normality

Here, we consider θ a vector of parameters

Definition 9. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of parameters
θ ∈ Θ ⊂ Rk . An estimator θ̂n = θ̂n(X1, ...,Xn) for θ, with
covariance matrix Vn(θ), is said to be asymptotically normal if

√
n
(
θ̂n − θ

)
D→ N(0,V(θ))

where V(θ) = limn→∞Vn(θ)

We note that if θ̂n is asymptotically normal, then approximately

θ̂n ∼ N(θ,
1

n
V(θ)).

The matrix 1
nV(θ) is called asymptotic variance.
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Maximum Likelihood estimator: asymptotic normality

Theorem 4. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of
parameters θ ∈ Θ ⊂ Rk . Under suitable regularity conditions, the
ML estimator θ̂n = θ̂n(x1, ..., xn) is asymptotically normal. That is

√
n
(
θ̂n − θ0

)
D→ N(0, Ia(θ0)−1)

where

Ia(θ0) = limn→∞In(θ0)/n (asymptotic information matrix)

In(θ0) = −E

[
δ2lnf (X; θ)

δθδθ′

∣∣∣∣
θ=θ0

]
and θ0 is the true parameter value.
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Maximum Likelihood estimator: asymptotic normality

Because

Ia(θ0) = lim
n→∞

In(θ0)

n
= I1(θ0),

we have that

√
n
(
θ̂n − θ0

)
D→ N(0, I1(θ0)−1)
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Maximum Likelihood estimator: asymptotic normality

The practical consequence of this result is that in large samples,
when n is large enough, the ML estimator θ̂ has approximately a
normal distribution with mean vector θ0 and variance-covariance
matrix I1(θ0)−1/n, in symbols

θ̂ approx . ∼ N
[
θ0, I1(θ0)−1/n

]
.
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Maximum Likelihood estimator: asymptotic efficiency

Definition 10. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of parameters
θ ∈ Θ ⊂ Rk . An consistent and asymptotically normal estimator
θ̂n = θ̂n(X1, ...,Xn) for θ, with asymptotic variance (1/n)V(θ). is
said to be asymptotically efficient if the asymptotic variance of
any other consistent, asymptotically normally distributed estimator
exceeds (1/n)V(θ) by a nonnegative definite matrix.
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Maximum Likelihood estimator: asymptotic efficiency

Theorem 5. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of
parameters θ ∈ Θ ⊂ Rk . Under suitable regularity conditions, the
ML estimator θ̂n = θ̂n(x1, ..., xn) is asymptotically efficient.
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Maximum Likelihood estimator: Properties

Under certain regularity conditions, the maximum likelihood
estimator possesses many appealing properties:

1 The maximum likelihood estimator is equivariant

2 The maximum likelihood estimator is consistent

3 The maximum likelihood estimator is asymptotically normal

4 The maximum likelihood estimator is asymptotically efficient
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