Control for DUMIES

Maarten Steinbuch
Dept. Mechanical Engineering
Control Systems Technology Group
TU/e

Motion Systems

- Introduction
- Timedomain tuning
- Frequency domain & stability
- Filters
- Feedforward
- Servo-oriented design of mechanical systems

2. Time Domain Tuning

Mechanical solution:

Forcespring-damper $F = -k \cdot x - d \cdot \dot{x}$

$$F = -k \cdot x - d \cdot \dot{x}$$

Eigenfrequency:
$$f = \frac{1}{2\pi} \sqrt{\frac{k}{M}}$$

Servo analogon:

Servo Force
$$F_s = -k_p \cdot x - k_v \cdot \dot{x}$$

Eigenfrequency:

$$f = \frac{1}{2\pi} \sqrt{\frac{k_p}{M}}$$

 k_p : servo stiffness

 k_{y} : servo damping

Example:

Slide: mass = 5 kg Required accuracy 10 μ m at all times Disturbance (f.e. friction) = 3 N

- 1. Required servo stiffness?
- 2. Eigenfrequency?

How to move to / follow a setpoint:

 K_p/k_v -controller or PD-controller

Concluding remarks time domain tuning

A control system, consisting of only a single mass m and a k_p/k_v controller (as depicted below), is *always* stable. k_p will act as a spring; k_v will act as a damper

As a result of this: when a control system is unstable, it cannot be a pure single mass + k_p/k_v controller (With positive parameters m, k_p and k_v)

Setpoints:

What should x_s look like as a function of time, when moving the mass? (first order, second order, third order,....?)

Apply a force *F* (step profile):

$$F(t) = M\ddot{x}(t)$$

$$\downarrow$$

x(t) is second order, when F constant

Second order profile requires following information:

- maximum acceleration
- maximum velocity
- travel distance

Example

 $Pos = 2\pi \approx 6.3 rad$ $Vel_{\text{max}} = 20\pi \approx 63 rad / \sec$ $Acc_{\text{max}} = 500\pi \approx 1.6 e3 rad / \sec^2$

Control for Dummies October 25, 2001, Philips Research

3 Frequency domain

Time domain:

Monday and Thursday at 22:10

Frequency domain: twice a week

phase

going from Time-domain to the Frequency-domain

finding a solution of the equation of motion:

$$F = M x$$

choose input:

$$F = \hat{F}\sin(\omega t)$$

then:

$$x = \hat{x} \sin(\omega t + \varphi)$$
 $\hat{x} = ?; \varphi = ?$

solution:

$$x(t) = -\frac{\hat{F}}{M\omega^2}\sin(\omega t) + c_1 t + c_2$$

$$H = \frac{x}{F} = -\frac{1}{M\omega^2}$$

$$\log(|H|) = \log \frac{1}{M} - 2\log \omega$$

$$|H| = \frac{\hat{x}}{\hat{F}} = \frac{1}{M\omega^2}$$

$$\angle H = \omega = -180^{\circ}$$

measurement mechanics stage

Derivation of transfer function

- make a model of the dynamics: differential equations
- substitute s=d./dt
- rearrange the equations and get the transfer function e.g. H(s)
- for sinusoids make a 'Bode' plot using $s=j\omega$

Transfer function:

$$H(s) = \frac{x(s)}{F(s)} = \frac{1}{Ms^2 + ds + k}$$

consider sinusoidal signals ('Euler notation'):

$$x(t) = \hat{x}(\cos \omega t + j \sin \omega t) = \hat{x}e^{j\omega t}$$

$$\dot{x}(t) = \omega \hat{x}(-\sin \omega t + j\cos \omega t) = j\omega \hat{x}e^{j\omega t}$$

apparently: $s = j\omega$ for sinusoidal signals

Frequency Response Function:

$$s \rightarrow j\omega$$

$$H(j\omega) = \frac{1}{-M\omega^2 + jd\omega + k}$$

$$F = k_p e + k_v \dot{e}$$

$$F(s) = (k_p + k_v s)e(s)$$

transfer function:

$$C(s) = \frac{F}{e}(s) = (k_p + k_v s)$$

frequency response:

$$C = k_p + jk_v \omega$$

Amplitude:
$$|C| = \sqrt{k_p^2 + k_v^2 \omega^2}$$

$$\omega \to 0 \quad \Rightarrow \quad |C| \to k_p$$

$$\angle C \to 0^{\circ}$$

$$\omega \to \infty \quad \Rightarrow \quad |C| \to k_{\nu} \omega$$

$$\angle C \to 90^{\circ}$$

$$\omega \to \infty$$
 $\log(|C|) = \log k_v + \log \omega$

break point:

$$\log k_p = \log k_v + \log \omega$$

$$\omega = \frac{k_p}{k_v}$$

Bode plot of the PD-controller:

Block manipulation

$$H_c = \frac{x}{x_s} = \frac{CH}{1 + CH}$$

Four important transfer functions

1. open loop:

$$H_o(s) = C(s)H(s)$$

$$H(s)$$

$$H(s)$$

$$H(s)$$

2. closed loop:

$$H_c(s) = \frac{x}{x_s}(s) = \frac{C(s)H(s)}{1 + C(s)H(s)}$$

3. sensitivity:

$$S(s) = \frac{e}{x_s}(s) = \frac{1}{1 + C(s)H(s)}$$

4. process sensitivity:

$$H_{ps}(s) = \frac{x}{F_d}(s) = \frac{H(s)}{1 + C(s)H(s)}$$

Derivation of closed-loop transfer functions:

- start with the output variable of interest
- go back in the loop, against the signal flow
- write down the relations, using intermediate variables
- stop when arrived at the relevant input variable
- eliminate the intermediate variables

October 25, 2001, Philips Research

bandwidth: 0 dB crossing open loop (cross-over frequency)

The Nyquist curve

Stability:

The **open-loop** FRF CH($j\omega$) should have the (-1,0) point at left side

4. Filters

- •Integral action
- •Differential action
- •Low-pass
- •High-pass
- •Band-pass
- •Notch ('sper') filter

PeeDee

PeeEye

Integral action:

 τ_I integral time constant $\tau_I = 1/k_i$

Differential action

$$H = ks = \frac{u}{\varepsilon}; \quad s = j\omega; \quad \left| \frac{u}{\varepsilon} \right| = k\omega$$

"tamme" differentiator $= \frac{ks}{\tau_d s + 1} + 90^\circ$

"lead" filter

$$H = \frac{u}{\varepsilon} = \frac{1 + \tau_1 s}{1 + \tau_2 s} = \frac{1 + \tau_d s}{1 + \frac{\tau_d}{\gamma} s}$$

$$\gamma > 1$$

$$1$$

$$\omega_c = \sqrt{\omega_1 \omega_2} = \sqrt{\frac{1}{\tau_1 \tau_2}}$$

$$\omega_c = \sqrt{\omega_1 \omega_2} = \sqrt{\frac{1}{\tau_1 \tau_2}}$$

$$\omega_c = \sqrt{\omega_1 \omega_2} = \sqrt{\frac{1}{\tau_1 \tau_2}}$$

$$\omega_1 = \frac{1}{\tau_1} \qquad \omega_2 = \frac{1}{\tau_2}$$

2nd order filter

General 2nd order filters

<u>General:</u> ω_1 ≠ ω_2

General:
$$\omega_1 \neq \omega_2$$

$$H = \frac{u}{\varepsilon} = \frac{\frac{s^2}{\omega_1^2} + 2\beta_1 \frac{s}{\omega_1} + 1}{\frac{s^2}{\omega_2^2} + 2\beta_2 \frac{s}{\omega_2} + 1}$$

$$\left(\frac{\omega_2}{\omega_1}\right)^2$$

"Notch"-filter: $\omega_1 = \omega_2$

W.B.E.

Loop shaping procedure

- 1. stabilize the plant:
 add lead/lag with zero = bandwidth/3 and pole =
 bandwidth*3, adjust gain to get stability; or add
 a pure PD with break point at the bandwidth
- 2. *add low-pass filter:* choose poles = bandwidth*6
- 3. add notch if necessary, or apply any other kind of first or second order filter and shape the loop
- 4. *add integral action:* choose zero = bandwidth/5
- 5. *increase bandwidth:* increase gain and zero/poles of integral action, lead/lag and other filters

during steps 2-5: check all relevant transfer functions, and relate to disturbance spectrum

Implementation issues

1. sampling = delay: linear phase lag

for example: sampling at 4 kHz gives phase lag due to Zero-Order-Hold of:

- 2. Delay due to calculations
- 3. Quantization (sensors, digital representation)

5 Feedforward design

Why feedforward?

• Consider the simple motion system

- Control problem: track setpoint X_s
- Is this possible with a PD-controller?

Analysis (IV)

Feedforward based on inverse model

Example: m=5 [kg], b=1 [Ns/m], 2nd degree setpoint

Example: tracking error, no feedforward

Example: tracking error, with feedforward

feedforward structure

3rd degree setpoint trajectory

6. Servo-oriented design of mechanical systems

Example of measurement: mechanical system (force to position)

modelling — > behaviour

understanding the dynamical

Three Types of Dynamic Effects

- Actuator flexibility
- Guidance flexibility
- Limited mass and stiffness of frame

1. Actuator flexibility

2. Guidance flexibility

3. Limited mass and stiffness of frame

Positioning the load M_2 (while using x_1 for feedback):

Rule of thumb:

Optimal bandwidth with 0 dB crossing of open loop between the antiresonance and resonance frequency of the mechanical system.

Concluding Remarks

- bit of control into mechanical design
- bit of mechanics into control design
- same language ('mechatronics')