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40 years of robust control: 
1978-2018

2014  American Control Conference
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8:30-9:10, Universal laws and architectures (John Doyle) 
9:10-9:35, Robustness analysis, μ (Andy Packard)
9:35-10:00, Multivariable system theory (Keith Glover)
10:00-10:30, break

10:30-11:00, H∞ and H∞ loopshaping (Keith Glover)
11:00-11:30, Signal-weighted design and DK iteration (Gary Balas)
11:30-12:00, Design examples (Roy Smith, Pete Seiler, Gary Balas)
12:00-12:20, Model Reduction (Keith Glover)
12:30-1:30, lunch break

1:30-2:00, Advanced design formulations (Roy Smith)
2:00-2:30, Automated tuning of fixed architecture controllers (Pascal Gahinet)
2:30-3:00, Integral Quadratic Constraints (Pete Seiler)
3:00-3:30, break

3:30-4:00, Robust MPC  (Francesco Borrelli)
4:00-4:30, Decentralized optimal  control  (Laurent Lessard)
4:30-5:30, 2014-2018: what’s needed (John Doyle)

Schedule
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John Doyle  道陽

Jean-Lou Chameau Professor
Control and Dynamical Systems, EE, & BioE

tech1#Ca

Universal laws 
and architectures: 

origins of robust control
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Better, faster, cheaper

Circa late 70s
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Trends in the 1970s

• Improved efficiency and performance
• Instability 
• Modern control said “no problem”
• Solvable iff stabilizable+detectable+LQG
• Talk math to engineers, and vice versa

• What could go wrong?
MIT

LQG
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Requirements on systems and architectures
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PCA   Principal Concept Analysis 

wasteful

fragile

efficient
robust
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wasteful

fragile

efficient
robust

Ideal
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wasteful

fragile

efficient
robust

Better, faster, cheaper

Circa late 70s
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Fragile?

Robust?

Robustness?

• Modern control said “no problem”
• Solvable iff

stabilizable+detectable+LQG
• “Guaranteed margins”
• Talk math to engineers & vice versa

• Dissent at fringe (Zames, Horowitz)
• What could go wrong?
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wasteful

fragile

efficient
robust Ideal
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wasteful

fragile

efficient
robust Ideal

Universal laws 
and architectures
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Early Influences (Thanks)

• MIT: Mitter, Sandell, Gould, Safonov, …
• Honeywell: Stein, Wall, Enns, Freudenberg, …
• Zames, Horowitz, Astrom, …
• Glover
• Khargonekar, Francis, Kimura,…
• Berkeley: Sarason, Boyd, Packard, Gohberg, …
• 1981 NATO tour : w/ Stein, Zames, Willems, 

Wonham, MacFarlane
• 1984 ONR/Honeywell Workshop
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Counterexamples and issues?
• Can anything have “guaranteed margins”?

– No, not in general
– Depends on plant (d’oh)
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Counterexamples and issues?
• Can anything have “guaranteed margins”?

– No, not in general
– Depends on plant (d’oh)

• Is LQG (H2) special?
– Yes, it can be gratuitously fragile
– OK, it isn’t completely useless
– There are tweaks (LTR) that help

MIT

D’OH
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Counterexamples and issues?
• Can anything have “guaranteed margins”?

– No, not in general
– Depends on plant (d’oh)

• Is LQG (H2) special?
– Yes, it can be gratuitously fragile
– OK, it isn’t completely useless
– There are tweaks (LTR) that help

• Are  and H a panacea for everything?
– Yes!  Or so it seemed at the time?
– No!    See everything else today, including me

MIT

D’OH
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Today:  to H to systune to MPC

Slow

Fast
Verifiable
Insight 

Accessible General Special

MPC/RHC

systune

H
Bode

18

18



• Improved efficiency and performance
• Instability 
• Modern control said “no problem”
• Solvable iff stabilizable+detectable+LQG
• Talk math to engineers, and vice versa
• Small debates over details (“multivariable”)
• Dissension at the fringes (Zames, Horowitz)

• What could go wrong?

Trends in the 1970s

MIT

LQG
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Respect the unstable.
Gunter Stein

Respect Gunter Stein.
The Unstable
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hard harder

Why?
vision

Act

delay
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hard harder hardest!

Easy to prove using simple models.

What is sensed matters.

Why?

Why?!?
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Universal laws and architectures:
brains, bugs, networks, physiology, 

grids, medicine, wildfire, turbulence,
literature, fashion, dance, earthquakes,

art, music, Lego, buildings, citiesvision

Act

delay

Control theory
+ NeuroscienceBalancing 

an inverted 
pendulum

Mechanics+
Gravity +
Light +
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Crashes 
can be 

made rare 
with active 

control.
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easy

hard

Gravity is 
stabilizing

Gravity is 
destabilizing

harder

More 
unstable

Law #1 : Mechanics
Law #2 : Gravity 
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Efficiency/instability/layers/feedback

• Money/finance/lobbyists/etc
• Society/agriculture/weapons/etc
• Bipedalism
• Maternal care
• Warm blood
• Flight
• Mitochondria
• Translation (ribosomes)
• Glycolysis (2011 Science)

• All create new efficiencies but also instabilities
• Requires new active/layered/complex/active control

Major transitions
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Efficiency/instability/layers/feedback

• Money/finance/lobbyists/etc
• Society/agriculture/weapons/etc
• Bipedalism
• Maternal care
• Warm blood
• Flight
• Mitochondria
• Translation (ribosomes)
• Glycolysis (2011 Science)

• All create new efficiencies but also instabilities
• Requires new active/layered/complex/active control

easy hard
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costly

fragile

efficient
robust
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costly

fragile

efficient
robust

easy

hard

harder

A convenient 
cartoon
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Universal laws

vision

Act

delay

+ Neuroscience

Balancing 
an inverted 
pendulum

Mechanics+
Gravity +
Light +

Some minimal math details

 exp z pT p
z p
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easy
hard

Law #1 : Mechanics
Law #2 : Gravity 

   2cos sin
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linearize
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hard harder

Easy to prove using simple models.

Why?
vision

Act

delay

Law #3 : Light  
0

y x

M m x ml u

x l g
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eye vision

slow

Act

delay

Control

l

1p
l



noise
error

  ET j
N
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 expT p



Universal laws,
art, music, Lego

vision

Act

delay

Balancing 
an inverted 
pendulum

Mechanics+
Gravity +
Light +

1p
l



.3s 

34

34



10

100

Length, m
.1 1.5.2

2

 exp p
1p
l



.3s 

Shorter

 expT p



35

35



10

100

Length, m
.1 1.5.2

2

 exp p

.3s 

.2s

1p
l



 expT p



36

36



10

Length, m
.1 1.5.2

2
loglog

0.2 0.4 0.6 0.8 12

4

6

8

10

linear

 exp p

37

37



eye vision
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delay

Control

l noise

error
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Proof?
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Reasonable questions from biologists/doctors:
• Why complex variables for robust control?
• Do we really need to learn this math too?
• Why can’t we do this with optimization/duality?
• (which we need to learn anyway)
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hard harder hardest!

Easy to prove using simple models.

What is sensed matters.

Why?

42

42



hard harder hardest!

What is sensed matters.

Unstable poles Unstable zeros

0l l0l l
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hardest!

0l l

0l l
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vision

Act

delay

Holds for all controllers.

A “law” about 
intrinsic problem 

difficulty (a la 
Turing). 

“Guaranteed 
margins?”

Impossible!

 exp z pT p
z p
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Fragility two ways (Bode* and Zames):

* With key help from Freudenberg and Seron et al
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Universal?
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Chandra, Buzi, and Doyle

UG biochem, math, 
control theory

Insight
Accessible
Verifiable
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Efficiency/instability/layers/feedback

• Money/finance/lobbyists/etc
• Society/agriculture/weapons/etc
• Bipedalism
• Maternal care
• Warm blood
• Flight
• Mitochondria
• Translation (ribosomes)
• Glycolysis

• All create new efficiencies but also instabilities
• Requires new active/layered/complex/active control

easy hard
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Law #1 : Chemistry
Law #2 : Autocatalysis

( RHP p and z)

Law #3: 

 exp ln T z p
z pT
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10-1 100 101100

101

too 
fragile

complex

No tradeoff

expensive

fragile

Law #1 : Chemistry
Law #2 : Autocatalysis

( RHP p and z)

Law #3: 
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10-1 100 101100

101

too 
fragile

complex

No tradeoff

Metabolic overhead 
to make enzymes

fragile

Robust Efficiency in 
Energy Supply 

Robust to 
 in supply 
and demand 
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Universal laws?
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What (some) reviewers say
• “…to establish universality … is simply wrong. It 
cannot be done…

• … a mathematical scheme without any real 
connections to biological or medical…  

• …universality is well justified in physics… for 
biological and physiological systems …a dream 
…never be realized, due to the vast diversity in 
such systems.

• …does not seem to understand or appreciate 
the vast diversity of biological and physiological 
systems…

• …a high degree of abstraction, which …make[s]
the model useless … 
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What (some) reviewers say
• “…to establish universality … is simply wrong. It 
cannot be done…

• … a mathematical scheme without any real 
connections to biological or medical…  

• …universality is well justified in physics… for 
biological and physiological systems …a dream 
…never be realized, due to the vast diversity in 
such systems.

• …does not seem to understand or appreciate 
the vast diversity of biological and physiological 
systems…

• …a high degree of abstraction, which …make[s]
the model useless … 

If you agree
• You’re in good company 
• See Andy at break about refund policy
• Stay off commercial aircraft
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Slow

Flexible

Fast

Inflexible

Architecture 
(constraints that 

deconstrain)

General Special

Universal laws and architectures 
(Turing)

ideal
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Slow

Flexible

Fast

Inflexible
General Special

NP(time)
P(time)

analytic

Pspace
Decidable

Computation
(on and off-line)
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Slow

Flexible

Fast

Inflexible
General Special

NP(time)
P(time)

analytic

Pspace
Decidable

Universal architecture
59

59



Slow

Flexible

Fast

Inflexible
General Special

NP
P
analytic

Pspace
Decidable

Computation
(on and off-line)

Fast
Insight

Accessible
Verifiable
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Slow

Fast
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Slow

Flexible

Fast
Verifiable

Insight
Inflexible

General Special

NP

P

analytic

Pspace
MPC/RHC

systune

H
Bode

1980

Convenient cartoon
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Slow

Flexible

Fast
Verifiable

Insight
Inflexible

General Special

NP

P

analytic

Pspace
MPC/RHC

systune

H
Bode

2014

Convenient cartoon

MPC/RHC
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Slow

Flexible

Fast
Verifiable

Insight
Inflexible

General Special

H
Bode

Convenient cartoon
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How tight
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bounds?
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delay
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Unfortunately ill-posed.
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Well posed 
(w/ even small weights)

2Solve optimal  and ?T T 
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H10
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Slow

Flexible

Fast
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Inflexible
General Special

NP
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H
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eye vision

Act

delay

Control

l noise

error
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What is we wanted to understand this more deeply?
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eye vision

Act

delay

Control

l noise

error  ET j
N
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What is we wanted to understand this more deeply?

+ Neuroscience

Mechanics+
Gravity +
Light +
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Universal laws and architectures:
brains, bugs, networks, physiology, 

grids, medicine, wildfire, turbulence,
literature, fashion, dance, earthquakes,

art, music, Lego, buildings, citiesvision

Act

delay

+ Neuroscience

Balancing 
an inverted 
pendulum

Mechanics+
Gravity +
Light +
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Robust vision with motion
• Object motion
• Self motion

Vision

Motion
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Fast

Slow

Flexible Inflexible

Vision

Explain this 
amazing 
system.

Layering
Feedback
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Experiment
• Motion/vision control without blurring
• Which is easier and faster?

Robust vision with
• Hand motion
• Head motion
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Fast

Slow

VOR

vision

Why?
• Mechanism
• Tradeoff
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Fast

Slow

Flexible Inflexible

VOR

vision

Vestibular 
Ocular 
Reflex 
(VOR)

Mechanism

Tradeoff
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Slow

Flexible

vision

eye vision

Act
slow

delay

Fast

Inflexible
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Slow

Flexible

vision

eye vision

Act
slow

delay

Fast

Inflexible

VOR

fast

89

89



Slow

Flexible

eye

Act

Fast

Inflexible

VOR

fast

Vestibular 
Ocular 
Reflex 
(VOR)
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Slow

Flexible

eye

Act

Fast

Inflexible

VOR

fast

It works in the 
dark or with your 
eyes closed, but 

you can’t tell.
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fast
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vision

eye vision

Act
slow

delay

VOR

Slow

Flexible

Fast

Inflexible

Illusion

Highly 
evolved 
(hidden) 

architecture

Layering
Feedback
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eye vision

Act

VOR

Layering

Automatic
Unconscious

Partially
Conscious
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eye vision

Act
slow

delay

VOR

fast
Layering
Feedback
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vision

eye vision

Act
slow

delay

VOR

Slow

Flexible

Fast

Inflexible

Illusion

fastArchitecture
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Slow

Flexible

vision

eye vision

Act
slow

delay

Fast

Inflexible

VOR

fast

3D + 
motion

See Marge 
Livingstone

Color?
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Slow

Flexible

vision

eye vision

Act
slow

delay

Fast

Inflexible

VOR

fast

See Marge 
Livingstone

3D + 
motion

color
vision

Slowest
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Stare at the intersection
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Stare at the intersection.

101

101
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Stare at the intersection.
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Slow

Flexible

vision

eye vision

Act
slow

delay

Fast

Inflexible

VOR

fast

3D + 
motion

color
vision

Slowest
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Slow

Flexible

vision

Fast

Inflexible

VOR

color
vision

Seeing is dreaming
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eye vision

slow

Act

delay

Control

l

1p
l



noise
error
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1x

2x

3x

Model?

• 1 dimension, 4 states?
• Other 2 dimensions?
• New issues arise
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eye vision

Act

delay

Control

noise
error
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eye vision

Act

delay

Control

noise
error
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1x

2x

3x
easy

easy

hard
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eye vision

Act

delay

Control

noise
error

  ET j
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1x

2x

3x
easy

easy

hard
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Slow

Flexible

Fast

Inflexible

Architecture 
(constraints that 

deconstrain)

General Special

Universal laws and architectures 
(Turing)

ideal
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Slow

Fast

General Special

NP
P
analytic

Pspace
Decidable

Universal 
laws?
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Slow

Flexible

vision
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Slow

Flexible

vision

eye vision

Act slow
delay

Fast

Inflexible

VOR

fast

Slow

Fast

General Special
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Decidable
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10-1 100 101
100

101

too 
fragile

complex

No tradeoff

expensive

fragile

Slow

Fragile
Implications?
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Expensive tradeoffs

What is costly (and cheap) elements in:

Physical: Both efficiency and stability
Control: Actuation (vs sensing)
Computing: Time (vs space)
Communication: Latency (vs bandwidth)
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Flexible/
General

Inflexible/
Specific

NP(time)

P(time)

Decidable
Computational 

complexity

PSPACENPPNL
PSPACE ≠ NL

NL

PSPACE Space (memory) is 
powerful and/or 

cheap.

Fast

Slow
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Control of cyberphysical systems?

Physical: Efficient, therefore unstable 
Computing: Distributed with delays 
Communication: With latency
Therefore Control: Distributed

– with sparse actuation (but add sensing)
– with delays in computing 
– and communications
– but “free” memory and bandwidth

How to make scalable?
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Control, OR

CommsCompute

Physics

Shannon

Bode

Turing

Gödel

Einstein
Heisenberg

Carnot

Boltzmann

Theory?
Deep, but fragmented, 
incoherent, incomplete

Nash

Von 
Neumann
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Control, OR

CommunicateCompute

Physics

Shannon

Bode

Turing

Einstein

Heisenberg

Carnot

Boltzmann

Delay and 
risk  are 
most

important

Delay and 
risk are 
least 

important
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Control, OR

Compute

Bode

Turing

Delay 
and risk  
are most
important

• Worst-case (“risk”)
• Time complexity (delay)

• Worst-case (“risk”)
• Delay severely degrades 

robust performance

Computation for control
• Off-line design
• On-line implementation
• Learning and adaptation
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Control, OR

CommunicateCompute

Physics

Shannon

Bode

Turing

Einstein

Heisenberg

Carnot

Boltzmann

Delay and 
risk  are 
most

important

Delay and 
risk are 
least 

important
Dominates 

“high impact
science” 
literature
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Communicate

Physics

Shannon

Einstein

Heisenberg

Carnot

Boltzmann

• Average case (risk neutral)
• Random ensembles
• Asymptotic (infinite delay)

• “Layering” by averaging

• Space complexity
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Control, OR

CommunicateCompute

Physics

Shannon

Bode

Turing

Delay and 
risk  are 
most

important

Delay and 
risk are 
least 

important

New progress!
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• Brains
• Nets
• Grids (cyberphys)
• Bugs (microbes, ants)
• Medical physiology

• Lots of aerospace
• Wildfire ecology
• Earthquakes
• Physics: 

– turbulence, 
– stat mech (QM?)

• “Toy”: 
– Lego
– clothing, fashion

• Buildings, cities
• Synesthesia

 Case Study
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• Neuroscience
+ People care
+ Live demos

• Internet (& Cyber-Phys)
+ Understand the details
- Flawed designs
- Everything you’ve read is wrong (in science)*

• Cell biology (bacteria)
+ Perfection
 Some people care

* this comment is for scientists
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• Neuroscience
+ People care
+Live demos!

1. experiments
2. data
3. theory
4. universals
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solcomplex2realDefinite.tex

Multivariable Stability 
Robustness

Doyle/Stein, 1981

2014 American Control Conference
40 years of robust control: 1978-2018

Copyright 2014, MUSYN.  This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 
Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or 

send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.    
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Effect of uncertainty at plant input

Plant, P
–Linear, time invariant

Controller, C
–Linear, time-invariant
–Stabilizes P

Uncertainty in P
–Uncertain gain (complex matrix) at input

Question: What is the smallest                       such that 
feedback interconnection of                  and      is unstable?    

Nyquist plot of  det(I+PC)
– does not pass through 0
– encircles 0 the correct 

number of times, CCW

PC

P
∆
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Effect of uncertainty at plant input

What is smallest ∆ such that
– Nyquist plot of  det(I+P(I+∆)C) passes through 0?
– Solve independently at each frequency

– Find “worst” frequency (with smallest such  ∆)
“Easiest” location for pole to 

migrate from stable to 
unstable is at this frequency
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Plant, Controller, P, C
– Linear, time invariant
– C Stabilizes P

Robustness of Stability
– What is the smallest (complex 

matrix) ∆ such that feedback 
of  P(I+∆)  and C is unstable? 

∆ is in feedback with  

PC
∆

PC

PC

∆

PC

∆Uncertain closed-loop 
system represented as 

feedback between known
and unknown part

Remember this picture
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Relation to distance of                        to 0

Are these the same idea? ?

-2 0 2 4 6
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Nyquist plot of L
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Nyquist plot of 1+L

1+L

-2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

4

Real

Im
ag

Nyquist plot of det(I+Lk), k=1, 2, ...

No!
Multivariable Nyquist plot 

passes close to 0
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Real Dynamic models mimicking Complex numbers

-2 -1 0 1 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
Ax

is

4.3261

4.3261

4.3261

4.3261

4.3261

4.3261

4.3261

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1

10
2

0

45

90

135

180
Ph

as
e 

(d
eg

)

Bode Diagram

Frequency  (rad/s)

137

137



Relation between complex and real-rational uncertainty

For linear, uncertain systems, an “equivalence” between
–Constant, complex, uncertainty, and
–Linear, dynamic (with real coefficients)

can be established.   

Given stable, SISO G(s) and constants
– there exists a complex scalar ∆ with               such that feedback 

connection of (G,∆) has a pole at 

if and only if
– there exists a stable linear system (with real coefficients)       satisfying 

and the feedback connection of              has a pole at  
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Relation between complex and real-rational uncertainty

For linear, uncertain systems, an “equivalence” between
–Constant, complex, uncertainty, and
–Linear, dynamic (with real coefficients)

can be established.

Given stable, MIMO G(s) and constants
– there exists a complex matrix ∆ with                  such that feedback 

connection of (G,∆) has a pole at 

if and only if
– there exists a linear system (with real coefficients)       satisfying 

and the feedback connection of              has a pole at  
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solcomplex2realDefinite.tex

LFT uncertainty modeling and 
stability of Uncertain 

Interconnections
Doyle 1982

2014 American Control Conference
40 years of robust control: 1978-2018
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solcomplex2realDefinite.tex

General linear interconnection: known       unknown 
– each is FDLTI, with proper transfer function, and stabilizable and detectable 

internal state-space description.
– constant interconnection matrix
– well-posed if for any initial conditions and any piecewise-continuous inputs 

, , ,  there exist unique solutions to the interconnection equations.
– For a well-posed interconnection, a state-space model or proper transfer function 

description for the map from , to , can be derived.

– stable if the resultant state-space model is internally stable – the eigenvalues of 
it's " " matrix are in the open, left-half plane.
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Different assumptions on unknown components 
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Interconnection is well-posed at Γ 0

Interconnection is stable at Γ 0

Interconnection is well-posed at Γ

Interconnection is stable at Γ

Interconnection: robust well-posedness and stability

Non-vanishing determinant conditions
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SSV (

Doyle, 1982
Doyle, Wall, Stein 1982

2014 American Control Conference
40 years of robust control: 1978-2018
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Structured Singular Value
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General form of Uncertain Element: Structured Singular Value
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Alternate form
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Alternate form with only Complex Blocks
148

148



Properties of
149

149



Example of

There are complex 
blocks, and they “matter”
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Canonical Block Structure
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Canonical Block Structure
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Canonical Block Structure
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Real versus Complex uncertain elements
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Improved Upper Bound
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Improved Upper Bound
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Improved Upper Bound
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Robustness test with 

2014 American Control Conference
40 years of robust control: 1978-2018
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Dynamic, Structured, Linear Uncertain Elements
159

159



Robust Stability of Interconnection as μ-test

max
∈

1 max sup
∈

,	 ∞
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Robust Stability of Interconnection as μ-test
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Robust Stability of Interconnection as -test
162
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solcomplex2realDefinite.tex

Performance characterized
as Robustness

2014 American Control Conference
40 years of robust control: 1978-2018
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Performance as Robustness-to-Uncertainty
164
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Robust Performance as Robust Stability
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H∞ control and H∞-loop Shaping

Keith Glover

Department of Engineering

University of Cambridge

(For the ACC 2014Workshop

40 years of robust control)
ACC 2014
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Figure 1: Robust Control Toolbox
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2 Introduction

2.1 General Problem

A typical feedback system is given below:

g
-
-

-

?�.

-

-

input disturbance, d(t)

reference, r(t) output, y(t)

sensor noise, v(t)

controller plant

Given a plant whose dynamics are only known approximately our objective is to design a

controller so that the output “follows” the reference despite the “uncertainty” in the plant and

the “unknown” disturbances.
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To pose a formal problem and use analytic techniques we need to be more precise:

• measure the size of the error between the output, y(t), and the reference, r(t). e.g.

‖y − r‖2 =
√∫∞

0
(y(t)− r(t))2

dt.

• characterize the uncertainty in the plant, e.g. |G(jω)−Go(jω)| < ε for all ω.

• characterize the unknown disturbances, e.g.
∫∞

0
d(t)2 dt < 1, or d(t) is white noise.

Analysis - given such a set-up with a given controller is the size of the error suitably small for

all disturbances in its class and all plants in its class?

Synthesis - find a controller to meet such a specification.
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Example

Consider the example where the plant’s transfer function,

G(s) = Go(s)(1 + ∆(s)) where |∆(jω)| < ε for all ω,

and a disturbance, d(t), enters the system and the plant input as follows:

g g∆(s)

K(s) Go(s)- -
?

--

-

-
?

u

z w
y

d

Suppose that we want the output due to the disturbance to be limited in the sense that the

transfer function from d to y satisfies:

|Td→y(jω)| < α(ω) for all ω,

and for all plants perturbed as above.
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y = Go(1 + ∆) [d+Ky]

(1−Go(1 + ∆)K)y = Go(1 + ∆)d

⇒ Td→y =
Go(1 + ∆)

1−Go(1 + ∆)K

Therefore we require,∣∣∣∣ Go(1 + ∆)

1−Go(1 + ∆)K

∣∣∣∣ < α for all ω and for all |∆| < ε.

⇔
∣∣∣∣ 1

Go(1 + ∆)
−K

∣∣∣∣ >
1

α
for all ω and for all |∆| < ε.

⇔
∣∣∣∣ 1

(1 + ∆)
−GoK

∣∣∣∣ >
|Go|
α

for all ω and for all |∆| < ε.

Given α and ε this gives a condition on Go(jω) and K(jω) for each ω and to make it easily

computed we need to eliminate the term ∆. Consider the term 1/(1 + ∆) for all ∆ with

|∆| < ε; we will show that this set of points in the complex plane gives the inside of a disk with

centre 1/(1− ε2) and radius ε/(1− ε2), as ∆ varies with |∆| < ε.
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Firstly note that given complex numbers β and z with |β| < 1 then,∣∣∣∣ β + z

1 + β∗z

∣∣∣∣2 =
|β|2 + βz∗ + β∗z + |z|2

1 + β∗z + βz∗ + |β|2|z|2

= 1− (1− |β|2)(1− |z|2)

|1 + β∗z|2

 < 1 if |z| < 1

= 1 if |z| = 1

So that the set of points w = β+z
1+β∗z map out a disk in the complex plane centred at the origin

with unit radius as z varies inside the circle of unit radius. Note also that z = (−β)+w
1+(−β)∗w so

there is a unique correspondence between the points z and w inside the unit disk.

Now we note that,

1

1 + ∆
=

1

1− ε2
+ ∆̂, where ∆̂ = − ε

1− ε2
·
(
ε+ ∆/ε

1 + ε∆/ε

)
⇒ |∆̂| < ε

1− ε2
.

Now substituting into the condition
∣∣∣ 1

(1+∆) −GoK
∣∣∣ > |Go|

α , we obtain,∣∣∣∣ 1

(1 + ∆)
−GoK

∣∣∣∣ >
|Go|
α

for all |∆| < ε

⇔
∣∣∣∣ 1

1− ε2
+ ∆̂−GoK

∣∣∣∣ >
|Go|
α

for all |∆̂| < ε/(1− ε2)
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⇔
∣∣∣∣ 1

1− ε2
−GoK

∣∣∣∣ > |Go|α +
ε

1− ε2

This final condition gives the exact condition for the so-called Robust Performance of the

uncertain system.

If ε = 0 then this reduces to the Nominal Performace condition,

|1−GoK| >
|Go|
α

i.e.

∣∣∣∣ Go
1−GoK

∣∣∣∣ < α

Alternatively if we remove the performance condition by letting α→∞ then defining

To = GoK/(1−GoK), (⇒ GoK = To/(1 + To)), the Robust Stability condition becomes:

∣∣∣∣ 1

1− ε2
− To

1 + To

∣∣∣∣ >
ε

1− ε2

⇔
∣∣1 + ε2To

∣∣2 > ε2 |1 + To|2

⇔ 1 + ε2(To + T ∗o ) + ε4 |To|2 > ε2
(

1 + To + T ∗o + |To|2
)

⇔ (1− ε2) > ε2(1− ε2) |To|2

⇔ |To| <
1

ε
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This example illustrates a general robust performance problem which can be put in the

following general framework:

∆

K

-

�

-

�

�� d

u

wz

e

y

We will consider:

• Stability

• Robust Stability

• Performance

• Robust Performance
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3 Systems and Signals

3.1 Scalar Case

A system can be thought of as a mapping from its inputs to outputs:

SYSTEM- -input

u

output
y

For a quantitative theory we need a measure of the size of the signals and this induces the gain

of the system as the maximum ratio of the size of the output to the size of the input.

There are a number of different choices that can be used but the choices we give below have

been found to be both physically sensible and able to exploit an elegant underlying

mathematical theory.

Definition 3.1

‖u‖2 =

√∫ ∞
−∞
|u(t)|2dt

is called the L2-norm of the signal u. This is a measure of the size of the signal with ‖u‖22 the

energy of the signal. (L stands for Lebesgue space)
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Definition 3.2 If ‖u‖2 <∞ then the Fourier transform of the signal u is given by

û(jω) =

∫ ∞
−∞

u(t)e−jωtdt

and we can define the L2-norm of û(jω) as

‖û‖2 =

√∫ ∞
−∞
|û(jω)|2 dω

The following is a remarkable result connects the norms of functions and their transforms.

Theorem 3.3 (Parseval’s Theorem)∫ ∞
−∞

u(t)∗y(t)dt =
1

2π

∫ ∞
−∞

û(jω)∗ŷ(jω)dω

and this immediately implies that ‖u‖2 = 1√
2π
‖û‖2.
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Definition 3.4 A transfer function is said to be in the space H∞ (where the H stands for

Hardy space), if

sup
<e(s)>0

|G(s)| <∞.

when the H∞-norm is defined as

‖G(s)‖∞ = sup
<e(s)>0

|G(s)|.

[sup is like max except need not be achieved]

Note that if G(s) is in H∞ then all its poles must be in the left half plane and hence this will

be a stable transfer function.

Theorem 3.5 (Maximum Modulus Theorem) If G(s) is in H∞ then

‖G(s)‖∞ = sup
<e(s)>0

|G(s)| = sup
−∞<ω<∞

|G(jω)|.

This result shows that the H∞-norm can be calculated by just examining G(s) for s on the

imaginary axis and it is not required to consider s in the whole of the right half plane.

The gain of a system with input u and output y will be defined as,

sup
u 6=0

‖y‖2
‖u‖2

= sup
û 6=0

‖ŷ‖2
‖û‖2

Theorem 3.6 For a stable Linear Time Invariant system with transfer function G(s) its gain
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is given by,

sup
u6=0

‖y‖2
‖u‖2

= ‖G(s)‖∞

Proof:

‖ŷ‖22 = ‖G û‖22 =

∫ ∞
−∞
|G(jω)|2 |û(jω)|2 dω

≤ ‖G(jω)‖2∞
∫ ∞
−∞
|û(jω)|2 dω = ‖G‖2∞ ‖û‖

2
2

⇒
‖ŷ‖2
‖û‖2

≤ ‖G‖∞ for any u 6= 0

To show that maximising LHS gives equality requires a judicious choice of u. Idea: find ωo

where |G(jω)| achieves maximum then choose

u(t) = sinωot

⇒ y(t) → |G(jωo)| . sin (ωot+ ∠G(jωo))

⇒
√

energy ratio → |G(jωo)|

(Technical point: the integral of u2(t) will →∞, so we need to take a sinusoid of finite but very

long duration). �
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Ex. (i)
∥∥∥ 1

1+s

∥∥∥
∞

= 1 and the max is achieved at s = 0 and
∣∣∣ 1

1+σ+jω

∣∣∣ ≤ 1 for all σ > 0, and all ω.

(ii) es in analytic in whole complex plane but sup<e(s)>0 |es| =∞
⇒ es is not in H∞
whereas e−s is in H∞.
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3.2 Vector/matrix generalisations

(i) Vector version of L2

Take (column) vector functions u(t) of length r and define

‖u‖22 =

∫ ∞
−∞

u(t)∗u(t) dt (* denotes complex conjugate transpose.)

=

∫ ∞
−∞

r∑
i=1

|ui(t)|2 dt

Parseval’s Theorem then becomes,

∫ ∞
−∞

u(t)∗y(t) dt =
1

2π

∫ ∞
−∞

û(jω)∗ŷ(jω) dω

(ii) Matrix version of H∞ space:

Let A be any complex matrix then λi(A
∗A) are real and ≥ 0. Proof: Let A∗Aw = λw

then w∗A∗Aw = λw∗w so that λ =
‖Aw‖22
‖w‖22

≥ 0.

Let λi(A
∗A) = σ2

i then σ1 ≥ σ2 . . . ≥ σn ≥ 0 are called the singular values of A. Indeed
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just as in the real case A will have a singular value decomposition,

A = UΣV ∗, where U∗U = I, V ∗V = I, Σ =

Σ11 0

0 0

 , Σ11 = diag(σ1, · · · , σr)

with U and V complex matrices.

Denote max. sing. value of A by σ(A). If G(s) is a p×m matrix function of s, whose

elements are analytic in RHP (i.e. no poles in <e(s) ≥ 0) and such that

sup
<e(s)>0

σ(G(s)) is finite then define

‖G(s)‖∞ = sup
<e(s)>0

σ(G(s)) = sup
ω
σ(G(jω))

With these defns. then Theorem 3.6 still holds, namely:∥∥y∥∥
2
≤ ‖G(s)‖∞ · ‖u‖2
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Recap:

‖u‖22 =
∫∞
−∞ u(t)∗u(t)dt.

maximum system gain = sup
‖u‖6=0

∥∥y∥∥
2
/ ‖u‖2

= ‖G(s)‖∞ H∞ − norm

= sup
ω
σ (G(jω))

We can write a number of frequency domain specifications as H∞ norms of closed-loop transfer

functions.

e.g. the requirement that |G(jω)| < |α(jω)| for all ω is equivalent to

∥∥∥∥G(jω)

α(jω)

∥∥∥∥
∞
< 1. (assuming

that all the zeros of α(s) are in the left half plane.
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4 Robust stability

4.1 Internal Stability

����

����

G(s)

K(s)

-

�

- -

?
��

6

y2

y1

d2

d1
e1

e2

+

+

+
+

In state space:

ẋ = Ax+Be1

e2 = Cx+De1 + d2

˙̂x = Âx̂+ B̂e2

e1 = Ĉx̂+ D̂e2 + d1
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In matrix form we have: I −D̂
−D I

 e1

e2

 =

 0 Ĉ

C 0

 x

x̂

+

 d1

d2


d

dt

 x

x̂

 = ACL

 x

x̂

+

 B 0

0 B̂

 I −D̂
−D I

−1  d1

d2


where ACL =

 A 0

0 Â

+

 B 0

0 B̂

 I −D̂
−D I

−1  0 Ĉ

C 0


We will call this state-space feedback system stable if ACL is a stable matrix.
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Stability of the feedback system can also be considered using transfer functions when we call

the feedback system is called internally stable if all transfer functions from d1 and d2 to e1, e2,

y1 and y2 are in H∞.

 I −K
−G I

 e1

e2

 =

 d1

d2


 e1

e2

 =

 I −K
−G I

−1  d1

d2


 y

2

y
1

 =

 e1

e2

−
 d1

d2

 =


 I −K
−G I

−1

−

 I 0

0 I



 d1

d2



Hence internally stable if and only if

 I −K
−G I

−1

in H∞. This is equivalent to ACL being

a stable matrix if the realizations of G and K are controllable and observable.

Note this includes all the closed loop transfer functions.
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4.2 Singular Value Inequalities

For a general rectangular complex matrix, A in Cm×n, recall that A will have a Singular Value

Decomposition, A = UΣV ∗ where U∗U = UU∗ = I, V ∗V = V V ∗ = I, and Σ =

Σ11 0

0 0

 with

Σ11 = diag {σ1, σ2, . . . , σr}, and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

(1) Now denote,

σ(A) = max singular value = sup
x 6=0
‖Ax‖2/‖x‖2

( assuming n = m) σ(A) = min singular value = min
x6=0
‖Ax‖2/‖x‖2.

Proof: Suppose x∗x = 1,

‖Ax‖22 = ‖UΣV ∗x‖22 = ‖Σz‖22 where z = V ∗x, and ‖z‖2 = ‖x‖2

=
r∑
i=1

σ2
i |zi|

2

= σ2
1(1− |z2|2 − |z3|2 · · · − |zr|2) + σ2

2 |z2|2 + · · ·+ σ2
r |zr|2

= σ2
1 − (σ2

1 − σ2
2)|z2|2 − · · · − (σ2

1 − σ2
r)|zr|2

≤ σ2
1

A similar argument gives the minimum gain. �
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(2) σ(A)− σ(B) ≤ σ(A+B) ≤ σ(A) + σ(B).

Proof: ‖(A+B)x‖2 = ‖Ax+Bx‖2
≤ ‖Ax‖2 + ‖Bx‖2 by the triangle inequality

≤ σ(A) ‖x‖2 + σ(B) ‖x‖2 = (σ(A) + σ(B)) ‖x‖2
hence σ(A+B) ≤ σ(A) + σ(B).

The left hand inequality comes from

σ((A+B) + (−B)) ≤ σ(A+B) + σ(−B) = σ(A+B) + σ(B).
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(3) σ
(
A−1

)
= 1/σ(A)

(4) σ(A)− σ(B) ≤ σ(A+B) ≤ σ(A) + σ(B).

(5) σ(AB) ≤ σ(A)σ(B)
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e.g.

σ
(

(I −GK)
−1
)

=
1

σ (I −GK)
≤


1

1− σ(GK)
if σ(GK) < 1

1

σ(GK)− 1
if σ(GK) > 1.

Hence notions of high and low loop gain and bandwidth carry over to multivariable systems

but with more ‘slack’ in results.
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4.3 Small Gain Theorems

����

����

G(s)

K(s)

-

�

- -

?
��

6

y2

y1

d2

d1
e1

e2

+

+

+
+

Theorem 4.1 If G and K are both stable then the closed loop is stable if

‖GK‖∞ < 1 or if ‖KG‖∞ < 1.
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Now consider uncertain systems with G and ∆ stable

����

����

∆

G
?

� �

- -

6

Theorem 4.2 Suppose ∆ in H∞ is unknown but ‖∆‖∞ < ε and G in H∞ is known. Then the

feedback system is closed loop stable for all such ∆ if and only if

‖G‖∞ ≤ 1/ε
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Proof: If ‖G‖∞ ≤ 1/ε and ‖∆‖∞ < ε then,

‖G∆‖∞ = sup
ω
σ(G∆)

≤ sup
ω
σ(G).σ(∆)

≤ sup
ω
σ(G). sup

ω
σ(∆)

= ‖G‖∞ . ‖∆‖∞

<
1

ε
ε = 1

⇒ stable by small gain theorem.

Now suppose that σ (G(jωo)) >
1
ε for some ωo, then we can construct (with some effort) a ∆

s.t. ‖∆‖∞ < ε and det (I −G(jωo)∆(jωo)) = 0

⇒ jωo is a closed loop pole ⇒ not stable. That is we have constructed a destabilizing

perturbation in the set of ∆ and hence for robust stability we need ‖G‖∞ ≤ 1/ε.
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4.4 Robust Stability Tests

Multiplicative Uncertainty

Let an uncertain system have transfer function G(s) = (I + ∆(s))Go(s), where ‖∆(s)‖∞ < ε,

ii
∆(s)

K(s) Go(s)-
?

-

-

6

-

u

z w

y
r

--
+ +

rewrite as z = K(r +Go(w + z))⇒ z = (I −KGo)−1
K (r +Gow)

and with r = 0 we get

Closed loop internally stable for all ‖∆‖∞ < ε ⇔ (Go,K) is internally stable and∥∥∥(I −KGo)−1
KGo

∥∥∥
∞
≤ 1

ε
.
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Additive Uncertainty

So G = Go +W2∆W1, with ‖∆(s)‖∞ < ε, or

∥∥W−1
2 (G−Go)W−1

1

∥∥
∞ < ε.

In the SISO case this is the same as |G−Go| < |W1.W2| for all ω

As in the case of multiplicative uncertainty we now obtain internal stability of the perturbed

closed loop if (Go,K) is internally stable and∥∥∥W1 (I −KGo)−1
KW2

∥∥∥
∞
< 1/ε
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5 Perturbations to Coprime Factors

5.1 Coprime Factorization of Transfer Functions

Given any p×m transfer function Go(s) = C(sI −A)−1B (with A not necessarily stable,

(A,C) observable and (A,B) controllable), we can write,

Go = M̃−1Ñ = NM−1

with M̃, Ñ ,M,N all in H∞. These factorizations are called respectively left (and right)

coprime factorizations of Go(s) over H∞ if in addition

rank
[
Ñ(s) M̃(s)

]
= p for all Re(s) ≥ 0

rank

N(s)

M(s)

 = m for all Re(s) ≥ 0

i.e. there are no “common zeros” in N(s) and M(s) in the right half plane.
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A state-space procedure for this is as follows:

The system equations with input, u, state, x and output, y will be,

ẋ = Ax+Bu, y = Cx

and these can be rewritten as,

ẋ = (A+ LC)x+Bu− Ly, y = Cx

where L is chosen so that (A+ LC) is stable (c.f. observer design). Hence,

y = C(sI −A− LC)−1
[
B −L

]u
y


=

[
Ñ(s) I − M̃(s)

]u
y


⇒ M̃(s)y(s) = Ñ(s)u(s)
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The other factorization is derived by finding a F such that (A+BF ) is stable (c.f. state

feedback pole placement) and writing the state equation as,

ẋ = (A+BF )x+Be, e = u+ z, z = −Fx, y = Cx

and hencey
z

 =

 C

−F

 (sI −A−BF )−1Be =

 N(s)

I −M(s)

 e
⇒ e = u+ (I −M(s))e ⇒ e = M(s)−1u, y = N(s)e = N(s)M(s)−1u

It is also possible to demonstrate that these two factorizations are coprime.
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Normalized Coprime Factorizations

A left coprime factorization will be called a normalized left coprime factorization of Go(s)

if

M̃(jω)M̃(jω)∗ + Ñ(jω)Ñ(jω)∗ = I for all ω

Note that given any coprime factorization of Go = M̃−1Ñ then

Go = (RM̃)−1(RÑ)

and (RM̃)(M̃∗R∗) + (RÑ)(Ñ∗R∗) = R(M̃M̃∗ + ÑÑ∗)R∗

so normalisation is possible by choice of R (need the poles and zeros of R to be in the LHP).

e.g.

Go(s) =
1

s
=

(
1

s+ 1

)/(
s

s+ 1

)
= N/M

MM∗ +NN∗ =
jω

jω + 1
· (−jω)

(−jω + 1)
+

1

jω + 1
· 1

−jω + 1

=
ω2

1 + ω2
+

1

1 + ω2
= 1
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e.g.

s− 1

s+ 1
=

1√
2

(
s− 1

s+ 1

)/
1√
2
· 1.

s+ 1

s− 1
=

1√
2
· 1
/

1√
2
·
(
s− 1

s+ 1

)
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Figure 2: Bode Diagrams for 1/s2 and its normalised coprime factors
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5.2 Uncertainty in Coprime Factorisations

Suppose

G∆ =
(
M̃ + ∆M

)−1 (
Ñ + ∆N

)
with

‖[∆M ,∆N ]‖∞ < ε, ∆M ,∆N in H∞.

e.g.

Go = 1/s =
1

s+ 1

/
s

s+ 1

G∆ =
1
s+1 + ∆N

s
s+1 + ∆M

=
1 + ∆N (s+ 1)

s+ ∆M (s+ 1)
with |∆N |2 + |∆M |2 < ε2

If ∆M real constant then pole is moved to − ∆M

1+∆M

Hence poles move across s = jω with small |∆M | but very large |G∆ −Go| changes.
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Including a controller, K(s), the block diagram now becomes:

l

l

∆N

Ñ(s)

∆M

M̃(s)−1

K(s)

-

- - �

?- -

�

�

-

�

+ −

w z2

z1

And we obtain: z2 = M̃−1
(
−∆Mz2 +

(
∆N + Ñ

)
z1

)
⇒
(
M̃ + ∆M

)
z2 =

(
Ñ + ∆N

)
z1

⇒ z2 =
(
M̃ + ∆M

)−1 (
Ñ + ∆N

)
︸ ︷︷ ︸

G∆

z1 as desired.
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Also considering the controlled system gives,

z2 = M̃−1
{
w + ÑKz2

}
(
I − M̃−1ÑK

)
z2 = M̃−1w

z2 = (I −GK)
−1
M̃−1w

z1 = Kz2 z1

z2

 =

 K

I

 (I −GK)
−1
M̃−1w

w = [∆N ,−∆M ]

 z1

z2


Theorem 5.1 The above closed loop is internally stable for all ‖[∆N ,∆M ]‖∞ < ε

⇔

∥∥∥∥∥∥
 K

I

 (I −GK)
−1
M̃−1

∥∥∥∥∥∥
∞

≤ 1/ε, (by the Small Gain Theorem).
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Note that since
[
M̃ Ñ

] M̃∗

Ñ∗

 = I, we have λi (XX∗) = λi

X [M̃ Ñ
] M̃∗

Ñ∗

X∗
, and

hence σ(X) = σ
(
X
[
M̃ Ñ

])
.

Hence the closed loop will be internally stable for all ‖[∆N ,∆M ]‖∞ < ε if and only if∥∥∥∥∥∥
 K

I

 (I −GK)
−1
M̃−1

[
M̃, Ñ

]∥∥∥∥∥∥
∞

≤ 1/ε

⇔

∥∥∥∥∥∥
 K

I

 (I −GK)
−1

[I, G]

∥∥∥∥∥∥
∞

≤ 1/ε

l lG(s)

K(s)

- - ? -

��

6

-
w2

z1

w1

z2

+

+++
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i.e. ∥∥∥∥∥∥∥T[ w1

w2

]
→

[
z1

z2

]
∥∥∥∥∥∥∥
∞

≤ 1/ε.

This closed-loop therefore includes all the standard transfer functions for stability and

performance.

We will now define the “stability margin” for coprime factor perturbations to be:

b (G,K)
def
=

∥∥∥∥∥∥
 K

I

 (I −GK)
−1

[I G]

∥∥∥∥∥∥
−1

∞

It can be thought of as a generalisation of gain and phase margins.

We have that the closed loop will be stable for all ‖[∆N ,∆M ]‖∞ < ε ⇔ b (G,K) ≥ ε.

Experience indicates that b(G,K) > 0.2− 0.3 is satisfactory for good robustness.
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It can in fact also be shown that for single-input/single-output systems:

Theorem 5.2

GAIN MARGIN ≥ 1 + b(G,K)

1− b(G,K)

PHASE MARGIN ≥ 2 arcsin(b(G,K))

Proof: The proof of the gain margin result is as follows:

Let β = b(G,K) and note that when G and K are both scalar, Lemma 5.3(b) gives that

σ2


K

1

 (1−GK)−1
[
1 G

] = (1 + |K|2)|1−GK|−2(1 + |G|2)

Hence b(G,K) = β implies that

(1 + |K|2)|1−GK|−2(1 + |G|2) ≤ β−2 for all ω

Now to calculate gain margin we need to consider the case when the loop gain GK = α and α

is positive and real (positive feedback convention). Hence
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β2(1 + |K|2)(1 +
α2

|K|2
) ≤ |1− α|2

⇒ β2

(
(1 + α)2 +

(
|K| − α

|K|

)2
)
≤ (1− α)2

⇒ β2(1 + α)2 ≤ (1− α)2

for 0 ≤ α ≤ 1⇒ α ≤ 1− β
1 + β

�

The following linear algebra result was needed above.

Lemma 5.3 (a) For any n×m matrix A and m× n matrix B, the non-zero eigen values of

AB equal those of BA.

(b) σ2
i (XY Z) = λi(XY ZZ

∗Y ∗X∗) = λi(Y ZZ
∗Y ∗X∗X).

Proof: (a) The general idea is that if λ 6= 0 is such that ABx = λx, then BA Bx︸︷︷︸
=y 6=0

= λ Bx︸︷︷︸
y

. If

eigen values are repeated this argument is not quite complete, and this case is handled by the
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following identity: λIn λA

B λIm

 =

λIn 0

B Im

In A

0 λIm −BA


=

In A

0 I

λIn −AB 0

B λIm


⇒ λn det(λIm −BA) = λm det(λIn −AB)

(b) is immediate from (a). �
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5.3 Gap Metric

Coprime Factor perturbations are not unique. The smallest value of ‖[∆N (jω), ∆M (jω)]‖∞
that perturbs Go into G1 is called the gap between Go and G1 and is denoted δg (Go, G1).

Hence if δg (Go, G1) < b(G0,K) then the closed loop system with G1 and K will also be stable.

The ν − gap (δν) between G0 and G1 is an important development of the gap whose details are

beyond our present scope. However we note that both δg and δν are metrics (i.e. distance

measures) and hence satisfy e.g.

(1) 0 ≤ δν (G0, G1) ≤ 1

(2) δν (G0, G1) = 0⇒ G0 = G1

(3) δν (G0, G1) = δν (G1, G0)

(4) δν (G0, G2) ≤ δν (G0, G1) + δν (G1, G2) (Triangle inequality).

In addition, it can be shown that if δν (Go, G1) < b (G0,K) then we have closed-loop stability

of G1 and K.

Thus: b (G0,K) gives the radius (in terms of the distance in the ν-gap metric) of the largest

“ball” of plants stabilised by K.
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6 H∞ Control Synthesis

6.1 The Youla Parameterization of All Stabilizing Controllers

Now consider the problem of synthesizing a controller, K(s), that minimises the H∞-norm of

the closed-loop system:

K-

�

��

 M11 M12

M21 M22

 w

u

z

y

216

216



z = Hw

H = M11 +M12K (I −M22K)
−1
M21

The H∞ control synthesis problem is then to find K that internally stabilises this feedback

system and minimises ‖H‖∞.

We can for example compute

bopt(G) = max
K

b(G,K)

Consider the coprime factorisations G = NM−1 = M̃−1Ñ of the plant.

It is possible to solve the Double Bezout Equation:

 Ṽo −Ũo
−Ñ M̃

 M Uo

N Vo

 =

 I 0

0 I


The Youla parameterisation of all stabilising controllers is then given by:

K = (Uo +MQ)(Vo +NQ)−1 = (Ṽo +QÑ)−1(Ũo +QM̃), for Q in H∞
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Now consider the closed loop transfer function for b(G,K): K

I

 (I −GK)
−1

[I, G]

=

 (Uo +MQ)

(Vo +NQ)

 (Vo +NQ)−1
(
I − M̃−1Ñ(Uo +MQ)(Vo +NQ)−1

)−1

M̃−1
[
M̃, Ñ

]

=

 (Uo +MQ)

(Vo +NQ)

(M̃(Vo +NQ)− Ñ(Uo +MQ)
)−1

︸ ︷︷ ︸
=I

[
M̃, Ñ

]

=

 Uo

Vo

[M̃, Ñ
]

+

 M

N

Q [M̃, Ñ
]

Hence minK b
−1(G,K) = minQ ‖ a linear function of Q ‖∞ which is a CONVEX PROBLEM!

For a more general problem all stable closed-loop transfer funtions can be written as:

T11 + T12QT21 = F`(T,Q) for Q in H∞

The first solutions to the H∞ control problem used this as the first step with solutions from

interpolation theory, and state-space representations of these transfer functions.
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6.2 State-space solution to the H∞ control problem

-

�

��

u

w

y

z

K

P =

[
P11 P12

P21 P22

]

Figure 3: (lower) Linear Fractional Transformation - Feedback System
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ẋ(t) = Ax(t) +B1w(t) +B2u(t) (6.1)

z(t) = C1x(t) +D12u(t) (6.2)

y(t) = C2x(t) +D21w(t) (6.3)

i.e. in Fig. 3

P =


A B1 B2

C1 0 D12

C2 D21 0


where we also assume, with little loss of generality, that D∗12D12 = I, D21D

∗
21 = I, D∗12C1 = 0

and B1D
∗
21 = 0. Since we wish to have ‖Tz←w‖∞ < γ we need to find u such that

‖z‖22 − γ2‖w‖22 < 0 for all w 6= 0 in L2(0,∞).

Suppose that there exists a solution, X∞, to the Algebraic Riccati Equation (ARE),

A∗X∞ +X∞A+ C∗1C1 +X∞(γ−2B1B
∗
1 −B2B

∗
2)X∞ = 0 (6.4)

with X∞ ≥ 0 and A+ (γ−2B1B
∗
1 −B2B

∗
2)X∞ a stable ‘A-matrix’. A simple substitution then

gives that

d

dt
(x(t)∗X∞x(t)) = −z∗z + γ2w∗w + v∗v − γ2r∗r
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where,

v := u+B∗2X∞x, r := w − γ−2B∗1X∞x.

Now let x(0) = 0 and assuming stability so that x(∞) = 0, then integrating from 0 to ∞ gives,

‖z‖22 − γ2‖w‖22 = ‖v‖22 − γ2‖r‖22 (6.5)

If the state is available to u then the control law u = −B∗2X∞x gives v = 0 and

‖z‖22 − γ2‖w‖22 < 0 for all w 6= 0. It can be shown that (6.4) has a solution if there exists a

controller such that ‖Fl(P,K)‖∞ < γ. In addition since transposing a system does not change

its H∞-norm the following dual ARE will also have a solution, Y∞ ≥ 0,

AY∞ + Y∞A
∗ +B1B

∗
1 + Y∞(γ−2C∗1C1 − C∗2C2)Y∞ = 0 (6.6)

To obtain a solution to the output feedback case note that (6.5) implies that ‖z‖22 < γ2‖w‖22 if

and only if ‖v‖22 < γ2‖r‖22 and v̄ = Fl(Ptmp,K)r̄ where,v̄
ȳ

 = Ptmp

r̄
ū

 , where Ptmp =


A+ γ−2B1B

∗
1X∞ B1 B2

B∗2X∞ 0 I

C2 D21 0


The special structure of this problem enables a solution to be derived in much the same way as

the dual of the state feedback problem. The corresponding ARE will have a solution

Ytmp = (I − γ−2Y∞X∞)−1Y∞ ≥ 0 if and only if the spectral radius, ρ(Y∞X∞) < γ2.
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The above outline, supported by significant technical detail and assumptions, will therefore

demonstrate that there exists a stabilising controller, K(s), such that the system described by

(6.1-6.3) satisfies ‖Tz←w‖∞ < γ if and only if there exist stabilising solutions to the ARE’s in

(6.4) and (6.6) such that,

X∞ ≥ 0, Y∞ ≥ 0, ρ(Y∞X∞) < γ2 (6.7)

The state equations for the resulting controller can be writen as,

˙̂x = Ax̂+B1ŵworst +B2u+ Z∞L∞(C2x̂− y)

u = F∞x̂, ŵworst = γ−2B∗1X∞x̂

F∞ := −B∗2X∞, L∞ := −Y∞C∗2 ,

Z∞ := (I − γ−2Y∞X∞)−1

giving feedback from a state estimator in the presence of an estimate of the worst-case

disturbance.
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7 H∞ loop shaping design procedure

Figure 4: Desirable Loop Shapes

This method of control system design chooses a pre-compensator, W (s), and then uses a

controller that maximises b (G0W,K) over all stabilizing K.
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Steps

(1) Scale inputs and outputs so that a unit change on each input are similarly important, also

for outputs.

(2) Plot singular values of G0(jω) (after scaling).

(3) Insert a pre-compensator W (jω) (with poles and zeros in lhp) to shape the singular values

as desired. (e.g. proportional plus integral action diagonal precompensator).

(4) Design a K to maximise b (G0W,K) (say K∞). If b (G0W,K∞) is
<∼ 0.2 change W and

return to (3).

(5) Implement controller WK∞.

It can be shown that, as long as b (G0W,K∞) is large (ie & 0.3) then σi(G0W ) ≈ σi(G0WK).

In this case, K doesn’t change the desired “loop shape” too much. However, it does modify the

phase of the individual frequency responses in order to get good multivariable stability margins.
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7.1 Example of the ν-gap metric and loop shaping

.

Calculate the ν-gap between two transfer functions:

G(s) = 1/(s2 + 1) and G2(s) = (−0.5s+ 1)/(s2 + 1.5)

then the gap can be calculated as:

δν(G,G2) = 0.4632

Now the maximum stability margin to coprime factor perturbations is given by:

bopt(G) = 0.5556

which is more than the gap so both systems will be stabilised with K∞(s) achieving this

margin. Look at the resulting closed-loop poles for (G,K∞) are:

-0.4551 + 1.0987i

-0.4551 - 1.0987i

-1.1892

and for (G2,K∞) are

-0.1934 + 1.6718i

-0.1934 - 1.6718i

-0.9644
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Loop shaping:

Now let’s consider the robust stabilization in the gap metric of the systems:

G(s) = f/(s2 + 1)

for f = 0.1, 1, 10, 100.

f 0.1 1 10 100

bopt 0.6893 0.5556 0.4056 0.3850

closed-loop poles -0.0499 ± 1.0012i -0.4551 ± 1.0987i -2.1272 ± 2.3505i -7.0358 ± 7.1065i

-1.0025 -1.1892 -3.1702 -10.0002

Figure 5: Loop shaping for f/(s2 + 1)

Analysis of the Bode diagrams shows that the stability margins are always satisfactory. The

loop gains are given in Fig. 6.
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Figure 6: Bode Diagrams for Loop Gains
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Finally let’s look at

G3(s) = 10(−s+ 1)/(s+ 1)(s2 + 1)

when bopt(G3) = 0.0975

Here the maximum stability margin is less than 0.1 which is unsatisfactory and the desired loop

shape will have to be changed (e.g. by reducing the gain and hence the desired closed loop

bandwidth).
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7.2 Robust Performance in the ν-Gap Metric

The ν-Gap Metric between two systems was briefly mentioned in section 5.3 where it was

asserted that if there exist ∆N , ∆M in H∞ satisfying ‖[∆N , ∆M ]‖∞ < β and

G1 =
(
M̃ + ∆M

)−1 (
Ñ + ∆N

)
then it will necessarily be the case that δν(G0, G1) < β.

Furthermore, if K stabilizes G0 with b(G0,K) ≥ β then K will also stabilize G1.

So, b(G,K) gives both a measure of the stability margins as well as the (nominal) performance

to input and output disturbances. A bound on the robust performance can also be stated in

this framework when both the plant and controller are perturbed:

arcsin(b(G1,K1)) ≥ arcsin(b(Go,Ko))− arcsin(δν(G1, Go))− arcsin(δν(K1,Ko))

(The derivation of this is due to Vinnicombe and is non-trivial and omitted.)

Note that (since sin(A−B − C) ≥ sin(A)− sin(B + C) ≥ sin(A)− sin(B)− sin(C) and by

taking the sine of the above inequality) this inequality is a slightly stronger inequality than

b(G1,K1)︸ ︷︷ ︸
perturbed performance

≥ b(Go,Ko)︸ ︷︷ ︸
nominal performance

− δν(G1, Go)︸ ︷︷ ︸
plant perturbation

− δν(K1,Ko)︸ ︷︷ ︸
controller perturbation

which is also true and shows clearly how the performance can be degraded by perturbations to

the plant and controller.
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Generalized Disturbance Rejection

Disturbance Rejection

Norms
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MIMO Performance
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H∞ Control
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D-K Iteration
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Generalized Disturbance Rejection

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Consider a problem with many exogenous inputs/errors:

K G

-
reference - - -

?� noise

-
?

6control
input

external force
disturbance
-

tracking
error

−

c

c

Objective:

“Design K to keep tracking errors and control input signal small for

all reasonable reference commands, sensor noises, and external force

disturbances”

Assess ‘performance” by measuring the “gain” from outside

influences to regulated variables

[

tracking error

control input

]

︸ ︷︷ ︸

regulated variables

= T






reference

external force

noise






︸ ︷︷ ︸

outside influences

Definition: Good Performance ⇔ T is “small”
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Generalized Disturbance Rejection (cont’d)

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Since the closed-loop system T is a MIMO dynamical system, two

aspects to the gain:

■ Spatial (vector disturbances and vector errors)

■ Temporal (dynamical relationship between input/output signals)

In any performance criterion, we must account for the relative

■ magnitude of outside influences;

■ importance of the magnitudes of regulated variables.

Recall from the SISO sensitivity discussion

■ Closed-loop maps can’t necessarily be small at all frequencies.

■ Tradeoffs between the different objectives.

In this context, performance objectives must be a weighted norm

‖WLTWR‖

WL and WR can be frequency dependent, to account for bandwidth

constraints and spectral content of exogenous signals.
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MIMO Performance Objectives Interconnection

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Closed-loop performance objectives as weighted closed-loop transfer

functions which are to be made small through feedback. Here’s an

example which includes many relevant terms.

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

The mathematical objective of H∞ control is to make the closed-loop

MIMO transfer function Ted satisfy

‖Ted‖∞ < 1.
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MIMO Performance Signals

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Weighting functions are used to scale the input/output transfer

functions.

Interpretation of signals and weighting functions are

Signal Meaning

d1 Normalized reference command
d̃1 Typical reference command

d2 Normalized exogenous disturbances
d̃2 Typical exogenous disturbances

d3 Normalized sensor noise
d̃3 Typical sensor noise

e1 Weighted control signals
ẽ1 Actual control signals

e2 Weighted tracking errors
ẽ2 Actual tracking errors

e3 Weighted plant errors
ẽ3 Actual plant errors
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Interpretation of Weights and Models: Wcmd

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Used in problems requiring tracking of a reference command.

■ Wcmd shapes (magnitude and frequency) the normalized reference

command signals into the actual (or typical) reference signals that

we expect to occur.

■ In typical servo-problems, Wcmd is flat at low frequency and rolls

off at high frequency
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Interpretation of Weights and Models: Wcmd (cont’d)

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals
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H∞ Control
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H∞ Design

D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ For example, in a flight control problem, fighter pilots can (and

will) generate stick input reference commands up to a bandwidth

of about 2Hz. Say the stick has maximum travel of 3 inches. Pilot

commands would then be modeled as normalized signals passed

through a first order filter

Wcmd =
3

1
2·2π s+ 1
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Interpretation of Weights and Models: Wmodel

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Represents a desired ideal model for the closed-loop system

■ Used in problems with tracking requirements.

■ Example: for “good” command tracking response, we might desire

our closed-loop system to respond as well damped second-order

system, so choose specific ω and ζ and define

Wmodel =
ω2

s2 + 2ζω + ω2

237

237



Interpretation of Weights and Models: Wmodel (cont’d)

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Example: Unit conversions might be necessary too. In the fighter

pilot example, suppose roll-rate is being commanded, and

10◦/second response is desired for each inch of stick motion. In

these units, appropriate model is

Wmodel = 10
ω2

s2 + 2ζω + ω2
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Interpretation of Weights and Models: Wdist

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Shapes the frequency content and magnitude of the exogenous

disturbances effecting the plant

■ Example: electron microscope

◆ Dominant performance objective: mechanically isolate the

microscope from outside mechanical disturbances, e.g. ground

excitations, sound (pressure) waves, air currents

◆ Capture spectrum and relative magnitudes of these

disturbances via weighting matrix Wdist.
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Interpretation of Weights: Wperf1 and Wperf2

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

Wperf1 weights the difference between the response of the plant and

the response of the ideal model, Wmodel. Often we desire

■ accurate matching of the ideal model at low frequency

■ while requiring less accurate matching at higher frequency
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Interpretation of Weights: Wperf1 and Wperf2

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals

Control Problem

H∞ Control

H∞ History

H∞ Design

D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

The inverse of the weight should be related to the allowable size of

tracking errors, in the face of the reference commands and

disturbances described by Wref and Wdist.

Wperf2 penalizes variables internal to the process G, such as

■ actuator states which are internal to G, or

■ other variables that are not part of the tracking objective.
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Interpretation of Weights and Models: Wact

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance

MIMO Signals
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H∞ History
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D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Used to shape the penalty on control signal usage

■ Penalize limits the deflection/position, deflection rate/velocity,

etc., response of the control signals, in the face of the tracking and

disturbance rejection objectives already defined

■ Each control signal is usually penalized independently.
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Interpretation of Weights and Models: Wsnois

Disturbance Rejection

Norms

H∞ Interpretation

MIMO Performance
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H∞ Control
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D-K Iteration

gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Represents frequency content of sensor noise

■ Derived from laboratory experiments or based on manufacturer

measurements

■ Example: medium grade accelerometers have substantial noise at

low frequency and high frequency. Therefore the corresponding

Wsnois weight would be larger at low and high frequency and have

a smaller magnitude in the mid-frequency range.
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Interpretation of Weights and Models: Wsnois (cont’d)

Disturbance Rejection

Norms
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MIMO Performance

MIMO Signals

Control Problem
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gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Example: Displacement or rotation measurements are often quite

accurate at low frequency or in steady-state but respond poorly as

frequency increases. Weighting function for this sensor would be

small at low frequency, gradually increase in magnitude as a first or

second system and level out at high frequency.
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Interpretation of Weights and Models: Hsens

Disturbance Rejection

Norms
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gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

■ Represents a model of the sensor dynamics or an external

anti-aliasing filter

■ Based on physical characteristics of the individual sensor

components
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Abstraction of Generalized Disturbance Rejection
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Norms
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gΣ�d̃3 Wsnois� d3

-

d1-Wcmd

d̃1-
K - G -ẽ3 Wperf2- e3

-− gΣ -ẽ2 Wperf1- e2

???
Hsens

?

6ẽ1

Wact

6
e1

d2

?
Wdist

-d̃2

-Wmodel

?

Everything that is not the controller, K, comprises the generalized

plant, P

P

K

e

y

d

u

� �
�

-
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µ-Synthesis via D-K Iteration

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary
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D-K Iteration Problem Formulation

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

P

∆pert

K

z

e d

w

y u

� �

-

�

-

�

■ P is the open-loop interconnection containing nominal plant

model, performance and uncertainty weighting functions.

■ Three sets of inputs: perturbation inputs w, disturbances d, and

controls u.

■ Three sets of outputs: perturbation outputs z, errors e and

measurements y.

■ ∆pert ∈ ∆pert, which parametrizes all of the assumed model

uncertainty in the problem.

■ K is the controller.
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MIMO Performance Objectives with Uncertainty

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

Robust Control: Design K to optimize the closed-loop performance

objectives in the presence of the assumed model uncertainty.

fΣ�d̃3 Wsn � d3

-

d1-Wcmd

d̃1-
K - - G -ẽ3 Wp2 - e3

-− fΣ -ẽ2 Wp1 - e2

???
Hsens

?

6ẽ1

Wact

6
e1

?
Wu -∆in

6

�∆G

-

fΣ

d2

?
Wd

-d̃2

-Wmod

?

as robust disturbance rejection: Design K to make the closed-loop

MIMO transfer function, Ted, small in the presence of model

uncertainty.
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D-K Iteration Design Objective

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

The set of systems to be controlled is described by the LFT

{

FU (P,∆pert) : ∆pert ∈ ∆pert,max
ω

‖∆pert(jω)‖ ≤ 1
}

,

Design Objective:

Find a controller K, such that for all ∆pert ∈ ∆pert, the closed-loop

system is stable and satisfies

||FL[FU (P,∆pert)
︸ ︷︷ ︸

perturbed plant

, K]||∞ ≤ 1.

P

∆pert

K

z

e d

w

y u

� � ||∞ ≤ 1||

-

�

-

�

250

250



D-K Iteration Design Objective (cont’d)

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

P

∆pert

K

FU (P,∆pert)

w

y

z

u

e d� �

-

�

-

� P

∆pert

K
FL (P,K)

w

y

z

u

e d� �

-

�

-

�

Robust performance test on FL (P,K) with respect to an augmented

uncertainty structure,

∆ :=

{[
∆pert 0

0 ∆F

]

: ∆pert ∈ ∆pert, ∆F ∈ C
nd×ne

}

.
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D-K Iteration Design Objective (cont’d)

Disturbance Rejection
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H∞ Design

D-K Iteration
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Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

Theorem: For all ∆pert ∈ ∆pert, ||∆pert||∞ ≤ 1, the system

P

∆pert

K

z

e d

w

y u

� �

-

�

-

�

is stable, and has ||Td←e||∞ ≤ 1 if and only if

��
��
�

- K

P

is stable and maxω µ∆(FL(P,K)(ω)) ≤ 1.
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µ-Synthesis

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

Minimize, over all stabilizing controllers K, the peak value of µ∆(·) of
the closed-loop transfer function FL(P,K).

min
K

stabilizing

max
ω

µ∆(FL(P,K)(ω))

Pictorially, this is
[ ]

µ∆max
ω∈R

min
K

stabilizing

��
��
�

- K

P
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µ-Synthesis via Upper Bound

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

For tractability, replace µ∆(·) by its upper bound,

µ∆(M) ≤ inf
D∈D∆

σ̄
(
DMD−1

)

where D is the set of matrices with the property that D∆ = ∆D for

every D ∈ D,∆ ∈ ∆. Under many situations, the bound is usually

nearly equal. The design problem becomes

min
K

stabilizing

max
ω

min
Dω∈D∆

σ̄
[
DωFL(P,K)(ω)D−1ω

]

Dω is chosen from the set of scalings, D, independently at every ω.

min
K

stabilizing

min
D·, Dω∈D∆

max
ω

σ̄
[
DωFL(P,K)(ω)D−1ω

]

min
K

stabilizing

min
D·, Dω∈D∆

∥
∥DFL(P,K)D−1

∥
∥
∞
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D-K Iteration

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

For simplicity, assume ∆pert only has full, unmodeled dynamics (ie.,

complex) blocks, say N of them, so that ∆pert is of the form

∆pert =
{
diag [∆1,∆2, . . . ,∆N ] : ∆i ∈ C

ri×ci
}

This rules out, for example, repeated, real-parameter uncertainty, but

the methodology can be modified to address those types as well.

The set ∆ has the additional block (for the robust performance

criterion)

∆ =
{
diag [∆1,∆2, . . . ,∆N ,∆F ] : ∆i ∈ C

ri×ci ,∆F ∈ C
nd×ne

}

The associated scaling set D is

D = {diag [d1I, d2I, . . . , dNI, I] : di > 0}
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D-K Iteration (cont’d)

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

Note that the elements of D can have any phase, and not change the

value of σ̄
(
DMD−1

)
. For any positive di and real-valued θi,

σ̄
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D-K Iteration (cont’d)

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

The new optimization is

min
K

stabilizing

min
D̂(s)∈D

stable,min−phase

∥
∥
∥D̂FL(P,K)D̂−1

∥
∥
∥
∞

This optimization is currently “solved” by an iterative approach,

referred to as “D −K iteration.” A block diagram depicting the

optimization is

P

K

�
�D̂

�
�

min
K,D ∞

-

�

�
�D̂−1

�
�

The steps of the iteration are as follows...
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D-K Iteration: Holding D Fixed

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

Given, stable, minimum phase, real-rational D̂(s), define

PD
�
�
� �

�
�

= P

�
�

�
D̂

�
�

�
�D̂−1

�
�

�

■ FL(PD, K) = D̂FL(P,K)D̂−1

■ K stabilizes PD if and only if K stabilizes P .

■ PD is real-rational

Then, solving the optimization

min
K

stabilizing

∥
∥
∥D̂FL(P,K)D̂−1

∥
∥
∥
∞

is equivalent to

min
K

stabilizing

‖FL(PD, K)‖∞
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D-K Iteration: Holding K Fixed

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

Optimization over D is carried out in a two-step procedure:

1. Finding the optimal frequency-dependent scaling matrix D at a

large, but finite set of frequencies (this is the upper bound

calculation for µ)

■ Given a stabilizing controller, K(s), solve the minimization

(upper bound for µ)

min
Dω∈D

σ̄
[
DωFL(P,K)(ω)D−1ω

]

at M frequencies (ω1, ω2, . . . , ωM ).
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D-K Iteration: Holding K Fixed

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

2. Fit this optimal frequency-dependent scaling with a stable,

minimum-phase, real-rational transfer function D̂

■ This minimization is done over the real, positive Dω from the

set D using the µ upper bound.

■ Recall that the addition of phase to each di(ω) does not affect

the value of σ̄
[
DωFl(P,K)(ω)D−1ω

]
. Important aspect of the

scaling di is its magnitude, |di(jω)|.
■ Bode integral formulae to determine the phase θi(ω) of the

stable, minimum-phase function Li that satisfies for all ω.

|Li(jω)| = di(ω)

■ A real-rational transfer function d̂i(s) is found such that

d̂i(jωk) ≈ ejθi(ωk)
︸ ︷︷ ︸

phase

di(ωk)
︸ ︷︷ ︸

magnitude

■ D̂(s) = diag
[

d̂1(s)I, d̂2(s)I, . . . d̂F−1(s)I, I
]

and absorbed

into P to yield PD.
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D-K Iteration Summary

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

Iterate between:

■ Hold D fixed, find K

■ Hold K fixed and find D.

Shortcomings

■ Approximated µ∆(·) by its upper bound. This is not a serious

problem since the value of µ and its upper bound are often close.

■ Restricted D’s dependence on frequency to real, rational functions.

Only a mild restriction, since rational functions can uniformly

approximate continuous functions on finite intervals.

■ Joint minimization of (D,K) is performed coordinate-wise. The

D −K iteration is not guaranteed to converge to to a global, or

even local minimum. This is a serious problem, and represents the

biggest limitation of the design procedure.

In spite of these drawbacks, the D −K iteration control design

technique appears to work well on many engineering problems.
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D-K Coordinate Optimization Issue

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

DK iteration may have convergence problems. The example is due to

Doyle and Chu (1985 CDC). Define

R :=

[
−1 1

0 1

]

, U :=

[
0

1

]

, V :=
[
1 0

]
,

and

∆ :=

{[
δ1 0

0 δ2

]

: δi ∈ C

}

,D :=

{[
d 0

0 1

]

: d > 0

}

The D −K iteration replaces µ with the upper bound (in this case, 2

complex scalars, the upper-bound equals µ), leaving

min
Q∈R

min
D∈D

σ̄
[
D (R+ UQV )D−1

]
.

■ For fixed Q > 0, the optimal D is dopt =
√
Q, while for fixed d,

the optimal Q is d2.

■ The desired optimum (minimum over both d and Q) is (actually an

infimum in this case) is achieved as d→ 0, and Q = 0.
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D-K Iteration Applications

Disturbance Rejection

H∞ Control

H∞ History

H∞ Design

D-K Iteration

Problem Formulation

Design Objective

µ-Synthesis

Upper Bound

D-K Iteration

Holding D Fixed

Holding K Fixed

Summary

• Space shuttle flight control system

• B-2, YF-22, HARV (F-18), F-14

• Inclusion µ robustness analysis tests into next generation MIL

specifications and handling quantities models.

• Missile autopilots: IRIS-T (JHUAPL, Germany)

• Flexible structures (NASA, JPL, Civil Engineering)

• Earth moving equipment (Caterpillar, Kamatsu)

• Compact disk players (Philips)

• Thin-film manufacturing (3M)

• Active suspension (Ford)

• Tokamac (Switzerland)

• Satellites (JAXA, ESA), Launch Vehicles (Ariane)

• Wind Turbines (NREL)

• Aeroservoelastic vehicle (Air Force, Body Freedom Flutter, X-56A)

• Supercavitating Vehicles (UMN)

• Small UAVs Control and Fault Detection (UMN, SZTAKI)

• Air Data Fault Detection (Goodrich/UTC)
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Roy Smith: ACC 2014 Workshop;  design example 1

Simple design examples

1.  Robust model for a system with uncertain gain, time-constant and delay

2.  Design a loopshaping controller (PI)

3.   Analyze nominal performance,  robust stability and robust performance

4.  Perform 1 step of a D-K iteration (with a constant D scale) to improve robustness

5.   Repeat the robustness analysis

6.   Redesign the controller using H-infinity loopshaping

7.   Repeat the robustness analysis
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Roy Smith: ACC 2014 Workshop;  design example 1

Nominal plant Bode plot
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Nominal case

K = 10

⌧ = 1.0

� = 0.5

P =
Ke��s

1 + ⌧s

Design example: uncertain first order system 265

265



Roy Smith: ACC 2014 Workshop;  design example 1

Nominal case

K = 10

⌧ = 1.0

� = 0.5
P =

Ke��s

1 + ⌧s

Kbnds = [8.5,11.5];

lambdabnds = [0.425,0.575];

taubnds = [0.85,1.15];

Kbnds = [8, 12];

lambdabnds = [0.4, 0.6];

taubnds = [0.8,1.2]’;

% The nominal is defined as the midpoint. This isn’t necessarily

% optimal but it is reasonable in this case.

Knom = (Kbnds(1)+Kbnds(2))/2;

lambdanom = (lambdabnds(1)+lambdabnds(2))/2;

taunom = (taubnds(1)+taubnds(2))/2;

s = tf(’s’);

Pnom = exp(-lambdanom*s)*Knom/(1+taunom*s);

Design example: uncertain first order system 266
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Randomly generated plants in the model set

Perturbed case:  randomly generated plants for the set

P =
Ke��s

1 + ⌧s

K 2 [8.5, 11.5]

⌧ 2 [0.85, 1.15]

� 2 [0.425, 0.575]
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Roy Smith: ACC 2014 Workshop;  design example 1

Absolute model errors

Error as a function of frequency: |P
nom

(j!)� P (j!)|
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10

Frequen

Magnitude
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Roy Smith: ACC 2014 Workshop;  design example 1

Relative model errors

Error as a function of frequency:

|P
nom

(j!)� P (j!)|
|P

nom

(j!)|

0.01 0.1 10 100

0.01

0.1

10

Frequen

Magnitude
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Roy Smith: ACC 2014 Workshop;  design example 1

0.01 0.1 10 100

0.1

10

Frequen

Magnitude

Relative model error bound

����
G(j!)� P

nom

(j!)

P
nom

(j!)

����  |W
m

(!)|. (See Laughlin et al. for

the Wm(s) formula)
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Roy Smith: ACC 2014 Workshop;  design example 1

Relative model error bound

����
G(j!)� P

nom

(j!)

P
nom

(j!)

����  |W
m

(!)|. (See Laughlin et al. for

the Wm(s) formula)

% In order to design a controller we need a real-rational bound Wm.

% This one is a close fit to the above bound.

Wm = (1+ru)*((1 + taunom*s)/(1 + min(taubnds)*s))*...

(1 - (ru*lambdanom)*s)/(1 + (ru*lambdanom)*s) - 1;

Wm w = squeeze(freqresp(Wm,omega));

% A simpler bound with more high frequency perturbations is given:

Wm = ru*(1 + s/0.5)/(1 + s/50);

Wm = Wm*(1 + s/8)/(1 + s/2);

Wm w = squeeze(freqresp(Wm,omega));
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Relative model errors and bounding disks
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Perturbed case:  randomly generated plants for the set

Multiplicative perturbation 
bound shown in red
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Roy Smith: ACC 2014 Workshop;  design example 1

Relative model errors, bounding disks and parametric perturbation regions

Perturbed case:  randomly generated plants for the set
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Multiplicative perturbation 
bound shown in red

Parametric perturbation 
regions shown in magenta
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PI design (via loopshaping)
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P
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Nominal loopshaping design
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Nominal performance: weighted sensitivity

Snom w = 1 ./ (1 + Lnom w);

Tnom w = 1 - Snom w;

% Specifiy a performance bound:

Wp = (s+0.75)/(2*s + 0.02);

Wp w = squeeze(freqresp(Wp,omega));

invWp = 1/Wp;

invWp w = squeeze(freqresp(invWp,omega));

% We now check that |Wp(jw)* S(jw)| < 1. If so, the nominal performance

% specification has been achieved.
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PI design: nominal performance specification

S
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Nominal performance:  weighted sensitivity
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PI design: robust stability specification

Wm(j!)
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T
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Robust stability: weighted complementary sensitivity
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PI design: robust stability

Robust stability:  the perturbation disks never touch (or include) the -1 point.

−3 −2 −1 1
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1

Real
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Roy Smith: ACC 2014 Workshop;  design example 1

PI design: NP, RS and RP specifications

PI design:  robust performance analysis via the structured singular value

% number of performace outputs.

ne = 1;

% number of exogenous inputs.

nw = 1;

% robust stability perturbation definition.

RSblk = [1,1];

% robust performance perturbation definition.

RPblk = [RSblk;

nw,ne];

% Now look at robust stability and robust performance

[RSbnds,RSmuinfo] = mussv(Pclp w(1,1,:),RSblk);

[RPbnds,RPmuinfo] = mussv(Pclp w,RPblk);
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PI design: NP, RS and RP specifications

PI design:  robust performance
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Nominal and worst case step responses

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [sec.]

O
ut

pu
t

 

 
PI clp nom
PI clp pert.

PI design:  step responses
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D scaling (normalized) for robust performance
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D-scale for the robust performance analysis
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D scale fitting:  upper bound comparison
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Both frequency domain and 
state-space interconnections 
are shown

283

283
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H-infinty design structure

� W
m

(s)

+ P
nom

(s) K(s) +
ry

�

W
p

(s)e

w

zv

dscalePic ss = daug(D1scale,1) * Pic ss * daug(invD1scale,1);
nu = 1;
ny = 1;

[Kmu1,Gmu1,gamma1,info1] = hinfsyn(dscalePic ss,ny,nu,...
’GMAX’,1.6,...
’METHOD’,’ric’,...
’DISPLAY’,’on’,...
’TOLGAM’,0.1);
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Roy Smith: ACC 2014 Workshop;  design example 1

Mu controller:  nominal performance
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Mu controller:  robust stability
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Mu controller:  NP, RS and RP 

Robust performance comparison: Kµ(s) and KPI(s)
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Mu controller:  nominal and perturbed step responses 

Step response comparison: Kµ(s) and KPI(s)

Worst-case perturbation is calculated for the PI controller
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Roy Smith: ACC 2014 Workshop;  design example 1

Next steps…

1.  Include explicit actuation penalty (and penalize high frequency control action)

2.  Include weighted noise on the measured signal.

3.  Provide both the reference and measurement to the controller (2-DOF structure).

4.  Use H-infinity loop shaping to improve the robustness margins
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H-infinity loopshaping

W2 = Cpi;

[Kncf neg,Clpncf,gamma,info] = ncfsyn(Pnom ss2,1,W2);

% account for unity gain positive feedback in ncfsyn

Kncf = -Kncf neg;

gamma = 1.7444e+00
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H-infinity loopshaping
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H-infinity loopshaping
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Robust performance comparison: KPI(s), Kµ(s), and KNCF(s)
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H-infinity loopshaping
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Step response comparison: KPI(s), Kµ(s), and KNCF(s)

Worst-case perturbation is calculated for the PI controller
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Re-entry Vehicle Flight Control System

RV FCS

RV

RV Lat-Dir Model

RV Uncertainty

RV Lat-Dir Linearized

RV Control

c©MUSYN Inc. 2014, CAT Short Course
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Re-entry Vehicle Flight Control System

RV FCS

RV

RV Lat-Dir Model

RV Uncertainty

RV Lat-Dir Linearized

RV Control

c©MUSYN Inc. 2014, CAT Short Course

■ Re-entry Vehicle

■ Re-entry Vehicle Lateral-Directional Equations of Motion

■ Aerodynamic Coefficient Uncertainty

■ Control Problem Formulation

• Requirements, Problem Formulation

■ H∞ and µ Synthesis Controllers

• Robust Stability, Robust Performance and Worst-Case Analysis

■ Summary
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Re-entry Vehicle (RV)

RV FCS

RV

RV Lat-Dir Model

RV Uncertainty

RV Lat-Dir Linearized

RV Control

c©MUSYN Inc. 2014, CAT Short Course

The re-entry vehicle is similar to the X-38 emergency crew return

vehicle (CRV) for the International Space Station.∗

• CRV glides from orbit unpowered, steerable parafoil parachute for

landing.

• Full lifting body flight control system (FCS)

■ Differential body flaps and a rudder for lateral directional

control.

■ Symmetric body flaps for longitudinal motion control.

• Aerodynamic coefficients measured in wind tunnel: Nominal with

range of variation.

Goal

■ Determine the stability robustness and worst-case performance of

the re-entry vehicle FCS in the presence of uncertainty in the

aerodynamic coefficients.
∗ J. Shin, G.J. Balas, and A.K. Packard, “Worst case analysis of the X-38 crew return vehicle flight control system,”

AIAA Journal of Guidance, Dynamics and Control, vol. 24, no. 2, March-April 2001, pp. 261-269.
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RV Lateral-Directional Model

c©MUSYN Inc. 2014, CAT Short Course

Assumptions: pitch rate is constant, separation of rigid body motion axes.

Ixxṗ− Ixz ṙ = l + (Iyyr + Ixzp− Izzr)q (1)

−Ixz ṗ+ Izz ṙ = n+ (Ixxp− Ixzr − Iyyp)q (2)

φ̇ = p+ tan(θ)r (3)

β̇ = Ybβ + (
w0

V
+Yp)p+ (Yr −

u0

V
)r + Ydada+ Ydrdr +

g cos(γ)

V
φ (4)

g is gravity,, w0 is V sin(α), u0 is V cos(α), γ is flight path angle.

The roll moment, l, and yaw moment, n, can be written as a function of

lateral-directional nondimensional derivatives:

l = (QSb)(Clβcgβ +
b

2V
Clpcgp+

b

2V
Clrcgr + Cldacgda+ Cldrcgdr)

n = (QSb)(Cnβcgβ +
b

2V
CnpcgP +

b

2V
Cnrcgr + Cndacgda+ Cndrcgdr) (5)

The subindex cg represents the re-entry vehicle center of the gravitational point.
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RV Lateral-Directional Model cont’d

RV FCS

RV

RV Lat-Dir Model

RV Uncertainty

RV Lat-Dir Linearized

RV Control

c©MUSYN Inc. 2014, CAT Short Course

The derivatives at the center of the gravitational point are derived

from the derivatives at re-entry vehicle aerodynamic center

Clicg = Cli −
Zf

b
Cyi

Cnicg = Cni +
Xf

b
Cyi, i = β, p, r, da, dr

where Zf (ft) and Xf (ft) are positions of the center of the

gravitational point of re-entry vehicle from the aerodynamic point.

Combining equations leads to roll rate and yaw rate equations:

ṗ = DI [l +
q

Ixx
(Iyyr + Ixzp− Izzr) +

Ixz

Ixx
{n+

q

Izz
(Ixxp− Ixzr − Iyyp)}]

ṙ = DI [
Ixz

Izz
{l + q

Ixx
(Iyyr + Ixzp− Izzr)}+ n+

q

Izz
(Ixxp− Ixzr − Iyyp)]

where DI is DI = (1− IxzIxz

IxxIzz
)−1.
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Re-entry vehicle aerodynamic data have uncertainties in these

nondimensional stability derivatives: Clβ, Clda, Cldr, Cyβ , Cyda,

Cydr, Cnβ, Cnda, and Cndr. Uncertainty in stability derivatives can

be described by a nominal aerodynamic derivative with a bounded

range of possible values. For example Clβ can be described as

Clβ := Clβmin
≤ Clβ ≤ Clβmax

Within the Robust Control Toolbox, the uncertain parameter Clβ
would be represented as a ureal object

CLbeta = ureal(’CLbeta’,CLbetaNom,’Range’,[CLbetaMin CLbetaMax]);

where CLbetaNom corresponds to the nominal value of Clβ and

CLbetaMin and CLbetaMax correspond to Clβmin
and Clβmax

respectively. All 9 stability derivatives are represented as uncertain real

parameters (ureal objects) in the analysis.
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The output variables are β, p, r, φ and Ny,

Ny = Nycg + xaṙ − zaṗ. (6)

where xa (ft) and za (ft) are the positions of the acceleration sensor.

The equations of the linearized lateral-directional motion are

(coefficients in blue are uncertain):







β̇

ṗ

ṙ

φ̇






=








Aβ̇β Aβ̇p Aβ̇r
g cos(γ)

V

Aṗβ Aṗp Aṗr 0

Aṙβ Aṙp Aṙr 0

0 1 tan(θ) 0














β

p

r

φ






+










Bβ̇da Bβ̇dr

Bṗda Bṗdr

Bṗda Bṗdr

Bṙda Bṙdr

0 0










[
da

dr

]









β

p

r

φ

Ny









=









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Cnyβ Cnyp Cnyr 0















β

p

r

φ






+









0 0

0 0

0 0

0 0

Dnyda Dnydr









[
da

dr

]

(See the M-file RVlatmodel.m)
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Elements of state space model are (blue denotes uncertain):

Aβ̇β =
QSCyβ

massV

Aβ̇p = sin(α) +
QSbCyp

2massV 2

Aβ̇r =
QSbCyr

2massV 2
− cos(α)

Aṗβ = a1{Clβ + (
IxzXf

Izzb
− Zf

b
)Cyβ +

Ixz

Izz
Cnβ}

Aṗp =
a1

2V
{Clp + (

IxzXf

Izzb
− Zf

b
)Cyp +

Ixz

Izz
Cnp +

2Ippq0V Ixx

QSb2
}

Aṗr =
a1

2V
{Clr + (

IxzXf

Izzb
− Zf

b
)Cyr +

Ixz

Izz
Cnr +

2Iprq0V Ixx

QSb2
}

Aṙβ = a2{Cnβ + (
Xf

b
− IxzZf

Ixxb
)Cyβ +

Ixz

Ixx
Clβ}

Aṙp =
a2

2V
{Cnp + (

Xf

b
− IxzZf

Ixxb
)Cyp +

Ixz

Ixx
Clp +

2Irpq0V Izz

QSb2
}

Aṙr =
a2

2V
{Cnr + (

Xf

b
− IxzZf

Ixxb
)Cyr +

Ixz

Ixx
Clr +

2Irrq0V Izz

QSb2
}
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Bṗda = a1{Clda + (
IxzXf

Izzb
− Zf

b
)Cyda +

Ixz

Izz
Cnda}

Bṗdr = a1{Cldr + (
IxzXf

Izzb
− Zf

b
)Cydr +

Ixz

Izz
Cndr}

Bṙda = a2{Cnda + (
Xf

b
− IxzZf

Ixxb
)Cyda +

Ixz

Ixx
Clda}

Bṙdr = a2{Cndr + (
Xf

b
− IxzZf

Ixxb
)Cydr +

Ixz

Ixx
Cldr}

Bβ̇da =
QSCyda

massV
, Bβ̇dr =

QSCydr

massV

Cnyβ = V Aβ̇β +XaAṙβ − ZaAṗβ

Cnyp =
QSbCyp

2massV
+XaAṙp − ZaAṗp

Cnyr =
QSbCyr

2massV
+XaAṙr − ZaAṗr

Dnyda =
QSCyda

mass
+XaAṙda − ZaAṗda

Dnydr =
QSCydr

mass
+XaAṙdr − ZaAṗdr
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The lateral-directional axis control objectives are:

• Good low frequency tracking of φ commands (up to 1 rad/s), a

coordinated turn, and small lateral accelerations.

• Robust to variations in aerodynamic coefficients, exogenous

disturbances and sensor noise.

The performance and robustness objectives are characterized as a H∞

norm minimization of weighted transfer functions.

306

306



Control Design Interconnection

c©MUSYN Inc. 2014, CAT Short Course

307

307



RV Lateral-Directional Control Problem Formulation

RV FCS

RV

RV Lat-Dir Model

RV Uncertainty

RV Lat-Dir Linearized

RV Control

c©MUSYN Inc. 2014, CAT Short Course

H∞ weighting functions:

• Ideal φ command response: Tideal =
0.81

s2+1.8s+0.81

• φ command: Wφcmd
= 0.1s+1

2s+1

• Minimize φcmd to φerr: W3 = 10 0.001s+1
s+1

• Minimize ny: W1 = 4

• Coordinated turn: W2 = 5 0.001s+1
0.5s+1

• Input disturbances: 0.5

• Sensors noise (β, p, r, φ, ny): (0.15, 0.12, 0.05, 0.025, 0.2)

• Actuator rates/deflections: 8
30 ,

30
30

(See the M-file RV wtolic.m)
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Angle rate gyros are modeled as 66
s+66 and the Ny accelerometer

modeled as 40
s+40 .

Sen =

[

66

s+66
I4×4 0

0
40

s+40

]

EMA actuators are modeled as a 2nd order system, with a prefilter to
smooth the discrete ZOH. A transport delay of 0.04 seconds is
approximated by a first order Pade delay.

Act =
50

2

s2 + 70.7s+ 502

26
2

s2 + 36.8s+ 262

50− s

20 + s
I2×2

In the H∞ control design, the actuator and time delay are

approximated with a first-order lag and Pade approximation of

Act = 20
s+20

20−s
20+s

309

309



RV Lateral-Directional Control Designs

RV FCS

RV

RV Lat-Dir Model

RV Uncertainty

RV Lat-Dir Linearized

RV Control

c©MUSYN Inc. 2014, CAT Short Course

H∞ and µ-synthesis controllers were synthesized for the control

problem interconnection shown on the previous slide. The uncertainty

in the aerodynamic derivatives was eliminated from the H∞ design

and were included in the µ-synthesis control designs. The resulting

controllers were:

■ Khinf has 2 outputs, 6 inputs and 16 states.

■ Kmu has 2 outputs, 6 inputs and 42 states.

Kmu was reduced using the reduce command with the balanced

realization option selected. The reduced order controller, Kmur had 10

states. In the following analyses, the full order H∞ and reduced order

µ controllers are used.
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Analyze each controller using a variety of analysis tools.

■ loopmargin

◆ Classical margins from allmargin (CM).

◆ Disk margin (DM)

◆ Multivariable margin (MM)

■ robuststab, robustperf

■ wcgain
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H-infinity and mu Control Design and Analysis of Re-entry Vehicle

CAT/MUSYN shortcourse, May 2014
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Comparisons: Time Domain Simulations of Kmu versus Kh

Conclusions

Figure: Re-entry Vehicle

A linear model is constructed for the lateral-directional dynamics of a re-entry vehicle. Nine aerodynamic derivatives are modeled as
uncertain, real parameters. The uncertain lateral-directional state-space re-entry vehicle model, RVunc, has 4 states, 2 inputs, and 5
outputs. The states correspond to beta (rad), p (rad/s), r (rad/s), and phi (rad). The outputs are the states plus lateral acceleration, ny
(ft/s^2). The inputs are deflections of the flaps, da (deg), and rudder, dr (deg).

RVunc = RVlatmodel;
RVunc
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RVunc =

  Uncertain continuous-time state-space model with 5 outputs, 2 inputs, 4 states.
  The model uncertainty consists of the following blocks:
    Clb: Uncertain real, nominal = -0.115, variability = [-0.05,0.05], 1 occurrences
    Clda: Uncertain real, nominal = 0.0115, variability = [-0.0025,0.0025], 1 occurrences
    Cldr: Uncertain real, nominal = 0.023, variability = [-0.01,0.01], 1 occurrences
    Cnb: Uncertain real, nominal = 0.049, variability = [-0.02,0.02], 1 occurrences
    Cnda: Uncertain real, nominal = 0.012, variability = [-0.005,0.005], 1 occurrences
    Cndr: Uncertain real, nominal = -0.04, variability = [-0.01,0.01], 1 occurrences
    Cyb: Uncertain real, nominal = -0.189, variability = [-0.055,0.055], 1 occurrences
    Cyda: Uncertain real, nominal = 0.015, variability = [-0.003,0.003], 1 occurrences
    Cydr: Uncertain real, nominal = 0.04, variability = [-0.0035,0.0035], 1 occurrences

Type "RVunc.NominalValue" to see the nominal value, "get(RVunc)" to see all properties, and 
"RVunc.Uncertainty" to interact with the uncertain elements.

RVunc.InputName

ans = 
    'da'
    'dr'

RVunc.OutputName

ans = 
    'beta'
    'p'
    'r'
    'phi'
    'ny'

RVunc.StateName

ans = 
    'beta'
    'p'
    'r'
    'phi'

Weighted Open-Loop Interconnection

A weighted open-loop interconnection is now constructed for control design and analysis. The lateral-directional axis control objectives are

Good low frequency tracking of  commands (up to 1 rad/s), a coordinated turn, and small lateral accelerations.

Robust to variations in aerodynamic coefficients, exogenous disturbances and sensor noise.

The performance and robustness objectives are characterized as H-infinity norm minimization of weighted transfer functions.
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Figure: Re-entry Vehicle Control Interconnection Diagram

Sensor Models

The sensors models include: ny accelerometer, sideslip, , roll  rate, p, yaw rate, r, and bank angle, .

aflt = tf(1,[1/66 1]);
nyflt = 0.03108*tf(1,[1/40 1]);
sensors = blkdiag(aflt,aflt,aflt,aflt,nyflt);

Actuator Models

The aileron and rudder actuators are modeled as first order systems. The 0.05 sec computational time delay is represented as a 1st order
Pade delay. Each actuator model has two outputs, rate and deflection. Both are penalized as generalized errors, and only the deflection is
used as control to the rigid body.

act = ss([tf([20 0],[1 20]);tf(20,[1 20])])*tf([-1 20],[1 20]);
acts = blkdiag(act,act);
acts.InputName = {'AilCmd','RudCmd'};
acts.OutputName = {'AilRate','AilDefl','RudRate','RudDefl'};

Actuator weighting function: Wact

Weighting functions are used to translate desired requirements and objectives on the physical system into the norm-bounded H-infinity
framework. The actuator weight Wact penalizes the actuator rates (8/30) and deflections (30/30).
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wact = diag([8/30 30/30]);
Wact = blkdiag(wact,wact);

Bank angle tracking weights: Tideal, Wphicmd, Wp3

The bank angle tracking requirement is included as a model matching problem, Tideal represents the desired response from the pilot
command to bank angle response. The error between the desired response and actual response is penalized with Wp3. The weight
Wphicmd describes the typical spectra of the pilot bank angle commands.

Wphicmd  = tf([1/10 1], [1/0.5 1]);
Tideal = tf(0.81,[1 1.8 0.81]);
const = 0.037;
Wp3 = 10*tf([1/1000 1],[1/1 1]);

Coordinated turn weights: Wp1, Wp2

A coordinated turn is desired to minimize lateral acceleration. The weight Wp2 is used to define the coordinated turn objective and Wp1 is
used to penalize lateral accelerations, ny.

Wp1 = 4;
Wp2 = 5*tf([1/1000 1],[1/2 1]);

Noise and disturbance weights: Wn, Wdist

The sensor noise weights, Wn, are defined a constants in the control problem formulation. The input disturbances are modeled using weight
Wdist.

Wnb = 0.15;
Wnp = 0.12;
Wnr = 0.05;
Wnphi = 0.025;
Wnny = 0.2;
Wn = blkdiag(Wnb,Wnp,Wnr,Wnphi,Wnny);
Wdist = blkdiag(0.5,0.5);

Construct the weighted open-loop interconnection structure.

The uncertain, weighted open-loop interconnection, rvdesolic, is used for control

systemnames = 'RVunc sensors acts Wp1 Wp2 Wp3 const Tideal Wphicmd';
systemnames = [ systemnames ' Wact Wn Wdist'];
inputvar    = '[ phicmd; dist(2); noise(5); cmd(2) ]';
outputvar   = '[ Wp1; Wp2; Wp3; Wact; Wn+sensors; Wphicmd ]' ;
input_to_RVunc    = '[ Wdist(1)+acts(2); Wdist(2)+acts(4) ]';
input_to_sensors  = '[ RVunc ]';
input_to_Wp1      = '[ sensors(5) ]';
input_to_Wp2      = '[ sensors(3)-const ]';
input_to_const    = '[ sensors(4) ]';
input_to_Wp3      = '[ sensors(4)-Tideal ]';
input_to_Tideal   = '[ Wphicmd ]';
input_to_Wphicmd  = '[ phicmd ]' ;
input_to_acts     = '[ cmd ]' ;
input_to_Wact     = '[ acts ]' ;
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input_to_Wn       = '[ noise ]' ;
input_to_Wdist    = '[ dist ]' ;
rvdesolic = sysic;

Synthesize a H-infinity Controller: Kh

The uncertainty in the aerodynamic derivatives is eliminated from the weighted interconnection structure, rvdesolic for the H-infinity
design. The H-infinity controller is synthesized for the nominal weighted interconnection structure, rvdesolic.Nominal. The controller
receives 5 measurements, , , ,  and , as well as the weighted pilot bank angle command. The controller returns 2 inputs: elevon and
rudder commands.

[Kh,clph,gam,hinfo] = hinfsyn(rvdesolic.Nominal,6,2,'Display','on');

Test bounds:      0.0000 <  gamma  <=      2.9018

  gamma    hamx_eig  xinf_eig  hamy_eig   yinf_eig   nrho_xy   p/f
    2.902   5.5e-01   0.0e+00   5.8e-01    0.0e+00    0.1399    p 
    1.451   5.4e-01   0.0e+00   5.9e-01   -1.4e-16    1.4038#   f 
    2.176   5.8e-01   0.0e+00   5.8e-01   -1.7e-16    0.2876    p 
    1.814   5.6e-01   0.0e+00   5.8e-01   -1.5e-17    0.4982    p 
    1.632   5.5e-01   0.0e+00   5.9e-01   -6.8e-17    0.7413    p 
    1.542   5.5e-01   0.0e+00   5.9e-01   -1.3e-16    0.9698    p 
    1.496   5.5e-01   0.0e+00   5.9e-01   -2.6e-18    1.1461#   f 
    1.519   5.5e-01   0.0e+00   5.9e-01   -6.6e-17    1.0505#   f 
    1.530   5.5e-01   0.0e+00   5.9e-01    0.0e+00    1.0086#   f 
    1.536   5.5e-01   0.0e+00   5.9e-01   -3.7e-17    0.9888    p 

 Gamma value achieved:     1.5359

The information displayed during the H-infinity design process indicates the conditions which were satisfied and violated during the iteration
procedure. The H-infinity controller stabilizes the closed-loop system and achieves a closed-loop norm listed above.

The resulting central control from hinfsyn has the same number of states as the weighted interconnection structure (ie., the "generalized
plant") used for the design, rvdesolic.Nominal. Verify this.

size(rvdesolic.Nominal)

State-space model with 13 outputs, 10 inputs, and 18 states.

size(Kh)

State-space model with 2 outputs, 6 inputs, and 18 states.

Confirm that the controller indeed stabilizes the generalized plant, and achieves the norm listed.

isstable(lft(rvdesolic.Nominal,Kh))
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ans =
     1

norm(lft(rvdesolic.Nominal,Kh),inf)

ans =
   1.5359e+00

D-K Iteration Controller Design

The H-infinity controller previously synthesized ignored the aerodynamic coefficient uncertainty in the design process. In this section, a -
controller will be synthesized for the uncertainty reentry vehicle using the  iteration procedure.

The dksynOptions function is used to set the options for dksyn. The number of  synthesis iteration is set to 3 and the D and G-
scalings maximum orders are set to 3 and 2 respectively. Note that initially the real parameters are treated as complex parameters during
the  iteration synthesis process.

dopt = dksynOptions('NumberOfAutoIterations',3,'AutoScalingOrder',[3 2]);
[Kmu,~,MUBND] = dksyn(rvdesolic,6,2,dopt);
MUBND

MUBND =
   2.5076e+00

Comparisons: Nominal performance of Kmu versus Kh

The nominal performance of the Kmu controller is larger (i.e. worse) than the nominal performance achieved by the H-infinity controller.

nomgh = norm(clph,inf)

nomgh =
   1.5359e+00

clpmu = lft(rvdesolic,Kmu);
nomgmu = norm(clpmu,inf)

nomgmu =
   2.5048e+00

The nominal time domain responses associated with the H-infinity and Kmu controllers are similar.

figure(1);
[ynom,tnom,TRclp] = RV_linsim(RVunc.Nom,Kh,10);

figure(2);
[ynom,tnom,TRclp] = RV_linsim(RVunc.Nom,Kmu,10);
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Comparisons: Robust stability of Kmu versus Kh

The robust stability margins are computed for both closed-loop systems. The re-entry vehicle model only contains real parametric
uncertainty. The efficiency of the robust stability algorithms is improved by adding a small amount of complex uncertainty to each real
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parameter uncertainty. Specifically, 3% complex uncertainty is added to each parameter using the COMPLEXIFY command. The Kmu
controller acheives significantly larger stability margins as compared to the H-infinity controller.

om = logspace(-2,2,120);
clph = lft(rvdesolic,Kh);
clphg = ufrd(clph,om);
[stabmargh,destabunch] = robuststab( complexify(clphg,0.03) );
stabmargh

clpmu = lft(rvdesolic,Kmu);
clpmug = ufrd(clpmu,om);
[stabmargmu,destabuncmu] = robuststab( complexify(clpmug,0.03) );
stabmargmu

stabmargh = 
                LowerBound: 6.6699e-01
                UpperBound: 7.1724e-01
    DestabilizingFrequency: 3.2554e-01
stabmargmu = 
                LowerBound: 1.1639e+00
                UpperBound: 1.2646e+00
    DestabilizingFrequency: 3.5174e-01

Comparisons: Monte Carlo time-domain responses for Kmu versus Kh

The code below generates many time responses by random sampling of the parameter uncertainties. Both controllers appear to have
similar performance for these Monte Carlo simulations. There is slightly less variation in the mu controller responses. This is an indication of
the robustness of the Kmu controller.

Nsim=25;
flg =0;
Tfinal = 30;
for i=1:Nsim,
    [ynom,tnom,TRclp] = RV_linsim(usample(RVunc),Kh,Tfinal,flg);
    figure(3);
    plot(tnom,ynom(:,1),'b', tnom,ynom(:,2),'r'); hold on;

    [ynom,tnom,TRclp] = RV_linsim(usample(RVunc),Kmu,Tfinal,flg);
    figure(4);
    plot(tnom,ynom(:,1),'b', tnom,ynom(:,2),'r'); hold on;
end

figure(3);
legend('phi ideal','phi Closed-loop','location','best')
title('H-infinity Controller');
xlabel('Time (sec)')
ylabel('Radians')
ylim([0 1.2]);
hold off;

figure(4);
legend('phi ideal','phi Closed-loop','location','best')
title('Mu Controller');
xlabel('Time (sec)')
ylabel('Radians')
ylim([0 1.2]);
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hold off;

 

Worst-case gain of Kmu

The worst-case gain of the mu controller is computed. The worst-case gain for the H-infinity controller is not computed since this controller
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does not achieve robust stability over the uncertainty set.

[wcgmu,wcumu] = wcgain(clpmug, wcgopt);
wcgmu

wcgmu = 
           LowerBound: 1.3237e+01
           UpperBound: 1.3237e+01
    CriticalFrequency: 4.7937e-01

Comparisons: Time Domain Simulations of Kmu versus Kh

The perturbations obtained from the robust stability and worst-case gain analyses can be further investigated in the time domain. First
simulate both controllers using the destabilizing perturbation found for the H-infinity controller. The ICOMPLEXIFY command is used to
remove the small complex terms introduced by the COMPLEXIFY command. Note that the H-infinity controller oscillates at the destabilizing
frequency returned in "stabmargh". The performance of the Kmu controller with this uncertainty is relatively unchanged relative to the
nominal performance.

Tfinal = 30;
destabunchREAL = icomplexify( destabunch );
figure(5)
[ynom,tnom,TRclp] = RV_linsim(usubs(RVunc,destabunchREAL),Kh,Tfinal);
subplot(311); title('H-infinity Controller');

figure(6)
[ynom,tnom,TRclp] = RV_linsim(usubs(RVunc,destabunchREAL),Kmu,Tfinal);
subplot(311); title('Mu Controller');

321

321



 

Next simulate both controllers using the worst-case perturbation computed for the Kmu controller. The instability of the H-infinity controller is
evident with this perturbation. The performance of the mu controller on this worst-case perturbation is still relatively similar to the nominal
performance. This is an indication of the robustness achieved by the Kmu controller.

figure(7)
[ynom,tnom,TRclp] = RV_linsim(usubs(RVunc,wcumu),Kh,Tfinal);
subplot(311); title('H-infinity Controller');

figure(8)
[ynom,tnom,TRclp] = RV_linsim(usubs(RVunc,wcumu),Kmu,Tfinal);
subplot(311); title('Mu Controller');
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Conclusions

A H-infinity and  controller are synthesized for a reentry vehicle. The H-infinity controller was synthesized based on the nominal model (no
uncertainty) while the  controller was design taking into account the aerodynamic uncertainty. On the nominal plant model, the H-infinity
controller outperforms the  design. However, the robust performance of the  controller, in the presence of plant uncertainty is superior to
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that of the H-infinity design.

Published with MATLAB® R2013b
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Order-Reduction of a mu controller for a Re-entry Vehicle

This can be executed after completing the RVdesign.m file.

CAT/MUSYN shortcourse, May 2014

Contents

Controller reduction based on BalancedRealizations

Assessing RobustPerformance of the various reduced-order controllers

Compare PerfMargin with 1/MUBND

Controller reduction based on BalancedRealizations

The dynamic order of Kmu is quite high. This is common when using dksyn. Usually though, significant model reduction is possible. Here
use a simple balanced-reduction on Kmu, obtaining truncated balanced realizations from order 5 to order 12. This is an "arbitrary" choice
that can be revisited, if necessary.

size(Kmu.A)

ans =
    28    28

stateorders = 5:12;
KB = reduce(Kmu,stateorders);

Assessing RobustPerformance of the various reduced-order controllers

Each of these controllers will achieve different levels of closed-loop performance (in fact, some might not even stabilize the nominal plant
model). Form the closed-loop system (an array of USS objects) and assess the performance using robustperf.

CLP = lft(rvdesolic,KB);
ropt = robustperfOptions('Sensi','off','Disp','on','Mussv','a');
[PM,PMU,REPORT,INFO] = robustperf(CLP,ropt);

points completed (of 150) ... 150
points completed (of 126) ... 126
points completed (of 131) ... 131
points completed (of 127) ... 127
points completed (of 115) ... 115
points completed (of 121) ... 121
points completed (of 115) ... 115
points completed (of 116) ... 116

Compare PerfMargin with 1/MUBND

The original high-order controller Kmu achieved a final MU-robust performance value stored in MUBND . The reciprical, 1/|MUBND| is the
perfmargin obtained by Kmu. Use a simple plot to compare the performance of the original high-order controller Kmu with the performance of
the lower-order controllers obtained via model-reduction.
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H = plot(stateorders,[PM.LowerBound],'ko',...
   stateorders,repmat(1/MUBND,[1 numel(stateorders)]),'r',...
   stateorders,[PM.LowerBound]);
set(H(2),'linew',3)
legend('Reduced-order controllers','Kmu''s PerfMarg','Location','Best');
title('RobustPerfMargin of various reduced controllers')
xlabel('Controller Order');
ylabel('PerfMargin')

Published with MATLAB® R2013b
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Model Reduction

Keith Glover (kg@eng.cam.ac.uk)

June 3rd, 2014

Cambridge University Engineering Department
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General Problem

Summary of results on the accuracy with which we can approximate
a transfer function, G(s), of degree n, with Ĝ(s) of lower degree. Let

E(s) = G(s)− Ĝ(s)

In what metrics should/can we measure ‖E‖?.
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The Hankel Operator for G(s) = 10/(s2 + s + 3)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

0.4

−0.2 0 0.2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

y(t)

x(0)

u(t)

The Hankel operator maps the
past inputs
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The Hankel singular/Eigen values are 2.17 and 3.84 with the
corresponding Eigen vectors
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The rank of the Hankel operator is therefore the state dimension and
is an effective object with which to consider model reduction.
It’s singular values are easily computed from the controllability and
observability Gramians, call them σ1 ≥ σ2... ≥ σn ≥ 0.
If the degree of Ĝ(s) is k < n then it can be shown that

‖G− Ĝ‖∞ ≥ σk+1

The so-called truncated balanced realisation approximation satisfies

‖G− Ĝ‖∞ ≤ 2× (σk+1 + σk+2 + · · ·+ σn)

The optimal Hankel-norm approximation satisfies half this upper
bound.

5/8
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Other norms with upper and lower bounds are:

• Relative error ‖(G− Ĝ)G−1‖∞
• Gap metric
• Frequency weigted norms have lower bounds that may be far

from achievable.
• Controller reduction is not clear because a low order controller

might exist with similar closed-loop norm to a high order one but
not close in any metric.
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Demonstration program:
K=tf(8,[1 3]); P1=tf(2,[1 3]);
G=1/(1/K-0.5*P1*P1*P1*P1*P1*P1*P1); Gss=ss(G);
[Gbal,balinfo] = balancmr(Gss,8,’display’,’off’);
balinfo.StabSV
k=input(’pick a degree = ’) [Gbal,balinfo] =
balancmr(G,k);
BalError=norm(G-Gbal,inf)
BalErrorbnd=sum(balinfo.StabSV(k+1:end)*2)
bode(Gss,Gbal) pause
[Ghank,hankinfo] = hankelmr(Gss,k,’display’,’off’);
Dtmp=squeeze(freqresp(Gss-Ghank,0))/2;
GhankD=Ghank+Dtmp;
HankelError=norm(Gss-GhankD,inf)
HankelErrorbnd=sum(balinfo.StabSV(k+1:end)*1) pause
[Gbst,bstinfo] = bstmr(Gss,k,’display’,’off’);
bstinfo.StabSV

7/8
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[Gncf,ncfinfo] = ncfmr(Gss,k,’display’,’off’);
ncfinfo
ncfError=gapmetric(Gss,Gncf)
bode(Gss-Gbal,Gss-GhankD,Gss-Gbst,Gss-Gncf) pause
nyquist(Gss-Gbal,Gss-GhankD,Gss-Gbst,Gss-Gncf)

8/8
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Roy Smith: ACC 2014 Workshop;  robust design theory

Some robust control analysis and synthesis theory

Topics:

1.  Some basic convex optimization theory (heading towards LMIs).

2.  Structured singular value as an LMI problem.

3.  Performance and the Bounded Real Lemma.

4.  H-infinity design:!
! a.  State feedback;!
! b.  linearizing transformations.

5.  H-2 design:!
! a.  Characterization and analysis;!
! b.  State feedback;!
! c.  linearizing transformations.

7.  Pole region constraints

8.  Multi-objective analysis and synthesis.

9.  Relaxations for structured and decentralised design problems.

6.  L-1 design:
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Convex optimization problems

minimize f0(x)

subject to fi(x) � 0, i = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

The functions, f0, f1, . . . , fm, are convex.

The equality constraints are a�ne.

A problem is quasiconvex if f0 is quasiconvex and f1, . . . , fm, are convex.

minimize f0(x)

subject to fi(x) � 0, i = 1, . . . ,m

Ax = b

The feasible set of a convex (or quasiconvex) optimization problem is convex.

Convex optimization 336
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Semidefinite program (SDP)

minimize cT x

subject to x1F1 + x2F2 + . . . + xnFn + G � 0

Ax = b

where Fi, G � Sk

The matrix constraint is called a linear matrix inequality (LMI)

Multiple constraints are trivially combined into a single (larger) constraint,

x1F1+x2F2+ . . .+xnFn +G � 0 and x1H1+x2H2+ . . .+xnHn +M � 0

if and only if

x1

�
F1 0
0 H1

�
+ x2

�
F2 0
0 H2

�
+ . . . + xn

�
Fn 0
0 Hn

�
+

�
G 0
0 M

�
� 0

Convex optimization 337
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Example: matrix norm minimization

The equivalent SDP is:

minimize �A(x)�2 =
�
�(A(x)T A(x))

�1/2

where A(x) is an LMI: A(x) = A0 + x1A1 + x2A2 + . . . + xnAn

minimize t

subject to

�
tI A(x)

A(x)T tI

�
� 0

The decision variables are now t and x.

The constraint equivalence follows from a Schur complement argument

�A�2 � t �� AT A � t2I, t � 0,

��
�

tI A
AT tI

�
� 0

(Maximum singular value)

Convex optimization 338
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“Disciplined convex programming” cvx

Download cvx from www.stanford.edu/ boyd/cvx/

Example: proving the stability of a system:
dx(t)

dt
= A x(t)

stable �� there exists P = PT � 0, AT P + P A � 0

�� there exists P = PT � I, AT P + P A � �I

cvx status is a string returning the status of the optimization

cvx_begin sdp
variable P(n,n) symmetric
A’*P + P*A <= -eye(n)
P >= eye(n)

cvx_end

We can consider P as a matrix variable

CVX 339
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Another example:

We want to know if the stability of two systems,

dx(t)
dt

= A1 x(t) and
dx(t)

dt
= A2 x(t)

can be proven with a single Lyapunov function, V (s) = x(t)T Px(t)

We want to find P = PT � 0, such that AT
1 P + P A1 � 0, and AT

2 P + P A2 � 0

Or equivalently P = PT � I, such that AT
1 P + P A1 � �I, and AT

2 P + P A2 � �I

cvx_begin sdp
variable P(n,n) symmetric
A1’*P + P*A1 <= -eye(n)
A2’*P + P*A2 <= -eye(n)
P >= eye(n)

cvx_end

dx(t)
dt

= A(t) x(t) stable for A(t) = �1(t) A1 + �2(t) A2, �i(t) � 0

CVX 340
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D = { diag(D1, . . . , Dq, d1I1, . . . , dmIm, ) | Dj = D�
j > 0, dim(Ii) = ki, di � R, di > 0 }

�

M

D D�1

�

�
�

�

�

M

�

�

z v��

Stability

Define a set of invertible matrices that commute with all � � �

µ�(M) = µ�(DMD�1) � inf
D�D

�max(DMD�1)Upper bound:

Structured singular value

Upper bound calculation
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�max

�
D M D�1

�
< � �� �2I �

�
D M D�1

�� �
D M D�1

�
� 0

�� �2I � D�1M� D2 M D�1 � 0

�� �2D2 � M� D2 M � 0

�� �2D � M� D M � 0 (D � D so D2 � D)

For � fixed this is an LMI in the variables D � D.

If � varies monotomically, the feasible regions of D � D are nested

generalized eigenvalue problem)
(Quasiconvex optimization problem:

Then � =
�

� opt is an upper bound for µ�(M)

minimize

⌘,D2D
⌘

subject to ⌘D � M⇤DM � 0

Structured singular value

Upper bound calculation
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State-space performance test (via main loop theorem)

x(k + 1) = A x(k) + B u(k)

y(k) = C x(k) + D u(k)

P (z) = Fu(Pss, z
�1I) where Pss =

�
A B
C D

�

z�1I

A

C

B

D�
y

� u

�

�

µ�(Pss) < 1 ��

�
���

���

P(z) is stable

and

�P (z)�� < 1.

� = { diag(�1Inx,�2) | �1 � C, �2 � Cnu�ny }

Stability and nominal performance:

Performance LMIs 343
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State-space performance test

µ�(Pss) < 1 ��

�
���

���

P(z) is stable

and

�P (z)�� < 1.

� = { diag(�1Inx,�2) | �1 � C, �2 � Cnu�ny }

In this case: µ�(Pss) = inf
D�D

�max

�
D Pss D�1

�

D =
� �

D1 0
0 d2I

� ���� D1 = D�
1 � 0, d2 > 0

�

Consider (w.l.o.g.) finding D1 such that: �max

��
D1 0
0 I

� �
A B
C D

� �
D�1

1 0
0 I

��
< 1

Performance LMIs 344
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State-space performance test

P (z) is stable and �P (z)�L2 < 1

Bounded real lemma (many equivalent expressions exist)

This is equivalent to the LMIs:

��
A B
C D

�T �
X 0
0 I

� �
A B
C D

�
�

�
X 0
0 I

��
� 0,

X = X� � 0 (take X = D2
1)

such that

�

�����

�X 0 AT X CT

0 �I BT X DT

XA XB �X 0
C D 0 �I

�

�����
� 0

�� there exists X = X� � 0

Bounded real lemma 345
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Bound real lemma:  (discrete-time)

Note that the upper left block contains the condition:

Which is equivalent to the discrete-time Lyapunov condition:

P (z) is stable and �P (z)�� < �

�� there exists Y = Y � � 0

such that

�

�����

Y AY B 0
Y AT Y 0 Y CT

BT 0 I DT

0 CY D �2I

�

�����
� 0

�
Y AY

Y AT Y

�
� 0

A Y AT � Y � 0

Bounded real lemma 346
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Bound real lemma:  (continuous-time)

The LMI contains the continuous-time Lyapunov condition:

P (s) is stable and �P (s)�� < �

�� there exists P = P � � 0

such that

�

��
AT P + PA PB CT

BT P �I DT

C D ��2I

�

�� � 0

AT P + PA � 0

An equivalent form (using Q = P�1) :

�

��
QAT + AQ B QCT

BT �I DT

CQ D ��2I

�

�� � 0

Bounded real lemma 347
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The bounded real lemmas are used for analysis of a closed-loop system

State feedback:

H� Design (continuous-time)

P (s) =

�

��
A Bw Bu

Ce Dew Deu

I 0 0

�

�� with (A,Bu) assumed to be stabilizable

An equivalent LMI:

�

��
QAT + FT BT

u + AQ + BuF Bw QCT
e + FT DT

eu

BT
w �I DT

ew

CeQ + DeuF Dew ��2I

�

�� � 0

(this uses the substitution: F = K Q)

G(s) = Fl (P (s),K) =

�
A + BuK Bw

Ce + DeuK Dew

�


e

y

�
= P (s)


w

u

�
and for state feedback: u = K x = K y

Design 348
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State feedback H� Design (continuous-time)

P (s) =

�

��
A Bw Bu

Ce Dew Deu

I 0 0

�

�� with (A,Bu) assumed to be stabilizable

If this has a solution (�, Q, and F ) then

K = F Q�1 gives Fl (P (s),K) stable and �Fl (P (s),K)�� � �
�

minimize

⌘,Q,F

⌘

subject to: Q = QT � 0

2

64
QAT

+ FTBT
u +AQ+BuF Bw QCT

e + FTDT
eu

BT
w �I DT

ew

CeQ+DeuF Dew �⌘I

3

75 � 0
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Using cvx:

State feedback H� Design (continuous-time)

P = ss(A, [Bw, Bu], [Ce, eye(n,n)], [Dew, Deu; zeros(n,nw+nu)]);

cvx_begin sdp

variable Q(n,n) symmetric;

variable F(nu,n);

variable eta;

minimize eta;

subject to:

Q > 0;

[Q*A’ + F’*Bu’ + A*Q + Bu*F, Bw, Q*Ce’ + F’*Deu’;

Bw’, -eye(nw,nw), Dew’;

Ce*Q + Deu*F, Dew, -eta*eye(ne,ne)] < 0;

cvx_end

K = F*inv(Q);

Aclp = A + Bu*K;

disp(eig(Aclp)); % always check that it really is a good controller.
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The bounded real lemmas are used for analysis of a closed-loop system

Output feedback:

H� Design (continuous-time)

P (s) =

�

��
A Bw Bu

Ce Dew Deu

Cy Dyw 0

�

��
with (A,Bu) assumed to be stabilizable

and (Cy, A) assumed to be detectable

G(s) = Fl (P (s),K(s)) =

�

��
A BuCk Bw

BkCy Ak BkDyw

Ce DeuCk Dew

�

��


e
y

�
= P (s)


w
u

�
and for output feedback: u = K(s) y =

"
Ak Bk

Ck 0

#
y
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H� Design (linearizing transformation)

Define new controller variables via:

Partition P as: P =
�

Y N
NT �

�
and P�1 =

�
X M

MT �

�

Â = NAkMT + NBkCyX + Y BuCkMT + Y AX

B̂ = NBk

Ĉ = CkMT

LMI condition (to be applied to the closed-loop):

�

����

AT
clpP + PAclp PBclp CT

clp

BT
clpP �I DT

clp

Cclp Dclp ��2I

�

����
� 0

G(s) = Fl (P (s),K(s)) =

�

��
A BuCk Bw

BkCy Ak BkDyw

Ce DeuCk Dew

�

�� =

�
Aclp Bclp

Cclp Dclp

�
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H� Design (linearizing transformation)

LMI condition (to be applied to the closed-loop):

�

����

AT
clpP + PAclp PBclp CT

clp

BT
clpP �I DT

clp

Cclp Dclp ��2I

�

����
� 0

Define an inertia-preserving transform via: T =
�

X I
MT 0

�

Then: TT PAclpT =
�
AX + BuĈ A

Â Y A + B̂Cy

�

TT PBclp =
�

Bw

Y Bw + B̂Dyw

�

CclpT =
�
CeX + DeuĈ Ce

�

TT PT =
�
X I
I Y

�

Design 353
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H� Design (linearizing transformation)

�

����

TT 0 0

0 I 0

0 0 I

�

����

�

����

AT
clpP + PAclp PBclp CT

clp

BT
clpP �I DT

clp

Cclp Dclp ��2I

�

����

�

����

T 0 0

0 I 0

0 0 I

�

����
=

Closed-loop LMI conditions:

�

����

AT
clpP + PAclp PBclp CT

clp

BT
clpP �I DT

clp

Cclp Dclp ��2I

�

����
� 0, and P � 0.

�

�������

AX + BuĈ + XAT + ĈT BT
u A + ÂT Bw XCT

e + ĈT DT
eu

AT + Â Y A + AT Y + B̂Cy + CT
y B̂T Y Bw + B̂Dyw CT

e

BT
w BT

wY + DT
ywB̂T �I DT

ew

CeX + DeuĈ Ce Dew ��2 I

�

�������
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H� Design

P P�1 = I =� NMT = I � Y X (solve for M and N)

Solve for Ak, Bk and Ck from:

If this has a solution (�, X, Y, Â, B̂ and Ĉ) then

K(s) =

�
Ak Bk

Ck 0

�
gives Fl (P (s),K(s)) stable and �Fl (P (s),K(s))�� � �

�

�

�������

AX + BuĈ + XAT + ĈT BT
u A + ÂT Bw XCT

e + ĈT DT
eu

AT + Â Y A + AT Y + B̂Cy + CT
y B̂T Y Bw + B̂Dyw CT

e

BT
w BT

wY + DT
ywB̂T �I DT

ew

CeX + DeuĈ Ce Dew �� I

�

�������
� 0

minimize

⌘,X,Y,Â,B̂,Ĉ

⌘

subject to:


X I
I Y

�
� 0,

Â = NAkM
T + NBkCyX + Y BuCkM

T + Y AX

B̂ = NBk

Ĉ = CkM
T

Design 355

355



Roy Smith: ACC 2014 Workshop;  robust design theory

Using cvx:

H� Design

P = ss(A, [Bw, Bu], [Cz; Cy], [Dzw, Dzu; Dyw, zeros(ny,nu)]);

cvx_begin sdp
variable X(n,n) symmetric;
variable Y(n,n) symmetric;
variable Ah(n,n);
variable Bh(n,ny);
variable Ch(nu,n);
variable eta;

minimize eta;
subject to:

[X, eye(n,n);
eye(n,n), Y] > 0;

[A*X + Bu*Ch + X*A’ + Ch’*Bu’, A+Ah’, Bw, X*Ce’ + Ch’*Deu’;
A’+Ah, Y*A + A’*Y + Bh*Cy + Cy’*Bh’, Y*Bw + Bh*Dyw, Ce’;
Bw’, Bw’*Y + Dyw’*Bh’, -eye(nw,nw), Dew’;
Ce*X + Deu*Ch, Ce, Dew, -eta*eye(ne,ne)] < 0;

cvx_end
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Using the robust control toolbox:

H� Design

P = ss(A, [Bw, Bu], [Ce; Cy], [Dew, Deu; Dew, zeros(ny,nu)]);
[K,G,clp_norm] = hinfsyn(P,ny,nu);

Design 357
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Design

H2 synthesis 10:

norm characterization

H2 norm characterization

G(s) =

�
A B

C 0

�
is �G(s)�H2 < 1 ?

Theorem: G(s) is stable and �G(s)�2
H2

< �

�G(s)�2
L2

=
1
2�

� �

��
Trace (G(j�)G�(j�)) d�

H2

Trace
�
CXCT

�
< � and AX + XAT + BBT � 0

�� there exists X = XT � 0 such that

9

H2 synthesis 10:

H2 norm characterization

Theorem: G(s) is stable and �G(s)�2
H2

< �

Proof :

(=�) Define X =
� �

0
eAt[B �I]

�
B�

�I

�
eA�tdt

AX + XA� + BB� + �2I = 0

Trace (CXcC
�) < � implies that there exist a su�ciently small � such that Trace (CXC�) < �

As � �� 0, X �� Xc (continuously)

norm characterizationH2

�� �X = XT � 0 such that Trace
�
CXCT

�
< � and AX + XAT + BBT � 0

G(s) stable implies that X = XT � 0

10
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Design

H2 synthesis 10:

H2 norm characterization

Theorem: G(s) is stable and �G(s)�2
H2

< �

Proof :

(�=) Lyapunov inequality implies that G(s) is stable

A(X �Xc) + (X �Xc)A� + Q = 0

�G(s)�2
L2

= Trace (CXcC
�) � Trace (CXC�) < �

norm characterizationH2

�� �X = XT � 0 such that Trace
�
CXCT

�
< � and AX + XAT + BBT � 0

There exists Q = QT � 0 such that AX + XA� + BB� + Q = 0

A is Hurwitz so X �Xc =
� �

0
eAtQeA�tdt � 0

11

H2 synthesis 10:

H2 norm characterization

G(s) =

�
A B

C 0

�
Continuous-time: G(s) is stable and �G(s)�2

L2
< �

Discrete-time: G(z) is stable and �G(z)�2
L2

< � G(z) =

�
A B

C 0

�

norm characterizationH2

�� there exists X = XT � 0 such that:

�� there exists X = XT � 0 such that:

�

��
X AX B

XAT X 0
BT 0 I

�

�� � 0

�
W CX

XCT X

�
� 0 and Trace (W ) < �

AX + XAT + BBT � 0,

�
W CX

XCT X

�
� 0 and Trace (W ) < �

12
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Design

H2 synthesis 10:

State feedback:

H2 Design (continuous-time)

P (s) =

�

��
A Bw Bu

Ce 0 Deu

I 0 0

�

�� with (A,Bu) assumed to be stabilizable

G(s) = Fl (P (s),K) =

�
A + BuK Bw

Ce + DeuK 0

�

�
W CeX + DeuF

XCT
e + FT DT

eu X

�
� 0 and Trace (W ) < �

(this uses the substitution: F = K X)

G(s) is stable and �G(s)�L2 < � �� there exists X = XT � 0, and F such that:

synthesisH2

AX + BuF + XAT + FT BT
u + BwBT

w � 0,

13


e

y

�
= P (s)


w

u

�
and for state feedback: u = K x = K y

H2 synthesis 10:

synthesisH2

H2 Design LQG problem

LQG objective: J =
��

k=0

x(k)T Qx(k) + u(k)T Ru(k)

Choose: Ce =
�
Q1/2

0

�
and Deu =

�
0

R1/2

�

then, e(k) =
�
Q1/2x(k)
R1/2u(k)

�
and e(k)T e(k) = x(k)T Qx(k) + u(k)T Ru(k)

So �e(k)�2
2 =

��

k=0

x(k)T Qx(k) + u(k)T Ru(k) = J

14
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Design
H2 synthesis 10:

State feedback:

H2 Design (continuous-time)

P (s) =

�

��
A Bw Bu

Ce 0 Deu

I 0 0

�

�� with (A,Bu) assumed to be stabilizable

G(s) = Fl (P (s),K) =

�
A + BuK Bw

Ce + DeuK 0

�

�
W CeX + DeuF

XCT
e + FT DT

eu X

�
� 0 and Trace (W ) < �

(this uses the substitution: F = K X)

G(s) is stable and �G(s)�L2 < � �� there exists X = XT � 0, and F such that:

synthesisH2

AX + BuF + XAT + FT BT
u + BwBT

w � 0,

13


e

y

�
= P (s)


w

u

�
and for state feedback: u = K x = K y

H2 synthesis 10:

synthesisH2

H2 Design LQG problem

LQG objective: J =
��

k=0

x(k)T Qx(k) + u(k)T Ru(k)

Choose: Ce =
�
Q1/2

0

�
and Deu =

�
0

R1/2

�

then, e(k) =
�
Q1/2x(k)
R1/2u(k)

�
and e(k)T e(k) = x(k)T Qx(k) + u(k)T Ru(k)

So �e(k)�2
2 =

��

k=0

x(k)T Qx(k) + u(k)T Ru(k) = J

14
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Design

H2 synthesis 10:

Output feedback:

�
z
y

�
= P (s)

�
w
u

�
and for output feedback: u = K(s) y =

�
Ak Bk

Ck 0

�
y

synthesisH2

H2 Design (continuous-time)

P (s) =

�

��
A Bw Bu

Ce 0 Deu

Cy Dyw 0

�

��
with (A,Bu) assumed to be stabilizable

and (Cy, A) assumed to be detectable

G(s) = Fl (P (s),K(s)) =

�

��
A BuCk Bw

BkCy Ak BkDyw

Ce DeuCk 0

�

��

15

H2 synthesis 10:

Define new controller variables via:

Partition P as: P =
�

Y N
NT �

�
and P�1 =

�
X M

MT �

�

Â = NAkMT + NBkCyX + Y BuCkMT + Y AX

B̂ = NBk

Ĉ = CkMT

synthesisH2

G(s) = Fl (P (s),K(s)) =

�

��
A BuCk Bw

BkCy Ak BkDyw

Ce DeuCk 0

�

�� =

�
Aclp Bclp

Cclp 0

�

H2 Design (linearizing transform)

16

LMI conditions:

2

4A
T
clpP + PAclp PBclp

BT
clpP �I

3

5 � 0,


W Cclp

CT
clp P

�
� 0, P � 0, Trace(W ) < �
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Design
H2 synthesis 10:

Output feedback:

�
z
y

�
= P (s)

�
w
u

�
and for output feedback: u = K(s) y =

�
Ak Bk

Ck 0

�
y

synthesisH2

H2 Design (continuous-time)

P (s) =

�

��
A Bw Bu

Ce 0 Deu

Cy Dyw 0

�

��
with (A,Bu) assumed to be stabilizable

and (Cy, A) assumed to be detectable

G(s) = Fl (P (s),K(s)) =

�

��
A BuCk Bw

BkCy Ak BkDyw

Ce DeuCk 0

�

��

15

H2 synthesis 10:

Define new controller variables via:

Partition P as: P =
�

Y N
NT �

�
and P�1 =

�
X M

MT �

�

Â = NAkMT + NBkCyX + Y BuCkMT + Y AX

B̂ = NBk

Ĉ = CkMT

synthesisH2

G(s) = Fl (P (s),K(s)) =

�

��
A BuCk Bw

BkCy Ak BkDyw

Ce DeuCk 0

�

�� =

�
Aclp Bclp

Cclp 0

�

H2 Design (linearizing transform)

16

LMI conditions:

2

4A
T
clpP + PAclp PBclp

BT
clpP �I

3

5 � 0,


W Cclp

CT
clp P

�
� 0, P � 0, Trace(W ) < �
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Design

H2 synthesis 10:

Define an inertia-preserving transform via: T =
�

X I
MT 0

�

Then: TT PAclpT =
�
AX + BuĈ A

Â Y A + B̂Cy

�

TT PBclp =
�

Bw

Y Bw + B̂Dyw

�

CclpT =
�
CeX + DeuĈ Ce

�

TT PT =
�
X I
I Y

�

synthesisH2

H2 Design (linearizing transform)

LMI conditions:

�

�AT
clpP + PAclp PBclp

BT
clpP �I

�

� � 0,

�

� W Cclp

CT
clp P

�

� � 0, and P � 0

17

H2 synthesis 10:

synthesisH2

H2 Design (linearizing transform)

�

�TT 0

0 I

�

�

�

�AT
clpP + PAclp PBclp

BT
clpP �I

�

�

�

�T 0

0 I

�

� =

�

����

AX + BuĈ + XAT + ĈBT
u A + ÂT Bw

Â + AT Y A + B̂Cy + AT Y + CT
y B̂ Y Bw + B̂Dyw

BT
w BT

wY + DT
ywB̂T �I

�

����

�

�I 0

0 TT

�

�

�

� W Cclp

CT
clp P

�

�

�

�I 0

0 T

�

� =

�

����

W CeX + DeuĈ Ce

XCT
e + ĈT Deu X I

CT
e I Y

�

����

LMI conditions:

�

�AT
clpP + PAclp PBclp

BT
clpP �I

�

� � 0,

�

� W Cclp

CT
clp P

�

� � 0, and P � 0

18
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Design

H2 synthesis 10:

Define an inertia-preserving transform via: T =
�

X I
MT 0

�

Then: TT PAclpT =
�
AX + BuĈ A

Â Y A + B̂Cy

�

TT PBclp =
�

Bw

Y Bw + B̂Dyw

�

CclpT =
�
CeX + DeuĈ Ce

�

TT PT =
�
X I
I Y

�

synthesisH2

H2 Design (linearizing transform)

LMI conditions:

�

�AT
clpP + PAclp PBclp

BT
clpP �I

�

� � 0,

�

� W Cclp

CT
clp P

�

� � 0, and P � 0

17

H2 synthesis 10:

synthesisH2

H2 Design (linearizing transform)

�

�TT 0

0 I

�

�

�

�AT
clpP + PAclp PBclp

BT
clpP �I

�

�

�

�T 0

0 I

�

� =

�

����

AX + BuĈ + XAT + ĈBT
u A + ÂT Bw

Â + AT Y A + B̂Cy + AT Y + CT
y B̂ Y Bw + B̂Dyw

BT
w BT

wY + DT
ywB̂T �I

�

����

�

�I 0

0 TT

�

�

�

� W Cclp

CT
clp P

�

�

�

�I 0

0 T

�

� =

�

����

W CeX + DeuĈ Ce

XCT
e + ĈT Deu X I

CT
e I Y

�

����

LMI conditions:

�

�AT
clpP + PAclp PBclp

BT
clpP �I

�

� � 0,

�

� W Cclp

CT
clp P

�

� � 0, and P � 0

18
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Design

H2 synthesis 10:

synthesisH2

H2 Design

�

����

AX + BuĈ + XAT + ĈBT
u A + ÂT Bw

Â + AT Y A + B̂Cy + AT Y + CT
y B̂ Y Bw + B̂Dyw

BT
w BT

wY + DT
ywB̂T �I

�

����
� 0

�

����

W CeX + DeuĈ Ce

XCT
e + ĈT Deu X I

CT
e I Y

�

����
� 0

minimize �

subject to: Trace (W ) < �,

19

H2 synthesis 10:

P P�1 = I =� NMT = I � Y X (solve for M and N)

Â = NAkMT + NBkCyX + Y BuCkMT + Y AX

B̂ = NBk

Ĉ = CkMT

Solve for Ak, Bk and Ck from:

synthesisH2

H2 Design

If this has a solution (�, X, Y , Â, B̂ and Ĉ) then

K(s) =

"
Ak Bk

Ck 0

#
gives Fl (P (s),K(s)) stable and kFl (P (s),K(s))kH2  p

�

20
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Design
H2 synthesis 10:

synthesisH2

H2 Design

�

����

AX + BuĈ + XAT + ĈBT
u A + ÂT Bw

Â + AT Y A + B̂Cy + AT Y + CT
y B̂ Y Bw + B̂Dyw

BT
w BT

wY + DT
ywB̂T �I

�

����
� 0

�

����

W CeX + DeuĈ Ce

XCT
e + ĈT Deu X I

CT
e I Y

�

����
� 0

minimize �

subject to: Trace (W ) < �,

19

H2 synthesis 10:

P P�1 = I =� NMT = I � Y X (solve for M and N)

Â = NAkMT + NBkCyX + Y BuCkMT + Y AX

B̂ = NBk

Ĉ = CkMT

Solve for Ak, Bk and Ck from:

synthesisH2

H2 Design

If this has a solution (�, X, Y , Â, B̂ and Ĉ) then

K(s) =

"
Ak Bk

Ck 0

#
gives Fl (P (s),K(s)) stable and kFl (P (s),K(s))kH2  p

�

20

367
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Design

H2 synthesis 10:

Design

H2 Design

Using CVX:

cvx_begin sdp!
!
    variable X(n,n) symmetric;!
    variable Y(n,n) symmetric;!
    variable W(ne,ne) symmetric;    !
    variable Ah(n,n);    !
    variable Bh(n,ny);   !
    variable Ch(nu,n);  !
    variable gamma;!
    !
    minimize gamma;!
    subject to!
    !
        trace(W) < gamma;!
    !
        [W, Ce*X + Deu*Ch, Ce;!
         X*Ce' + Ch'*Deu', X, eye(n,n);!
         Ce', eye(n,n), Y] > 0;!
    !
        [A*X + Bu*Ch + X*A' + Ch'*Bu', A+Ah', Bw;!
         A'+Ah, Y*A + A'*Y + Bh*Cy + Cy'*Bh', Y*Bw + Bh*Dyw;!
         Bw', Bw'*Y + Dyw'*Bh', -eye(nw,nw)] < 0;!
     !
cvx_end

H2 synthesis 10:

Design

H2 Design

Using the Robust Control Toolbox:

P = ss(A,[Bw,Bu],[Ce;Cy],[zeros(ne,nw),Deu;Dyw, zeros(ny,nu)]);!
[K,G,clp_norm] = h2syn(P,ny,nu);
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Design
H2 synthesis 10:

Design

H2 Design

Using CVX:

cvx_begin sdp!
!
    variable X(n,n) symmetric;!
    variable Y(n,n) symmetric;!
    variable W(ne,ne) symmetric;    !
    variable Ah(n,n);    !
    variable Bh(n,ny);   !
    variable Ch(nu,n);  !
    variable gamma;!
    !
    minimize gamma;!
    subject to!
    !
        trace(W) < gamma;!
    !
        [W, Ce*X + Deu*Ch, Ce;!
         X*Ce' + Ch'*Deu', X, eye(n,n);!
         Ce', eye(n,n), Y] > 0;!
    !
        [A*X + Bu*Ch + X*A' + Ch'*Bu', A+Ah', Bw;!
         A'+Ah, Y*A + A'*Y + Bh*Cy + Cy'*Bh', Y*Bw + Bh*Dyw;!
         Bw', Bw'*Y + Dyw'*Bh', -eye(nw,nw)] < 0;!
     !
cvx_end

H2 synthesis 10:

Design

H2 Design

Using the Robust Control Toolbox:

P = ss(A,[Bw,Bu],[Ce;Cy],[zeros(ne,nw),Deu;Dyw, zeros(ny,nu)]);!
[K,G,clp_norm] = h2syn(P,ny,nu);
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Design

l1 Design problems

kMk1 = sup

kxk11
kMxk1 = max

1ip

qX

j=1

|a
ij

|

Bounding error amplitudes for bounded amplitude inputs

y =

2

664

y0

y1
...

3

775 = M u =

2

664

m1 0 0 · · ·
m2 m1 0 · · ·
...

. . .
. . .

3

775

2

664

u0

u1

...

3

775

Use impulse response matrices and a Youla parametrisation to set up the design problem:

min
Q

kP + UQV k1

Robust problems can also be set up and solved as (large) optimisation problems.
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fD(z) = 2� + z + z� (L = 2�, M = 1)

Example: |z + q| < r disk or radius r centered at (�q, 0)

Example: real(z) < ��

Example: z within a conic sector with inner angle 2�

fD(z) =
�
�(z + z�) sin � (z � z�) cos �
(z� � z) cos � (z + z�) sin �

�

fD(z) =
�
�r q + z

q + z� �r

�
so L =

�
�r q
q �r

�
and M =

�
0 1
0 0

�

Use these to define a function, fD(z) : C �� Sp�p, fD(z) = L + zM + z�MT

And this is used to define a region of the complex plane: D = { z � C | fD(z) � 0 }

Choose matrices, L = LT � Rp�p, and M � Rp�p

Pole region constraints 371
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Now given A � Rn�n and P = PT � Rn�n,

define a function, MD(A,P ) = L� P + M � (AP ) + MT � (PAT )

Theorem: eig(A) � D �� there exists P = PT � 0, such that MD(A,P ) � 0

Example: All closed-loop poles have real part less than � �

fD(z) = 2� + z + z� (L = 2�, M = 1)

eig(Aclp) � D �� there exists P = PT � 0, 2�P + AclpP + PAT
clp � 0

Pole region constraints

LMI conditions for pole region constraints
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����
�
I 0

�
G(s)

�
I
0

�����
L�

� � �� P1 � 0,

�

���

AT P1 + P1A P1Bv CT
z

BT
v P1 �I DT

zv

Cz Dzv ��2I

�

��� � 0

Trace (W ) < �

Fl (P (s),K(s)) = G(s) =

�

��
A Bz Bw

Cz Dzv Dzw

Ce Dev 0

�

��

real(eig(A)) < �� �� P3 � 0, AP3 + P3A
T + 2�P3 � 0

����
�
0 I

�
G(s)

�
0
I

�����
L2

� � �� AP2 + P2A
T + BwBT

w � 0,

�

� W CeP2

P2CT
e P2

�

� � 0,

K(s)

P (s)
�
�

�
�

�

�

z

e

v

w

y u

Multiobjective analysis 373
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Trace (W ) < �

Fl (P (s),K(s)) = G(s) =

�

��
A Bz Bw

Cz Dzv Dzw

Ce Dev 0

�

��
K(s)

P (s)
�
�

�
�

�

�

z

e

v

w

y u

For synthesis we further constrain: P = P1 = P2 = P3

����
�
I 0

�
G(s)

�
I
0

�����
L�

� � �� P � 0,

�

���

AT P + PA PBv CT
z

BT
v P �I DT

zv

Cz Dzv ��2I

�

��� � 0

����
�
0 I

�
G(s)

�
0
I

�����
L2

� � �� AP + PAT + BwBT
w � 0,

�

� W CeP

PCT
e P

�

� � 0,

real(eig(A)) < �� �� P � 0, AP + PAT + 2�P � 0

Multiobjective design 374
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We typically have: Aclp = A � BK

State feedback

Define F = KP

Then AclpP = (A � BK)P = AP � BF

We can express our LMI’s in terms of P and F

Multiobjective design 375
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Define new controller variables via:

Partition P as: P =
�

Y N
NT �

�
and P�1 =

�
X M

MT �

�

Â = NAkMT + NBkCyX + Y BuCkMT + Y AX

B̂ = NBk

Ĉ = CkMT

Linearizing transformation

Define an inertia-preserving transform via: T =
�

X I
MT 0

�

Then: TT PAclpT =
�
AX + BuĈ A

Â Y A + B̂Cy

�
, TT PBclp =

�
Bw

Y Bw + B̂Dyw

�

CclpT =
�
CeX + DeuĈ Ce

�
, TT PT =

�
X I
I Y

�

�
Aclp Bclp

Cclp 0

�
=

�

��
A BuCk Bw

BkCy Ak BkDyw

Ce DeuCk 0

�

��

Multiobjective design 376

376



Roy Smith: ACC 2014 Workshop;  robust design theory

Relaxations for structural controller constraints

x(k + 1) = Ax(k) + B u(k)

y(k) = C x(k) + Du(k)

Discrete-time formulation:

Fundamental stability result:

There exists P = PT > 0, such that


P AP

PAT P

�
> 0

there exists P = PT > 0 and G such that


P AG

GAT G+GT � P

�
> 0

()

Fundamental stability result:
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Relaxations for structural controller constraints

Structured state-feedback (an almost useless problem - only for illustrative purposes)

If there exists P = PT > 0, , G (diagonal) and F (diagonal) such that


P AG+BF

ATG+ FBT 2G� P

�
> 0,

then K = FG�1 stabilizes A+BK Note that K = FG�1
is diagonal

Arbitrary zero structures can be imposed on K by choice of the F structure

The Lyapunov variable, P , has no structural constraints.
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Relaxations for structural controller constraints

The state-feedback and dynamic feedback linearising transformations can be extended!
to these LMI conditions.

P (z) is stable and kP (z)kH1 < � if and only if

there exists P = PT
and G such that,

2

66664

P AG B 0

GTAT G+GT � P 0 GTCT

BT 0 I DT

0 CG D �I

3

77775
> 0

Extended version of the H-infinity LMI characterisation

379

379



Roy Smith: ACC 2014 Workshop;  robust design theory

Relaxations for structural controller constraints

Extended version of the H-2 LMI characterisation

there exists P = PT
and G such that,

P (z) is stable and kP (z)kH2 < � if and only if,

trace(W ) < �,

"
W CG

GTCT GT +G� P

#
> 0, and

2

64
P AG B

GTAT GT +G� P 0

BT 0 I

3

75 > 0

The state-feedback and dynamic feedback linearising transformations can be extended!
to these LMI conditions.
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The linearizing transformation is given in:!
C. Scherer, P. Gahinet and M. Chilali, “Multiobjective output-feedback control via LMI optimization”!
IEEE Trans. Auto. Ctrl., vol. 42, no. 7, pp. 896-911, 1997.

Another version of the linearizing transformation (with a useful generalization) is found in:!
M.C. de Oliveira, J.C. Geromel, & J. Bernussou, “Extended          and           norm characterizations and 
controller parametrizations for discrete-time systems”!
Int. J. Ctrl., vol. 75, no. 9, pp. 666-679, 2002.

H2 H�

References

The robust pole region derivation is given in:!
M. Chilali, P. Gahinet and P. Apkarian, “Robust pole placement in LMI regions”!
IEEE Trans. Auto. Ctrl., vol. 44, no. 12, pp. 2257-2270, 1999.

The multi-objective design approach (including pole regions)  is given in:!
C. Scherer, P. Gahinet and M. Chilali, “Multiobjective output-feedback control via LMI optimization”!
IEEE Trans. Auto. Ctrl., vol. 42, no. 7, pp. 896-911, 1997.

D-stability is discussed in:!
M. Chilali and P. Gahinet, “         design with pole placement constraints: an LMI approach”!
IEEE Trans. Auto. Ctrl., vol. 41, no. 3, pp. 358-367, 1996.

The following paper describes integral quadratic constraints:!
A. Megretski  and A. Rantzer, “System Analysis via Integral Quadratic Constraints ”!
IEEE Trans. Auto. Ctrl., vol. 42, no. 6, pp. 819-830, 1997.
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H2 synthesis 10:
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This approach to         synthesis is similar to the one given in:!
G. Dullerud & F. Paganini, "A course in robust control theory",  Springer-Verlag, 1999.

The use of a linearizing transformation for         synthesis is described in:!
C. Scherer, P. Gahinet and M. Chilali, “Multiobjective output-feedback control via LMI optimization”!
IEEE Trans. Auto. Ctrl., vol. 42, no. 7, pp. 896-911, 1997.
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Another version of the linearizing transformation (with a useful generalization) is found in:!
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Int. J. Ctrl., vol. 75, no. 9, pp. 666-679, 2002.
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The l1 design problem is introduced and studied in:!
M. Dahleh and J.B. Pearson, “l1-optimal feedback controllers for MIMO discrete-time!
systems,” IEEE Trans. Automatic Control, vol. 32, no. 4, pp. 314–322, Apr. 1987.

Robust l1 synthesis is studied in: !
M. Khammash and J.B. Pearson, “Performance robustness of discrete-time systems with!
structured uncertainty,” IEEE Trans. Automatic Control, vol. 36, no. 4, pp. 398–412, 1991.
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Robust Control is a beautiful theory
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• Think in terms of gains and loop shapes

• Take holistic approach to MIMO control

• Pay attention to the Gang of Four (or Six?)

• Use disk margins rather than gain/phase margins

• Account for plant uncertainty

… based on solid principles:
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• Hard to distill all design goals into one frequency-

weighted H∞ criterion

• Produces monolithic, black-box controllers

• Controller complexity tends to be high

• Convexity often comes at the price of conservatism

Yet it has practical limitations
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… that make it difficult to apply:
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SYSTUNE is a bridge
388

388
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between Robust Control theory…

𝑇𝑤𝑧 < 𝛾

SYSTUNE is a bridge
389
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between Robust Control theory…

… and Control Engineering practice

𝑇𝑤𝑧 < 𝛾

SYSTUNE is a bridge
390
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SYSTUNE in a Nutshell

1. Turn any control structure into Standard Form with 
structured C(s)
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SYSTUNE in a Nutshell

2. Automatically turn design goals into H2/H∞ cost 
functions

𝑓 𝑥 =
(𝑇 𝑠, 𝑥 − 𝑇𝑟𝑒𝑓(𝑠))/𝑠 2

𝛿 (1 − 𝑇𝑟𝑒𝑓(𝑠))/𝑠 2

𝑓 𝑥 =
𝑤𝑆𝑆 𝑠, 𝑥

𝑤𝑇𝑇 𝑠, 𝑥 ∞
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SYSTUNE in a Nutshell

3. Use optimization to accommodate the demands of multi-
objective, fixed-structure synthesis

min
𝑥

max
𝑖

𝑓𝑖 𝑥

subject  to

max
𝑗

𝑔𝑗 𝑥 < 1
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SYSTUNE in a Nutshell

4. Use specialized solvers that exploit problem nature and 
structure to solve it efficiently

Nonsmooth minimax optimization:

Stabilization:   min
𝑥

max
𝑖

Re 𝜆𝑖 (𝐴 𝑥 )

𝐻∞ Optimization:    min
𝑥

max
𝜔,𝑖

𝜎𝑖 (𝑇 𝑗𝜔, 𝑥 )
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SYSTUNE in a Nutshell

5. Tune controller against multiple models of the plant
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SYSTUNE in a Nutshell

5. Tune controller against multiple models of the plant
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Pros and Cons

Nonlinear + nonsmooth + nonconvex = hopeless?

No, as long as:

• You can live with a satisfactory design that is not 
necessarily globally optimal

• Solver is fast and gives coherent answers (to support 
iterative design)
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Pros and Cons

• The simpler the controller, the smaller the search space

• No auxiliary variables or Lyapunov matrices

• More constraints tend to make problem easier to solve

398
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SYSTUNE

Flexibility

Tr
ac

ta
bi

lit
y

DGKF

LMIs

0
0

1

1

mu

Generic
NLP

Tractability vs. generality tradeoff
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Demo: Helicopter Flight Control

8+6 states,  21 tunable parameters
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SYSTUNE Software

• SYSTUNE and the Control System Tuner app live in 
Robust Control Toolbox

• Interface with Simulink (slTuner) lives in Simulink Control 
Design

• Contact: Pascal.Gahinet@mathworks.com

401
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Conclusion

• Robust Control is not just for PhDs and academics

• You don’t have to go back to manual gain tuning once you 

leave the classroom

• Tools are available to apply Robust Control methodology 

to real-world applications
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Intro to IQCs:

A simple State-Space Approach

ACC, June 2014
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403

403



Components

–Relations among variables

•Here, drawn as input/output

External variables (d)

Selected internal variables (e)

Interconnection

–Equates variables of 
“communicating” components

– Implicitly gives  (d/e) relation

UQ question

–Uncertain components

• Uncertainty is quantified at 

component level

–Quantify uncertainty in (d/e) relation

Uncertainty Quantification (UQ) analysis in control

How is uncertainty in a component 
quantified?  
▫ List of quadratic (in)equalities that variables 

it relates are guaranteed to satisfy

▫ “Certain”: just a special case of uncertain

▫Uncertainty in (d/e) is quantified in same 

manner – certify that (d/e) relation always

satisfies specific quadratic inequalities

d1

d2

e2

e1

aileronforce
Aero 

“coeff”
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Hard IQCs (dynamic supply rates)
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Example 1: IQC For Saturation
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Example 2: IQC For Norm-Bounded LTI Uncertainty

1. Causality is used to 
show that constraint 
holds over all finite 
time horizons.

2. Equivalent to D-
scales in robust 
control
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Using IQCs to prove I/O stability
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Three different systems

Analyze this… (system model and signal constraint)

… to reach conclusions here

and
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What are the known constraints?
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Look for a generalized storage function
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Combining integrated inequality with IQC

Integrate 

along 

solutions
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Solving the inequality: Finding V and λ

Use interconnection 
equations, recast as…

Interconnection equations
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Solving the inequality: SDP to find V and λ

Interconnection equations
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IQCs in the Frequency Domain
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Frequency Domain Stability Condition
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Connection Between Time and Frequency Domain
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“Soft” Infinite Horizon Constraint
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“Soft” Infinite Horizon Constraint
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“Soft” Infinite Horizon Constraint
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Sign Indefinite Quadratic Storage
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Sign Indefinite Quadratic Storage
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Sign Indefinite Quadratic Storage
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Equivalence of Approaches
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Equivalence of Approaches

Ref: Seiler, “Stability Analysis with Dissipation Inequalities and

Integral Quadratic Constraints”, Submitted to TAC, 2014.
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Equivalence of Approaches

Ref: Seiler, “Stability Analysis with Dissipation Inequalities and

Integral Quadratic Constraints”, Submitted to TAC, 2014.
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Robust Model Predictive Control
A Short Introduction

C. Jones†, M. Baric‡, M. Morari∗, F. Borrelli
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∗ETH Zurich, Switzerland

‡ United Technology Research Center, Hartford, USA
† Ecole Polytechnique Federale de Lausanne, Switzerland

June 2014

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014
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Basics Classical Control vs MPC
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Basics Classical Control vs MPC

Two Different Perspectives

Classical design: design C

Dominant issues addressed
Disturbance rejection (d → y)
Noise insensitivity (n → y)
Model uncertainty

(usually in frequency domain)

MPC: real-time, repeated optimiza-
tion to choose u(t)

Dominant issues addressed
Control constraints (limits)
Process constraints (safety)

(usually in time domain)

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-2
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Basics Classical Control vs MPC

Constraints in Control
All physical systems have constraints:

Physical constraints, e.g. actuator limits
Performance constraints, e.g. overshoot
Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.

Predictive control:
Constraints included in the design
Optimal plant operation

Optimal Operation and Constraints

PSfrag replacements

constraint

set point
time

ou
tp

ut Classical Control
No knowledge of constraints
Set point far from constraints
Suboptimal plant operation

PSfrag replacements

constraint

set point
time

ou
tp

ut Predictive Control
Constraints included in design
Set point closer to optimal
Improved plant operation

4F3 Predictive Control - Lecture 1 – p.3/11

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-3
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Basics Main Idea
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Basics Main Idea

Main Idea

Objective:
Minimize lap time

Constraints:
Avoid other cars
Stay on road
Don’t skid
Limited acceleration

Intuitive approach:
Look forward and plan path
based on

Road conditions
Upcoming corners
Abilities of car
etc...

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-4
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Basics Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-5
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Basics Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path
What to do if something
unexpected happens?

We didn’t see a car around
the corner!
Must introduce feedback

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-5
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Basics Main Idea

Optimization-Based Control

Minimize (lap time)
while avoid other cars

stay on road
...

Solve optimization problem to
compute minimum-time path
Obtain series of planned control
actions
Apply first control action
Repeat the planning procedure

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-5
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Basics Main Idea

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer




Measurements 

Output  Input  Reference  

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-6
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Basics Mathematical Formulation
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Basics Mathematical Formulation

MPC: Mathematical Formulation

U ∗t (x(t)) := argmin
Ut

N−1∑

k=0
q(xt+k , ut+k)

subj. to xt = x(t) measurement
xt+k+1 = Axt+k + But+k system model
xt+k ∈ X state constraints
ut+k ∈ U input constraints
Ut = {ut , ut+1, . . . , ut+N−1} optimization variables

Problem is defined by
Objective that is minimized,
e.g., distance from origin, sum of squared/absolute errors, economic,...
Internal system model to predict system behavior
e.g., linear, nonlinear, single-/multi-variable, ...
Constraints that have to be satisfied
e.g., on inputs, outputs, states, linear, quadratic,...

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-7
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Basics Mathematical Formulation

MPC: Mathematical Formulation

At each sample time:
Measure / estimate current state x(t)
Find the optimal input sequence for the entire planning window N :
U ∗t = {u∗t , u∗t+1, . . . , u∗t+N−1}
Implement only the first control action u∗t

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-8
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Basics Robust MPC - Model and Constraints
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Basics Robust MPC - Model and Constraints

System Model

consider generic discrete–time dynamical system:

xk+1 = g(xk , uk ,wk), (1)

where the state and control vector are subject to constraints:

(xk , uk) ∈ X × U (2)

and the perturbation vector wk assumes its values in a set W̄:

wk ∈ W̄ (3)

the set W̄ is evaluation of a set–valued function W(·), which can be:
simply a constant set: W̄ =W = const
time varying: W̄ =Wk ,
a mapping of the state vector xk , control uk or any other information pattern:
W̄ =W(xk , uk , xk−1),

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-9
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Basics Robust MPC - Model and Constraints

Examples of Uncertain Models

Linear Additive Uncertainty

xk+1 = Axk + Buk + Gwk ,

(xk , uk) ∈ X × U ,

wk ∈ W

Offset wk unknow at time k. Bounds W known.
X , U , W are polytopes.

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-10
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Basics Robust MPC - Model and Constraints

Examples of Uncertain Models

Linear Parameter Varying (LPV) / Polytopic Uncertainty

xk+1 = A(wp
k )xk + B(wp

k )uk + Ewa
k

A(wp) = A0 +
∑np

i=1 Aiwp,i
c , B(wp) = B0 +

∑np
i=1 Biwp,i

c

xk ∈ X , uk ∈ U , ∀t ≥ 0.

Vectors wa
k ∈ Rna and wp

k ∈ Rnp are unknown additive disturbances and
parametric uncertainties, respectively.
The disturbance vector is w = [wa ′, wp′]′ ∈ W ⊂ Rnw

X , U , W are polytopes.
Results can be extended to PieceWise Affine LPV

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-11
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Basics Robust MPC - Model and Constraints

Constrained Robust Control

We will discuss two main goals:
Robust reachability/controllablity

For which initial conditions x0 ∈ X can the state vector be
“steered” into a given target set X0 ?

Robust control synthesis
Select appropriate control laws π(·) using a suitable optimality
criteria
(min–max, max–min, time–optimal, mean value, ...)

Some classical references: [14, 8, 4, 3, 7, 1]

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-12
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Basics Robust MPC - Model and Constraints

Constrained Robust Control

x0

Xf

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�N(x0,u,w) HYL�JVU[HPULK�PU�[OL
[LYTPUHS�ZL[�

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�i(x0,u,w) ZH[PZM`� Z`Z[LT� JVU�
Z[YHPU[Z X�

X

The idea: Compute a set of tighter constraints such that if the nominal system
meets these constraints, then the uncertain system will too.
We then design control law with robustified constraints

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 1-13



Robust Reachability/Controllability
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Robust Reachability/Controllability

Robust Constraint Satisfaction

x0

Xf

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�N(x0,u,w) HYL�JVU[HPULK�PU�[OL
[LYTPUHS�ZL[�

,UZ\YL� [OH[� HSS� WVZZPISL� Z[H[LZ
�i(x0,u,w) ZH[PZM`� Z`Z[LT� JVU�
Z[YHPU[Z X�

X

The idea: Compute a set of tighter constraints such that if the nominal system
meets these constraints, then the uncertain system will too.

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 2-14



Robust Reachability/Controllability One-Step Robust Controllable Set

Table of Contents

2. Robust Reachability/Controllability
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2.3 Robust Control Invariance
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Robust Reachability/Controllability One-Step Robust Controllable Set

Robust Controllability

for a given target set S we define:

One step controllable sets

Pre(S,W) , {x ∈ Rn : ∃u ∈ U s.t. g(x, u,w) ⊆ S, ∀w ∈ W}.

Pre(S,W) is the set of states which can be robustly driven into the target
set S in one time step for all admissible disturbances.

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 2-15
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Robust Reachability/Controllability One-Step Robust Controllable Set

Robust Controllability: Example

Consider the second order unstable system1

{
x(t + 1) =

[
1.5 0
1 −1.5

]
x(t) +

[
1
0

]
u(t) + w(t)

subject to the input and state constraints

u(t) ∈ U = {u : −5 ≤ u ≤ 5} , ∀t ≥ 0

x(t) ∈ X =
{

x :
[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0,

1Click here to download the Matlab c© code.
Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 2-16
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Robust Reachability/Controllability One-Step Robust Controllable Set

Robust Controllability: Example

where
w(t) ∈ W = {w : −1 ≤ w ≤ 1} , ∀t ≥ 0.

The set Pre(X ,W) is computed as follows

X = {x : Hx ≤ h}, U = {u : Huu ≤ hu},

to obtain

Pre(X ,W) =
{

x ∈ R2 : ∃u ∈ U s.t. Ax + Bu + w ∈ X , ∀ w ∈ W
}

=
{

x ∈ R2 : ∃u ∈ R s.t.
[
HA HB
0 Hu

](
x
u

)
≤
[
h −Hw

hu

]
,

∀ w ∈ W} .

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 2-17
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Robust Reachability/Controllability One-Step Robust Controllable Set

Robust Controllability: Example

The set Pre(X ,W) can be compactly written as

Pre(X ,W) =
{

x ∈ R2 : ∃u ∈ R s.t.
[
HA HB
0 Hu

](
x
u

)
≤
[

h̃
hu

]}
, (5)

where
h̃i = min

w∈W
(hi −Hiw).

A linear program is required to solve the above. In this example Hi and W

have simple expressions and we get h̃ =




9
9
9
9


.

This is called “Robustification”
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Robust Reachability/Controllability One-Step Robust Controllable Set

Robust Controllability: Example
The halfspaces in (5) define a polytope in the state-input space
∃ u is a projection operation and the set Pre(X ,W) ∩ X is




1 0
−1 0
1 −1.5
−1 1.5
0 1
0 −1




x ≤




9.3
9.3
9
9
10
10



.

x1

x 2

X

Pre(X , W)

-10 -5 0 5 10
-10

-5

0

5

10

Figure: Example ??: one-step robust controllable set Pre(X ,W) ∩ XRobust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 2-19
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Robust Reachability/Controllability One-Step Robust Controllable Set

Robust Controllability: constrained LTI systems

For constrained LTI sytems:

xk+1 = Axk + Buk + Gwk ,

(xk , uk) ∈ X × U
w ∈ W

the one–step controllable sets for a given S ⊆ X can be expressed as:

One–step Robust Controllable Sets, linear case

PreS,W := {(S 	GW)⊕ (−BU)} ◦A
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Robust Reachability/Controllability N-Steps Robust Controllable Set
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Robust Reachability/Controllability N-Steps Robust Controllable Set

N-Steps Robust Controllable Set
Definition (N -Step Robust Controllable Set KN (S,W))
For a given target set S ⊆ X , the N -step robust controllable set KN (S,W) is
defined recursively as:

Kj(S,W) , Pre(Kj−1(S,W),W) ∩ X , K0(S,W) = S, j ∈ {1, . . . ,N}.

SK1(S)K2(S)K3(S)K4(S)

Figure: One-step controllable sets Kj(S) for N=1,2,3,4. The sets are shifted along the
x-axis for a clearer visualization. Download code.
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Robust Reachability/Controllability Robust Control Invariance
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Robust Reachability/Controllability Robust Control Invariance

Robust Control Invariance
We define robust control invariant (RCI) sets as :

Robust Control Invariant Sets
A set R ⊆ X is a robust control invariant (RCI) set if for all x ∈ R there exists an
input u ∈ U such that g(x, u,w) ∈ R for all w ∈ W.

−2 −1 0 1 2
x1

−2

−1

0

1

2

x2

X
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Robust Reachability/Controllability Robust Control Invariance

Control Invariant Computation

Mapping Pre(·): Pre(X ) is the set of states robustly controllable into X .

∀w ∈ W

u ∈ UX X

Pre(X , W)

Repeat this until:
Fixed point of Pre(·, ·): Robust Control Invariant Set (RCI set).
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Robust Reachability/Controllability Robust Control Invariance

Control Invariant Computation

Mapping Pre(·): Pre(X ) is the set of states robustly controllable into X .

∀w ∈ W

u ∈ UX X

Pre(X , W) ∩ X

Repeat this until:
Fixed point of Pre(·, ·): Robust Control Invariant Set (RCI set).
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Robust Reachability/Controllability Robust Control Invariance

Control Invariant Computation

Mapping Pre(·): Pre(X ) is the set of states robustly controllable into X .

∀w ∈ W ∀w ∈ W

u ∈ U u ∈ UX XX−1

X−1Pre(X−1)

Repeat this until:
Fixed point of Pre(·, ·): Robust Control Invariant Set (RCI set).
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Robust Reachability/Controllability Robust Control Invariance

Control Invariant Computation

Mapping Pre(·): Pre(X ) is the set of states robustly controllable into X .

∀w ∈ W ∀w ∈ W

u ∈ U u ∈ U XXX−1

X−1Pre(X−1, W) ∩ X−1

Repeat this until:
Fixed point of Pre(·, ·): Robust Control Invariant Set (RCI set).
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Robust Reachability/Controllability Robust Control Invariance

Control Invariant Computation

Mapping Pre(·): Pre(X ) is the set of states robustly controllable into X .

∀w ∈ W ∀w ∈ W

u ∈ U u ∈ U XXX−1

X−1X−2

Repeat this until:
Fixed point of Pre(·, ·): Robust Control Invariant Set (RCI set).
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Robust Reachability/Controllability Robust Control Invariance

Control Invariant Computation

Mapping Pre(·): Pre(X ) is the set of states robustly controllable into X .

∀w ∈ W ∀w ∈ W

u ∈ U u ∈ U XXX−1

X−1X−2

Repeat this until:
Fixed point of Pre(·, ·): Robust Control Invariant Set (RCI set).
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Constrained Robust Control Design
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Constrained Robust Control Design Goals
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Constrained Robust Control Design Goals

Constrained Robust Control: Goals

Design control law u = π(x) such that the closed-loop system:
1 Satisfies constraints : xk ∈ X , uk ∈ U for all admissible disturbance

realizations
2 Convergence: to a terminal set Xf ,
3 Optimizes: “performance”
4 Maximizes the set of x0 for which Conditions 1-3
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Constrained Robust Control Design Ingredients
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Constrained Robust Control Design Ingredients

Robust CFTOC: Ingredients

consider robust optimal control over a finite time horizon N
(robust Constrained Finite Time Optimal Control - rCFTOC).
define, at time instance 0:

n-step controllable sets:

XN = Xf , Xj−1 = Pre(Xj ,W), j ∈ {N − 1, . . . , 0}

a control policy set Π0:

π0 := {π0(·), . . . , πN−1(·)} ,

where πj(·) are control laws, uk = πk(xk) where
U0 := {u0, . . . , uN−1},
a sequence of possible disturbances w0:

w0 := {w0, . . . ,wN−1} , wj ∈ W

the cost functional:
J0(x0,U0)
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Constrained Robust Control Design Ingredients

Defining a Cost to Minimize
Several common options: Given

JW(x0,U0,w0) :=
[

p(xN ) +
N−1∑

k=0
q(xk , uk)

]

Minimize the expected value (requires some assumption on the distribution)

J0(x0,U0) := E (JW(x0,U0,w0))

Minimize the variance (requires some assumption on the distribution)

J0(x0,U0) := Var (JW(x0,U0,w0))

Take the worst-case

J0(x0,U0) := max
w0∈WN

JW(x0,U0,w0)

Take the nominal case

J0(x0,U0) := JW(x0,U0, 0)
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Constrained Robust Control Design General Formulation
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Constrained Robust Control Design General Formulation

Robust CFTOC

The general rCFTOC problem is formally stated as follows:

J ∗0 (x0) = min
π0∈Π0

J0(x0, π0),

where:
Π0 is the set of admissible control policies:

Π0 := {{π0, . . . , πN−1} : πj(x) ⊆ U and g(x, πj(x),w) ∈ Xj+1,

∀(x,w) ∈ Xj ×W, j ∈ {0, . . . ,N − 1}}

In general, NP-hard
Several options for Π0 and J0(x0, π0) are used to trade off conservatism and
complexity
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Constrained Robust Control Design Open-Loop Predictions
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Constrained Robust Control Design Open-Loop Predictions

rCFTOC with open loop predictions and nominal cost

Π0: optimize over one sequence U0 of admissible control inputs
J0(x0, π0) : nominal

Robust Open-Loop MPC

minU0

∑N−1
i=0 x ′N PxN +

∑N
k=1 x ′kQxk + u′kRuk .

xi+1 = Axi + Bui
xi ∈ X 	AiW i

ui ∈ U
xN ∈ Xf 	ANWN

where Ai :=
[
A0 A1 . . . Ai]

We do nominal optimal control, but with tighter constraints on the states
and inputs.
if the nominal system satisfies the tighter constraints, then the uncertain
system will satisfy the real constraints.

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 3-28

476

476



Constrained Robust Control Design Open-Loop Predictions

rCFTOC with open loop predictions and nominal cost

Π0: optimize over one sequence U0 of admissible control inputs:
J0(x0, π0) : nominal

Robust Open-Loop MPC

minU0

∑N−1
i=0 x ′N PxN +

∑N
k=1 x ′kQxk + u′kRuk .

xi+1 = Axi + Bui
xi ∈ X 	AiW i

ui ∈ U
xN ∈ Xf 	ANWN

where Ai :=
[
A0 A1 . . . Ai]

All we’re doing is tightening the constraints on the nominal system
Two issues: open-loop MPC has a very small region of attraction! + Need
online optimization !
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Constrained Robust Control Design Open-Loop Predictions

Solution

J ∗0 (x(0)) = min
U0

[U ′0 x ′0]
[

H F′
F Y

]
[U0
′ x ′0]′

such that G0U0 ≤ w0 + E0x0

For a given x0 = x(t), U ∗0 can be found via a QP solver.
Example
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Constrained Robust Control Design Explicit Controller
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Constrained Robust Control Design Explicit Controller

Robust MPC through Explicit Solution

OFFLINE ONLINE

U∗0 (x(t)) = argmin x′N PxN +
N−1∑

k=0

x′kQxk + u′kRuk

subj. to x0 = x(t)
xk+1 = Axk + Buk ,

xk ∈ X 	AiW i , uk ∈ U ,

xN ∈ Xf 	ANWN Plant state 

Output 
Plant 

*( ( ))U x t
0

( )x t

( )y t

*( )U x
0

Optimization problem is parameterized by state
Pre-compute control law as function of state x
Control law is piecewise affine for linear system/constraints

Result: Online computation dramatically reduced and real-time
Tool: Parametric programming [5]
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

Parametrization of the Control Policies
rCFTOC problem is, in general, intractable:

J ∗0 (x0) = min
π0∈Π0

J0(x0, π0),

one “reasonable” parametrization of the predicted control inputs:

uk =
k∑

i=0
Lk,ixi + gi , k ∈ N[0,N−1]

compact notation:
U0 = Lx + g, where

U0 =
[
u′0, u′1, . . . , u′N−1

]′
, x = [x ′0, x ′1, . . . , x ′N ]′ ,

L =




L0,0 0 · · · 0
... . . . . . . ...

LN−1,0 · · · LN−1,N−1 0


 , g =




g0
...

gN−1
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

Parametrizations of the Control Policies

consider the set of admissible parameters:

PLg
0 (x0) = {L, g : xk ∈ X , uk ∈ U , k = 0, . . . ,N − 1, xN ∈ Xf

∀ wa
k ∈ Wa k = 0, . . . ,N − 1,

where xk+1 = Axk + Buk + Ewa
k , uk =

∑k
i=0 Lk,ixi + gi}

feasible set:
XLg

0 =
{

x0 ∈ Rn : PLg
0 (x0) 6= ∅

}

Bad news
For a given x0 ∈ XLg

0 the set PLg
0 (x0) is non–convex, in general.

therefore: finding (L,g) for a given x0 may be difficult
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

”Magic” Convex Parametrization
consider parametrization of the predicted control in past disturbances:

uk =
k−1∑

i=0
Mk,iwi + vi , k ∈ N[0,N−1]

since we implicitly assumed the full state information:

wk = xk+1 −Axk − Buk , k ∈ N0,N−1.

compact notation:
U0 = Mw + v, where

w =
[
w′0 w′1 . . . w′N−1

]′
,

M =




0 · · · · · · 0
M1,0 0 · · · 0

... . . . . . . ...
MN−1,0 · · · MN−1,N−2 0


 , v =




v0
...
...

vN−1



.
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

Convex Parametrization of Control Policies

also define:

PMv
0 (x0) = {M , v : xk ∈ X , uk ∈ U , k = 0, . . . ,N − 1, xN ∈ Xf

∀ wk ∈ Wa k = 0, . . . ,N − 1, where xk+1 = Axk + Buk + Ewk ,

uk =
∑k−1

i=0 Mk,iwi + vi}

XMv
0 =

{
x0 ∈ Rn : PMv

0 (x0) 6= ∅
}

How is that different form the Lg–parametrization ?
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

Convex Parametrization of Control Policies

well, it isn’t in the sense that

X Lg
0 = X Mv

0

except, for a given x0 ∈ XMv
0 :

PMv
0 (x0) is CONVEX.

therefore: for a given x0 ∈ XMv
0 the computation of (M,v) reduces to a

convex optimization problem
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

Convex Parametrization of Control Policies

well, it isn’t in the sense that

X Lg
0 = X Mv

0

except, for a given x0 ∈ XMv
0 :

PMv
0 (x0) is CONVEX.

therefore: for a given x0 ∈ XMv
0 the computation of (M,v) reduces to a

convex optimization problem
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

Convex Parametrization of Control Policies

well, it isn’t in the sense that

X Lg
0 = X Mv

0

except, for a given x0 ∈ XMv
0 :

PMv
0 (x0) is CONVEX.

therefore: for a given x0 ∈ XMv
0 the computation of (M,v) reduces to a

convex optimization problem
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Constrained Robust Control Design Closed Loop Predictions: Parametrization of the Control Policies

Historical Notes
Or who thought of it first?

essentially Youla parametrization for discrete–time linear systems,
apparently, the idea appears in the work of Gartska & Wets in 1974. in the
context of stochastic optimization [6],
recently, it re-appeared in robust optimization work by Guslitzer and Ben-Tal
(2002 and 2004) [10, 2],
in the context of robust MPC: van Hessem & Bosgra 2002, Löfberg 2003,
Goulart & Kerrigan 2006 [13, 12, 9]
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Robust Model Predictive Control
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Robust Model Predictive Control

Model Predictive Control

P(s)%

Objectives Model Constraints

Plant
Optimizer




Measurements 

Output  Input  Reference  

Objectives Model Constraints

PlanDo

PlanDo

PlanDo
Time

Receding horizon strategy introduces feedback.
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Robust Model Predictive Control

Robust RHC Synthesis: Main Challenges

Computational issues
on–line evaluation of the robust MPC law through optimization in space of
feedback policies in general intractable, or computationally demanding,
explicit computation of optimal control policy limited to few classes of
systems/problems and small dimensions of the state space,

Stability and feasibility
how ensures stability of the robust MPC controller?
how ensures persistent feasibility of the robust MPC controller?

Robust MPC – A Short Introduction C. Jones, M. Baric, M. Morari, F. Borrelli - June 2014 4-39

492

492



Robust Model Predictive Control

Robust RHC - Stability and Feasibility (for completness only)

we can stabilize the system to a set O ⊆ Xf (for the concept of set
stabilization see [11]),
Result: limk→∞ d(x(k),O) = 0 for all x ∈ X0, if

(A0) There exist constants c1, c2, c3, c4 > 0 such that

c1d(x,O) ≤ p(x) ≤ c2d(x,O) ∀x ∈ X0 (6)

c3d(x,O) ≤ q(x, u) ≤ c4d(x,O) ∀(x, u) ∈ X0 × U (7)
(A1) The sets X , Xf , U , W are compact.
(A2) Xf and O are robust control invariants, O ⊆ Xf ⊆ X .
(A3) J p(x) ≤ 0 ∀x ∈ Xf where

J p(x) = minu∈U maxw p(x+)− p(x) + q(x, u)

subj. to
{

w ∈ W
x+ = A(wp)x + B(wp)u + Ew

(8)
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Robust Model Predictive Control

Topic not Discussed worth Listing

Stochastic MPC
Closed-Loop vs Open-Loop Predictions
Interpretation as games
References in [5]
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Robust Model Predictive Control
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Why decentralization?

We have no choice

I complexity

I delays

I intermittency

By design

I efficiency

I robustness

I scalability

2
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I Some decentralized problems are as easy to solve
as their centralized counterparts!

I The optimal controller can be explicitly computed,
and there is a nice separation structure.
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Sparsity and delays

1

3 4 5

2

7 8

Performance under information constraints

I sparsity: some links are missing

I delays: transmission is not instantaneous
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Outline

I Quadratic invariance and convexification

I The two-player problem

I More general problems
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A useful abstraction

P11 P12

P21 P22

K
u

w

y

z

I K belongs to the constraint set S. e.g.[
u1
u2

]
=

[
K11 0
K21 K22

] [
y1
y2

]
I We care about the map w → z.

z =
(
P11 + P12K

(
I − P22K

)−1P21)w
6
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General optimization form (centralized)

minimize
∥∥P11 + P12K(I − P22K)−1P21∥∥

subject to K stabilizes P

Simple case: P22 is stable. Define Q = K(I − P22K)−1.

Fact: K stabilizes P if and only if Q is stable (Youla).

minimize
∥∥P11 + P12QP21∥∥

subject to Q is stable

This is a convex problem!

7
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General optimization form (decentralized)

minimize
∥∥P11 + P12K(I − P22K)−1P21∥∥

subject to K stabilizes P
K ∈ S

Quadratic Invariance (Rotkowitz/Lall ’06)
The following are equivalent.

1) KP22K ∈ S for all K ∈ S
2) K

(
I − P22K

)−1 ∈ S for all K ∈ S

minimize
∥∥P11 + P12QP21∥∥

subject to Q is stable

Q ∈ S
8
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Example

G1 G2 G3 G4

K1 K2 K3 K4

Dp

Dp

Dp

Dp

Dp

Dp

Dt

Dt

Dt

Dt

Dt

Dt

u1y1 u2y2 u3y3 u4y4

Quadratic invariance if:

1) no delays and plant/controller have same architecture.

2) controller communication is faster than plant interaction
(Dt < Dp).
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Outline

I Quadratic invariance and convexification

I The two-player problem

I More results

10

506

506



Two-player state-feedback
[
x1
x2

]
+

=

[
A11 0
A21 A22

] [
x1
x2

]
+

[
B11 0
B21 B22

] [
u1
u2

]
+ w

with a standard infinite-horizon LQR cost

I u1[k] only measures x1[0 : k]

I u2[k] measures both x1[0 : k] and x2[0 : k]

Centralized:

u1 = K11x1 +K12x2

u2 = K21x1 +K22x2

First guess:

u1 = K11x1

u2 = K21x1 +K22x2

Second guess:

η = E(x2 |x1)
u1 = K11x1 +K12η

u2 = K21x1 +K22x2

None of these methods work!

11
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Two-player state-feedback
[
x1
x2

]
+

=

[
A11 0
A21 A22

] [
x1
x2

]
+

[
B11 0
B21 B22

] [
u1
u2

]
+ w

with a standard infinite-horizon LQR cost

I u1[k] only measures x1[0 : k]

I u2[k] measures both x1[0 : k] and x2[0 : k]

J. Swigart and S. Lall, ACC’10

Optimal Controller:

I Estimator: η = E(x2 |x1)

I Controller:
u1 = K11x1 +K12η

u2 = K21x1 +K22η + J(x2 − η)

K is the LQR gain u→ x

J is the LQR gain u2 → x2

12
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Proof (column decomposition)

1) Youla parameterization is only one-sided

min
Q∈S

∥∥∥∥P11 + P12 [Q11 0
Q21 Q22

]∥∥∥∥2
2) Separate by columns

min
Q∈S

∥∥∥∥P11 [I0
]
+ P12

[
Q11

Q21

]∥∥∥∥2 + ∥∥∥∥P11 [0I
]
+ P12

[
0
I

]
Q22

∥∥∥∥2
3) Solve separate centralized problems
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Two-player output-feedback
[
x1
x2

]
+

=

[
A11 0
A21 A22

] [
x1
x2

]
+

[
B11 0
B21 B22

] [
u1
u2

]
+ w[

y1
y2

]
=

[
C11 0
C21 C22

] [
x1
x2

]
+ v

I u1[k] only measures y1[0 : k]

I u2[k] measures both y1[0 : k] and y2[0 : k]

Optimal Controller:

I Estimator:
ζ = E(x | y1)
ξ = E(x | y1, y2)

I Controller:
u1 = K11ζ1 +K12ζ2

u2 = K21ζ1 +K22ζ2 + J1(ξ1 − ζ1) + J2(ξ2 − ζ2)
14
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Two-player output-feedback

Centralized estimate update (Kalman filter)

x̂+ = Ax̂+Bu− L(y − Cx̂)
u = Kx̂

x̂ = E
(
x | Y1

)
L,K are found by solving separate AREs

Two-player estimate update

ζ+ = Aζ +Bû− L̂(y − Cζ)
û = Kζ

ζ = E
(
x | Y1

)
ξ+ = Aξ +Bu− L(y − Cξ)
u = Kζ + K̂(ξ − ζ)

ξ = E
(
x | Y1,2

)
L,K are the same as before, L̂, K̂ are computed jointly (easily).
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Optimal decentralized cost

J 2
opt =

∥∥∥∥∥
[

A+BK B1

C1 +D12K 0

]∥∥∥∥∥
2∥∥∥∥∥

[
A+BK B1

C1 +D12K 0

]∥∥∥∥∥
2

centralized cost

+

∥∥∥∥∥
[
A+ LC B1 + LD21

D12K 0

]∥∥∥∥∥
2

+

∥∥∥∥∥
[
A+ LC B1 + LD21

D12K 0

]∥∥∥∥∥
2

+

∥∥∥∥∥
[
A+BK̂ + L̂C (L̂− L)D21

D12(K̂ −K) 0

]∥∥∥∥∥
2

+

∥∥∥∥∥
[
A+BK̂ + L̂C (L̂− L)D21

D12(K̂ −K) 0

]∥∥∥∥∥
2

cost of decentralization
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Proof (person-by-person approach)

1) Youla parameterization is two-sided

min
Q∈S

∥∥∥∥P11 + P12 [Q11 0
Q21 Q22

]
P21
∥∥∥∥2

2) Fix Q11, solve remaining centralized problem

min
Q21,Q22∈S

∥∥∥(P11 + P12 [Q11 0
0 0

]
P21
)
+
(
P12

[
0
I

])
[Q21 Q22]P21

∥∥∥2
3) Repeat with Q22 fixed instead

4) Enforce consistency
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Outline

I Quadratic invariance and convexification

I The two-player problem

I More results
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More results

Sparsity structures

I State-feedback for arbitrary graphs (Shah/Parrilo and Swigart/Lall)

I Two-player Finite-horizon output feedback (Lessard/Nayyar)

I Output-feedback for broadcast structures (Lessard)

I Output-feedback for chain structures (Tanaka/Parrilo)

Delay structures

I state-feedback with delays only (Lamperski/Doyle)

I output-feedback with delays only (Lamperski/Doyle)

I state-feedback with delays and sparsity (Lamperski/Lessard)

Other cost functions

I Two-player H∞ output-feedback via entropy minimization (Lessard)

I Chain structure H∞ output-feedback via LMI approach (Scherer)
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Meta-theorem 1
For decentralized control with nested information,

u =

(
centralized control based
on common information

)
+

(
correction

terms

)

Meta-theorem 2
For decentralized control with nested information,
there is an estimation-control separation structure in
the person-by-person sense.

20

516

516



I Some decentralized problems are as easy to solve
as their centralized counterparts!

I The optimal controller can be explicitly computed,
and there is a nice separation structure.
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Looking ahead

Shortcomings

I The real world isn’t: linear, quadratically invariant, etc.

I Can’t estimate the global state in practice.

What we can do

I Inspire new control algorithms (e.g. EKF)

I Inform better network design

I Inspire tighter relaxation techniques

I Efficiently compute performance bounds

Example: block diagonal plant, with control structure× 0 0
× × 0
× × ×

 ≤
× 0 0
× × 0
0 × ×

 ≤ min


× 0 0
0 × 0
0 × ×

 ,

× 0 0
× × 0
0 0 ×
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Thank you!
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