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• Introduction
• Timedomain tuning
• Frequency domain & stability 
• Filters
• Feedforward 
• Servo-oriented design of mechanical systems
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     2. Time Domain Tuning
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Servo analogon:
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Example:
x

Mass
M

Disturbance Fd

F
s

Slide: mass = 5 kg
Required accuracy 10 µm at all times
Disturbance (f.e. friction) = 3 N

1. Required servo stiffness?
2. Eigenfrequency?
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h  or  xs
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How to move  to / follow a setpoint:

)()(  :Controller

     

xxkxxkF svsps && −+−=
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xs
x

M
kv

kp

Concluding remarks time domain tuning

A control system, consisting of only a single mass m and a
kp/kv controller (as depicted below), is always stable.
kp will act as a spring; kv will act as a damper

As a result of this: when a control system is unstable, it
cannot be a pure single mass + kp/kv controller
(With positive parameters m, kp and kv)
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Setpoints:

xs
x

What should xs look like as a function of time, when moving the mass?

(first order, second order, third order,….?)
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x

F

Apply a force F (step profile):

⇓

=

         

)()( txMtF &&

x(t) is second order, when F constant

Second order profile requires following information:

- maximum acceleration
- maximum velocity
- travel distance

M
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Example 
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Time domain: 
Monday and Thursday at 22:10

Frequency domain:
twice a week 

3  Frequency domain
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weak spring M = 5 kg
(f = 2.5 Hz)

going from Time-domain to the Frequency-domain
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••

= xMF
choose input:

F F t=
∧

sin( )ω
then:

x x t= +
∧

sin( )ω ϕ ??; ==
∧

ϕx
solution:

x t F
M t c t c( ) sin( )= − + +

∧

ω ω
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H x
F M
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( )log log logH M= −1 2 ω
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finding a solution of the equation of motion:
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measurement mechanics stage
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Derivation of transfer function

-  make a model of the dynamics: differential equations

-  substitute s=d./dt

-  rearrange the equations and get the transfer function e.g. H(s)

-  for sinusoids make a ‘Bode’ plot using s=jω
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Transfer function:

kdsMssF
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consider sinusoidal signals ('Euler notation'):

tjextjtxtx ωωω ˆ)sin(cosˆ)( =+=

tjexjtjtxtx ωωωωω ˆ)cossin(ˆ)( =+−=&

apparently: s j= ω   for sinusoidal signals

Frequency Response Function:

s j→ ω

H j
M jd k

( )ω
ω ω

=
− + +

1
2
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Fe
k p +  kv

d
dt

ekekF vp &+=

F s k k s e sp v( ) ( ) ( )= +

transfer function:

C s F
e

s k k sp v( ) ( ) ( )= = +

frequency response:

C k jkp v= + ω
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Amplitude: 
222 ωvp kkC +=
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Bode plot of the PD-controller:
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kp = 1500 N/m;  kv = 20 Ns/m
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Block manipulation
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Four important transfer functions

1. open loop:
H s C s H so ( ) ( ) ( )=

2. closed loop:

)()(1
)()()()(
sHsC

sHsCs
x
xsH
s

c +
==

3. sensitivity:
S s e

x
s

C s H ss

( ) ( )
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4. process sensitivity:
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F
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+
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H(s)
exs +

- Fs

x
C(s)

Fd

+
+

Derivation of closed-loop transfer functions:
• start with the output variable of interest
• go back in the loop, against the signal flow
• write down the relations, using intermediate variables
• stop when arrived at the relevant input variable
• eliminate the intermediate variables
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Experimental results:

stage servo
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bandwidth:  0 dB crossing open loop
(cross-over frequency)
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The Nyquist curve
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Stability:
The open-loop FRF CH(jω) should have the (-1,0) point at left side
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 4. Filters

•Integral action
•Differential action
•Low-pass
•High-pass
•Band-pass
•Notch (‘sper’) filter

PeeDee
PeeEye

Mimo
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Integral action :

X(t) Y(t)
siτ

1

τI integral time constant τI =1/ki

-1

ω=2πf0°

-90°
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2nd order filter
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“Notch”-filter :ω1= ω2
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ampl.

fase
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W.B.E.
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Loop shaping procedure

1. stabilize the plant:
add lead/lag with zero = bandwidth/3 and pole =
bandwidth*3, adjust gain to get stability; or add
a pure PD with break point at the bandwidth

2. add low-pass filter:
   choose poles = bandwidth*6
3. add notch if necessary, or apply any other kind

of first or second order filter and shape the loop
4. add integral action:
   choose zero = bandwidth/5
5. increase bandwidth:

increase gain and zero/poles of integral action,
lead/lag and other filters

during steps 2-5: check all relevant transfer
functions, and relate to disturbance spectrum
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Implementation issues

1. sampling = delay: linear phase lag

for example: sampling at 4 kHz gives phase lag 
due to Zero-Order-Hold of:

180º @ 4 kHz
18º @ 400 Hz
9º @ 200 Hz

2. Delay due to calculations
3. Quantization (sensors, digital representation)
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5 Feedforward design
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Why feedforward?

• Consider the simple motion system

m F

x

1.80

1

t   [s]0

Setpoint

• Control problem: track setpoint

• Is this possible with a PD-controller?
sx

sx
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Analysis (IV)

m = 5 [kg]

     = 260 [Ns/m]vK

     = 6500 [N/m]pK

     = 65000 [N/m]pK
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sx
2ms

1sKK vp +

2ms

Feedforward based on inverse model

x
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Example: m=5 [kg], b=1 [Ns/m], 2nd degree setpoint
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Example: tracking error, no feedforward
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viscous damping effect
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Example: tracking error, with feedforward

       = 0.9,         = 0faKfvK

       = 0.9,         = 4.5faKfvK
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sx
H(s)

fvK

x

faK

C(s)

sx&

sx&&

)sxsign( &
fcK

feedforward structure
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3rd degree setpoint trajectory
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6. Servo-oriented design of
mechanical systems
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Example of measurement:
mechanical system (force to position)

modelling                  understanding the dynamical
behaviour
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Three Types of Dynamic Effects

- Actuator flexibility

- Guidance flexibility

- Limited mass and stiffness of frame
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1. Actuator flexibility

k

x

d

SensorMotor
F
s
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2. Guidance flexibility

k

x

F
s

M,
J
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3. Limited mass and stiffness of frame

x

Fs
Motor

Frame
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M2M1

Positioning the load M2 (while using x1 for feedback):

Rule of thumb:
Optimal bandwidth with 0 dB crossing of open loop between the
antiresonance and resonance frequency of the mechanical system.
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• bit of control into mechanical design

• bit of mechanics into control design

• same language (‘mechatronics’)

Concluding Remarks
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