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h i s t o r i c a l  P E RS  P E CTI   V E S   «

In 1868, James C. Maxwell published a paper,  “On Gov-
ernors,” in Proceedings of the Royal Society of London [1]. 
This paper was overlooked for a long time because it was 

deemed by many to be difficult to comprehend. However, 
since Norbert Wiener drew attention to this paper in 1948, 
it has been recognized as the first significant paper on con-
trol theory; as a result, Maxwell has been regarded as the 
“father of control theory” [2]. The purpose of this article is 
to provide historical information on the origin of stability 
analysis in Maxwell’s paper and to rederive his key equa-
tions using illustrative figures to improve the readability 
of that paper.

The origin of control dates to a water clock (outflow 
type), shown in Figure 1(a), in Egypt around 1500 BC. An 
improved Greek water clock (inflow type) measured time 
through a gradual flow of water, as shown in Figure 1(b), 
in which a constant flow rate was obtained from the over-
flowing water. However, this clock had an obvious disad-
vantage in that a large quantity of water was wasted by this 
overflow, which is this is the reason the clock was named 
clepsydra (“water thief” in Greek).

To resolve this problem, Greek 
technician Ctesibius invented a wa-
ter clock with a float valve, as shown 
in Figure 2, around 300 BC [3]. In 
modern control terminology, the 
clepsydra in Figure 1 was an open-
loop control system, whereas the 
water clock of Ctesibius was one of 
the first feedback control systems in-
vented by humans. Ancient Chinese 
water clocks, such as the one built by 
Su Sung, and the Korean water clock 
Jagyeongnu (meaning “self-striking 
water clock,” see Figure 3) built by 
Jang Youngsil in 1434, were based on 
a similar control principle (that is, the 
concept of open-loop control) to that 
of the clepsydra in Figure 1(b) [4]–[6]. 
One of the first significant feedback 
control systems in modern Europe 

was the flyball governor, shown in Figure 4, which was 
invented in 1788 by the Scottish engineer James Watt for 
the speed regulation of a steam engine [7]–[9]. The amount 
of steam (the controller output) supplied to the engine (the 
controlled plant) was adjusted according to the difference 
(the error signal) between the desired and actual speeds. If 
the actual speed (the controlled variable) increases beyond 
the desired value (the setpoint) owing to variations in the 
driving power or resistance (the disturbances), then the in-
crease in the centrifugal force of the flyball governor causes 
a contraction of the aperture of the steam valve through a 
link mechanism. This results in the supply of less steam, 
and the speed of the steam engine decreases until the de-
sired value is attained. On the other hand, if the engine 
speed drops below the desired value, then the decrease 
in the centrifugal force of the governor causes the steam 
valve to open wider, supplying more steam, and the engine 
speed increases until the desired value is attained [8].

The early flyball governor had the drawbacks of 1) an 
offset (steady-state error) resulting from proportional 
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Figure 1 (a) An Egyptian water clock, invented around 1500 BC. This water clock (outflow 
type) was discovered in Karnak, Egypt (Museum of Cairo). (b) An improved Greek water 
clock (inflow type). The clepsydra measured time by the (gradual) flow of water, in which a 
constant flow rate at E was obtained by overflowing water at D.
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control and 2) low power for actuating the control valve. 
To overcome these drawbacks, the brothers Werner and 
C. William Siemens (1846), Charles Porter (1858), Thomas 
Pickering (1862), and William Hartnel (1872) each invented 
devices for adding integral control action and for improv-
ing actuation power [7]. The Siemens brothers substituted 
integral action for proportional action and hence improved 
an offset inherent in the Watt’s governor. Charles Porter 
developed a loaded governor with two small flyballs that 
could be run at much higher speeds and hence could gener-
ate greater forces to operate an actuator. Thomas Pickering 
and William Hartnell invented spring-loaded governors 
that could be operated at higher speeds and were smaller 
than the previous governors [7]. The problem of low power 
intrinsically originates from the one-body design of the 

sensor and actuator. The float valve 
of Ctesibius’s water clock and the 
flyball of the Watt’s governor act as 
an actuator as well as a sensor. Later, 
this problem was solved by having 
distinct actuators and sensors in the 
feedback control system.

It was reported that about 75,000 
governors were used in Britain dur-
ing the Industrial Revolution (around 
1868). At that time, the governor sys-
tem was discovered to be plagued 
by a hunting, or oscillation problem, 
and research to address this prob-
lem was started at the University of 
Cambridge in England [7]. The next 
section uses illustrative figures and 
comprehensible explanations to re-
visit Maxwell’s concept of stability 
analysis using a differential equa-
tion. Subsequently, further develop-

ments in the area of stability analysis are presented from  
my perspective.

Stability Analysis by Maxwell
Maxwell’s interest in governors reflected, to some extent, a 
contemporary vogue. At the height of the Industrial Revo-
lution, the mechanism for controlling the speed of every 
steam engine was plagued by problems of instability and 
inaccuracy that could apparently not be overcome by ei-
ther theoretical or practical approaches. In those days, 
various governors had been newly invented. However, 
Maxwell’s interest in governors was unrelated to their 
practical utility and instead originated from the desire to 
address the issue of their stability (see “Maxwell’s Life” for 
further details).
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Figure 3 (a) The Korean water clock Jagyeongnu built in 1434. The Jagyeongnu shown in this figure was reconstructed in 2007 and is 
presently exhibited at the National Palace Museum of Korea in Seoul. (b) The Jagyeongnu was used to keep the standard time in the 
Joseon Dynasty. It marked the hour automatically with the sounds of a bell, gong, and drum.
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Figure 2 A water clock invented by Greek technician Ctesibius around 300 BC. Ctesibius’s 
water clock is a feedback control system since the float valve works as a sensor and actua-
tor. (a) A schematic diagram showing the principle of the water clock and (b) Tower of the 
Winds, inside which Ctesibius’ water clock was installed.
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Maxwell described stability as [1] “the motion of a ma-
chine with its governor consists in general of a uniform mo-
tion, combined with a disturbance that may be expressed as 
the sum of several component motions. These components 
may be of four different kinds: the disturbance may (i) contin-
ually increase, (ii) continually diminish, (iii) be an oscillation 
of continually increasing amplitude, and (iv) be an oscillation 
of continually decreasing amplitude. The second and fourth 
kinds are admissible in a good governor, and are mathemati-
cally equivalent to the condition that all the possible roots 
[that is, real roots in modern terminology], and all the pos-
sible parts [that is, real parts] of the impossible roots [that is, 
complex roots] of a characteristic equation shall be negative.’’ 

Maxwell classified governors into two groups: mod-
erators and genuine governors. His description of the dif-
ference between moderators and genuine governors (in 
modern terminology) is that moderators are controllers 
with only proportional control action, whereas genuine gov-
ernors are controllers with both proportional and integral 
control actions.

Maxwell considered three kinds of governors. In the first 
kind, the centrifugal piece is at a constant distance from the 
axis of rotation; examples of this kind of governor are a fric-
tion governor [10], as shown in Figure 5, and the governor 
of H.C. Fleeming Jenkin (1863), shown in Figures 6 and 7.  
Figure 7 is a redrawing of the schematic from [7, p. 65].  
In the second kind of governor, the centrifugal piece is free 
to move from the axis of rotation but is balanced by a cen-
trifugal force and the force of gravity (or by the spring force, 

too, in some cases). Examples of this kind of governor are 
Watt’s governor, as shown in Figure 4, and Léon Foucault’s 
governor (1862) [11], as shown in Figure 8. In the third kind 
of governor, a liquid is pumped up and removed over the 
sides of a rotating cup, for example, the liquid governor of 
C. William Siemens (1866) [10], [12], [13], as shown in Figure 9.

After describing the three kinds of governors, Maxwell 
presented differential equations of motion for each of them 
without providing any detailed explanations. Maxwell ap-
proached the topic of the instability of governors by solving 
the differential equations of motion, and, for the first time in 
the history of control, partially succeeded in a stability analy-
sis. The first mathematical investigation of governor instabil-
ity was performed in 1840 by Prof. George Biddell Airy of the 
University of Cambridge, who also attempted to understand 
governor instability through differential equations of motion 
but failed, owing to the insolvability of the nonlinear differ-
ential equation of the form /( ) ( / )sin cosk g a D22 2i i i+ - =o  
that he derived [14]. Maxwell was able to obtain results by 
linearizing the nonlinear equations.

For Jenkin’s governor, Maxwell derived differential 
equations of motion without any illustrative figures. In this 
article, the same equations of motion are rederived with 
clear free-body diagrams and extensive explanations. Jen-
kin’s governor was used to regulate an experimental appa-
ratus used to determine electrical resistance (ohms). It was 
essentially a friction governor and consisted of two rotat-
ing mechanisms capable of moving separately, as shown 
in Figure 7. If the principal axis rotates faster, the flyballs 
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Figure 4 The flyball governor invented by James Watt in 1788. If the actual speed increases beyond the desired value, the increase 
in the centrifugal force of the flyball governor causes closing of the steam valve, resulting in the supply of less steam, and the speed 
of the steam engine decreases. If the engine speed drops below the desired value, the opposite action occurs. (a) The original design 
(reproduced by permission of the Institution of Engineering & Technology [7]), and (b) the improved design.
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are extended and will rub against the inside surface of the 
friction ring, which will make the friction ring begin to ro-
tate and lift the weight. If the speed decreases, the weight 
causes the friction ring to rotate in the opposite direction. 
The weight is suspended in a hydraulic cylinder to pro-
vide viscous damping. The movement of the friction ring 
is used to loosen or tighten a band brake through a worm 
gear, which acts on the brake drum of the principal axis 
[7]. If the rotational speed of the principal axis varies from 
the nominal value, a torque proportional to the deviation of 
the speed is applied to the principal axis by the band brake 
until the speed reaches the nominal value (this is actually 
an integral action).

Free-body diagrams of Jenkin’s governor are shown in Fig-
ure 10. Let i  be the rotation angle of the principal axis, m be 
the mass of a flyball, k  be the spring constant, r  be the dis-
tance between the flyball and the center of the axis of rotation, 
and V1  be the lowest limit of the angular velocity at which 
the friction ring starts to rotate. At the velocity V1 , the flyballs 
begin to rub against the inside of the friction ring, and the 
centrifugal force and spring force are balanced at this speed

	 ( ),mr V k r r1 1
2

1 0= - � (1)

where r0  is the radius when the principal axis is at rest. If the 
speed ( / )d dti i=o  increases, the centrifugal force increases 

Maxwell’s Life

James Clerk Maxwell (see Figure S1) was born in Edinburgh, 

Scotland, in 1831, and he pursued general studies at the 

University of Edinburgh (age 16–19) and mathematics at the 

University of Cambridge (age 20–23) [S1]. An anecdote about 

James Maxwell and Edward Routh (another contributor to sta-

bility analysis) is well known. Maxwell and Routh were under-

graduates together and appeared for the Mathematical Tripos 

examination at the same time in 1854. Apparently, Maxwell 

was so confident of achieving first place in the examination 

that he did not bother waking up early to hear the reading of 

the lists of successful candidates in the Senate House but in-

stead sent his servant to listen for him. (Undergraduates had 

servants in those days!) On his return, Maxwell apparently en-

quired of him, “Well, tell me who’s second,” and was somewhat 

taken aback to receive the reply, “You are, sir!” for Routh had 

defeated him by achieving first place [S2].

At the age of 25, Maxwell became professor of physics at 

Marischal College, Aberdeen, and at the age of 29, he became 

the chair of natural philosophy at King’s College, London. How-

ever, he resigned at the age of 34, returned to his hometown, 

Glenlair, with his wife and lived there for about six years. At 

the age of 40, he became the first professor of experimental 

physics at the University of Cambridge, where he directed the 

newly formed Cavendish Laboratory for eight years. He died of 

stomach cancer at the age of 48 [S3].

As a distinguished physicist and mathematician, Maxwell 

made great achievements in the theory of electromagnetism 

[S4] as well as in the fields of thermodynamics and optics 

(color vision). In particular, he made a remarkable contribution 

to control theory by publishing “On Governors” at the age of 

37 in his hometown [10]. However, this paper was overlooked 

for a long time primarily because of its incomprehensibility. In 

this paper, the complex dynamics of the governors were de-

scribed using only text, without any figures to demonstrate the 

operation of governors and without any free-body diagrams 

for deriving the equations of motion. The main reason for the 

lack of figures in the paper may be the lack of adequate print-

ing technology in that era. Eighty years later (in 1948), Norbert 

Wiener, a professor from MIT, drew attention to this paper, and 

thereafter, it has been recognized as the first significant paper 

on control theory [2], [10].
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Figure S1 James Clerk Maxwell (1831–1879), a Scottish math-
ematical physicist who is famous for formulating the theory of 
electromagnetism.
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while the spring force remains constant. Thus, the friction 
force on the inner surface of the friction ring for one flyball 
is ( )mr mr V1

2
1 1

2n i -o , where n  is the coefficient of sliding 
friction between the flyball and the friction ring. The torque 
acting on the friction ring is

	 ( ).r mr mr V2 1 1
2

1 1
2$ n i -o � (2)

This torque drives the friction ring, lifts the weight, and 
tightens the band brake. Unfortunately, (2) is nonlinear in 
io , but Maxwell linearized it to be

	 ( ),F V1i-o � (3)

by assuming that the velocity io  varies within very narrow 
limits around the value V1 . That is, by assuming

	
+
,V1_i i+o o � (4)

where 
+
io  is small. Substituting (4) into (2) and neglecting 

the term 
+

2
io , the torque is +( )r mr V2 21 1 1n io , which is (3) with 

F r mV4 1
2

1n= .
Next, by applying Newton’s second law of motion for 

moments acting on the principal axis [refer to the free-body 
diagram in Figure 10(a)], the differential equation for the 
rotation i  of the principal axis is

	 ( ) ,M P R F V G1i i }= - - - -p o � (5)

where P  is the driving torque; R  is the resisting torque;
G  is a constant; }  is the rotation angle of the friction ring; 
and M  is the total moment of inertia of the principal axis, 
brake drum, and all the rotating parts with respect to the 
principal axis. From the free-body diagram in Figure 10(b), 
the equation of motion of the friction ring is

	 ( ) ,B F V Y W1} i }= - - -p o o � (6)

Figure 6 Jenkin’s governor. The governor regulated an experi-
mental apparatus used to determine electrical resistance (ohms). 
It is preserved in the Whipple Museum of Science at Cambridge 
University. (Reprinted by permission of the University of Chicago 
Press from [10].)

Figure 5 A friction governor. Two centrifugal pieces M held back 
by a leaf spring P are constrained to move in the horizontal plane. 
At overspeed, the centrifugal pieces will press outward against a 
stationary ring R and then produce the required braking force. (Re-
printed by permission of the University of Chicago Press from [10].)
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where B is the total moment of inertia of the friction ring 
and the attached parts, Y  is a coefficient corresponding to 
viscous friction torque due to the hydraulic cylinder, and W  
is a constant torque acting on the friction ring owing to the 
weight. Equations (5) and (6) are the same equations of motion 
derived by Maxwell, except that Maxwell called i  and ,}  x  
and ,y  respectively. Combining (5) and (6) leads to a linear 
differential equation that is third order in the velocity ( ),~ i= o

	 ( ) ( ),MB MY FB FY FG u t~ ~ ~ ~+ + + + =q p o � (7)

where input ( )u t  is

	 ( ) ( ) ( ) .u t B P R Y P R GFV GW1= - + - + +p p o o � (8)

For constant P  and R , Maxwell obtained a solution of the 
form

	 ( ) ,t A e A e A e Vs t s t s t
1 2 3

2 3~ = + + +1 � (9)

where V  is the nominal velocity given by

	 / ,V V W F1= + � (10)

from GFV GFV GW1= +  at the steady state of (7) and (8). 
Note that Maxwell expressed the solution in terms of ( )ti  

instead of ( )t~  by integrating the solution (9), but in this 
case, a constant term must be added to his solution. In (9), 
, ,s s s1 2 3  are the roots of the cubic characteristic equation

	 ( ) ,MBs MY FB s FYs FG 03 2+ + + + = � (11)

although Maxwell used the variable n` _ instead of .s` _ 
Maxwell obtained the stability condition that the real roots 
and the real parts of the complex conjugate roots of the 
characteristic equation (11) must all be negative. He pre-
sented the stability condition as

	  
M
F

B
Y

B
Y

B
G a positive quanitity,+ - =c m � (12)

without a detailed derivation. This condition is identical to 
the condition obtained using the Routh stability criterion.

	

:
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( ) ( ) ( )
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s
s

s

MB
MY FB

MY FB
MY FB FY MB FG

FG

FY
FG

1

Routh array
3

2 +

+
+ -

For stability, all elements of the first column of the Routh 
array must be positive, and also all coefficients in (11) must 
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Figure 7 A schematic of Jenkin’s governor. If the principal axis 
rotates faster, the flyballs are extended and will rub against the 
inside surface of the friction ring, which will make the friction ring 
begin to rotate and lift the weight. If the speed decreases, the 
weight causes the friction ring to rotate in the opposite direction. 
The movement of the friction ring acts to loosen or tighten the 
band brake, and thus, a torque proportional to the deviation of the 
speed is applied to the principal axis by the band brake.

Figure 8 Foucault’s governor. The governor regulates the motor 
B, which is linked to the centrifugal fan V so as to increase the flow 
rate with increasing speed, which increases the load resistance of 
the fan. The complicated arrangement of linkages and weights on 
the left is designed to linearize the relationship between the speed 
and the output motion of the governor. (Reprinted by permission of 
the University of Chicago Press from [10].)
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be positive. All coefficients in (11) are actually positive 
since they are physical quantities, and thus the system is 
stable if the third row value of the Routh array is positive, 
which gives the condition (12). However, since there was no 
Routh or Hurwitz stability criterion at that time, the next 
section of this article presents an alternative derivation of 
Maxwell’s stability criterion.

Next, Maxwell considered the dynamic equations of 
motion for the governors of Sir William Thomson and Léon 
Foucault. For the centrifugal pieces of Foucault’s governor, 

shown in Figure 11, Maxwell expressed the equations of 
motion using the angular momentum Aio ,

	 ,
dt
d A Li =o^ h � (13)

where i  is the angle of revolution about the vertical axis, 
A is the moment of inertia of a revolving apparatus for i  
motion, and L  is the total torque acting on the axis. Let B 
be the moment of inertia of the flyballs in Figure 11 for z  
motion. Then, the sum of the kinetic and potential energies 
of Foucault’s governor is

	 ,E A B P Ld
2
1

2
12 2i z i= + + =o o # � (14)

where P  is the potential energy of the apparatus, which is a 
function of the divergence angle z  of the centrifugal piece. 
Here, A  and B are both functions of the angle z .  Differen-
tiating (14) with respect to time t  and using  (13) gives

,A B P A B L A A
2
1

2
12 2i z z ii zz i zi i i+ + + + = = +z z z z

o o o o p o p o o o p oc ^m h
� (15)

where the subscript z  indicates ( )/d d: z . If the apparatus 
is arranged such that .P AV0 5 constant2= + , where V  is a 

 

θ

φ

Figure 11 The centrifugal pieces (that is, flyballs) of Foucault’s 
governor. A is the moment of inertia of a revolving apparatus for 
i  motion, and B is the moment of inertia of flyballs for z  motion.
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Figure 10 A free-body diagram of Jenkin’s governor. The friction 
torque ( )F V1i -o  acting on the friction ring is obtained by lineariza-
tion about a constant speed V1 .

Figure 9 Siemens’ liquid governor. The speed of a drive shaft S 
is controlled according to the depth of immersion of a rotating cup 
C connected to the shaft by a screw and a spring E. For over-
speed, the rotation of the cup C falls behind that of the shaft S. 
Forced downward by the thread, the cup C is immersed deeper 
into the liquid, thus pumping at a higher rate and exerting an in-
creasing resistance torque on the drive shaft. [Reproduced with 
permission of W. Bowyer and J. Nichols for Lockyer Davis, printer 
to the Royal Society from [12] (CCC Licensed 3811700428077 and 
3834140751528).]
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constant angular velocity (the nominal angular velocity of 
the shaft), then .P A V0 5 2=z z . Thus, rearranging (15), gives

	 .
dt
d B A V B

2
1

2
12 2 2z i z= - +z z

o o o^ ^h h � (16)

Equations (13) and (16) are the nonlinear differential equa-
tions of motion of Foucault’s governor. To linearize (13) and 
(16), consider small deviations 

+
~  and 

+
z  around the nomi-

nal values V  and 1z . That is,

	
+ +
, .V 1_ _i ~ z z z+ +o � (17)

Substituting (17) into (13) and (16) and noting that 
+

A A=z z  
and 

+
B B=z z , yields the linear differential equations corre-

sponding to (7) and (8) of Maxwell’s paper

	
++ +

,A A V L~ z+ =zo o � (18)

	
+ +

,B A V 0z ~- =
+

z
p � (19)

where 
+

02~ = , 
+ +

,0z~ =o  
+

i ~=p o , 
+

z z=p p , and 
+

z z=o o .
To expand the flyball apparatus into a governor, Max-

well added the term 
+

Gz , which represents the control ac-
tion (of the friction brake in Thomson’s governor or of the 

air brake in Foucault’s governor), to (18), and he added vis-
cous friction terms 

+ +
,X Y~ zo  to (18) and (19). Through substi-

tution of A V K=z  and letting 
+ +

,0zz =o p  (18) and (19) become

	
+ + + +

,A X K G L~ ~ z z+ + + =o o � (20)

	
+ + +

.B Y K 0z z ~+ - =p o � (21)

Combining (20) and (21) gives a third-order linear differen-
tial equation in 

+
z ,

	
+ + + +

( ) ( ) .AB AY BX XY K GK L2z z z z+ + + + + =q p o � (22)

Maxwell obtained the stability condition of the motion rep-
resented by (22) by considering that the real parts of the 
roots must be negative, yielding the condition

	 ,
A
X

B
Y XY K GK2 2+ +c ^m h � (23)

which can also be confirmed by the Routh stability criterion.
After describing the stability conditions for two third-

order linear differential equations, Maxwell focused on a 
more complicated device, a compound governor (a com-
bination of Thomson’s and Jenkin’s governors) composed 
of three pieces, in which the brake of Thomson’s governor 
was applied to a movable wheel, as was the case in Jenkin’s 
governor, and this wheel worked a more powerful brake, 
as shown in Figure 12. Maxwell added a spring-loaded rod, 
which was not included in Jenkin’s governor (see Figure 6), 
to the compound governor. Since Maxwell’s description of 
the compound governor in his paper was ambiguous and 
short, visualization of its schematic is not easy; however, a 
conjectured reconstruction performed by A.A. Andronov 
is available [10]. Another pointer for the compound gover-
nor and its differential equations of motion has been pro-
vided in Maxwell’s 1863 letter to Thomson [15].

Without performing a calculation of the equations of 
motion of the three pieces of the compound governor, Max-
well expressed the resulting equations as

	
+ + + + +

+ + +

+ + +

,

,

,

A X K T J L

B Y K

C Z T

0

0

i i z z }

z z i

} } z

+ + + + =

+ - =

+ - =

p o o

p o o

p o

�

(24)

where 
+ + +
, , andi z }  are the angles of small disturbances 

of the main shaft, centrifugal arm, and movable wheel, 
respectively; , ,A B C  are their respective moments of iner-
tia; , ,X Y Z  are the respective viscosities of their connec-
tions; K  is 

+
A Vz  as described earlier; and T  and J  are the 

respective powers of Thomson’s and Jenkin’s brakes.
Eliminating 

+
i  and 

+
z  in (24) and assuming small mo-

tions, yields a fifth-order linear differential equation with a 
quintic characteristic equation

Figure 12 A compound governor with a spring-loaded rod. The 
brake of Thomson’s governor is applied to a movable wheel, as is 
the case in Jenkin’s governor, and this wheel works a more power-
ful brake. (Reprinted by permission of Cambridge University Press 
from [15].)
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Maxwell was not successful in completely determining the 
stability conditions from (25), but he found two necessary 
conditions: a a a1 2 32  and a a a1 4 52  for

	 , .s a s a s a s a s a a0 0all i
5

1
4

2
3

4
2

4 5 2+ + + + + = � (26)

He left this unsolved problem to other mathematicians, and 
finally, Edward J. Routh solved this problem in 1876 to obtain 
a necessary and sufficient condition of stability for an nth 
order characteristic equation, which is known as the Routh 
stability criterion. The necessary and sufficient condition of 
stability of (26) on the basis of the Routh stability criterion is

	
,

( ) ( ),
[( ) ( )] ( ) ( ) .

a a a

a a a a a a a a

a a a a a a a a a a a a a a a

1 2 3

1 2 3 3 1 1 4 5

1 2 3 3 1 1 4 5 1 4 5 1 2 3
2

5

2

2

2

- -

- - - - -

Proof of Maxwell’s stability conditions
Maxwell only succeeded in determining a necessary and 
sufficient condition of stability of the linear differential 
equation of the third order. However, he neither proved nor 
explained his results (12) and (23) in his paper. He only said 
that one root of (11) is “evidently a real negative quantity.” 
Thus, this article presents a proof for (12) and (23) using 
methods Maxwell could have used.

Maxwell’s Result
For a cubic equation s a s a s a 03

1
2

2 3+ + + =  with positive 
real coefficients a1 , a2 , and a3 ,

	 .a a anegative real parts if, and only if,
All roots have

>1 2 3e o � (27)

If the coefficient of s3  is not one but a0 , the equation can 
always be converted into the form (27) by dividing by .a0  
Note that a1 , a2 , a3  being positive real coefficients is a nec-
essary condition for all roots to have negative real parts. 
That is, if any one of a1 , a2 , or a3  is zero or negative, then 
some roots will have zero or positive real parts.

Here, we consider a polynomial equation with real coef-
ficients. A linear equation s a 01+ =  has a negative real root 
if, and only if, a 01 2 . A quadratic equation s a s a 02

1 2+ + =  
has two roots with negative real parts if, and only if, 

,a a0 01 22 2 . A cubic polynomial s a s a s a3
1

2
2 3+ + +  can 

always be factored as

	 ( ) ( ),s a s a s a s a s bs c3
1

2
2 3

2+ + + = + + + � (28)

where , ,a b c  are real numbers. Therefore, a cubic equation 
s a s a s a 03

1
2

2 3+ + + =  has three negative real roots or one 
negative root and two complex roots with negative real 
parts if, and only if, , ,a b c0 0 02 2 2 . Thus, instead of 
proving (27), we prove that

	 , , .a b c a a a0 0 0 if,  and only if, 1 2 32 2 2 2 � (29)

Comparing the coefficients on both sides of (28), we obtain 
, , .a a b a ab c a ac1 2 3= + = + =

i)	 The if part of (29) is obvious since ( ) ( )a a a b ab c1 2 = + +

ac a32 = .
ii)	 To show that a a a1 2 32  implies , , ,a b c0 0 02 2 2  note 

that, from the positive real coefficients , , ,a a a1 2 3 a b 02+ , 
ab c 02+ , and ac 02 . Given ,a a a1 2 32  ( ) ( ) .a b ab c ac2+ +  
Thus, ( )a ab c b 02 2+ +  and .b 02  Note that ac 02  implies 
that ,a c0 02 2  or , ,a c0 01 1  but the case ,a c0 01 1  
cannot occur because then ab c 01+  by ,b 02  which is not 
true. Therefore, , .a c0 02 2 � 4
In his book, E.J. Routh made an interesting com-

ment on Maxwell’s result [16], explained as follows. If the 
roots of s a s a s a 03

1
2

2 3+ + + =  with positive , ,a a a1 2 3  are  
,s i!a b c=  ( , ,a b c  real, i 1= - ), then ( )a 21 a c=- + ,  

a 22
2 2a b ac= + + , ( ) .a3

2 2a b c=- +  Since a a a 21 2 3 a- = -  
[( ) ],2 2a c b+ +  we obtain the condition a a a 01 2 3 2-  is 
obtained if, and only if, .01a  Furthermore, it follows that 

01c  since ( ) .a 03
2 2 2a b c=- +

Further Developments
This section is not a comprehensive survey on the develop-
ments of stability analysis but, rather, an attempt is made to 
briefly describe the history of stability analysis. The basic 
concept of Maxwell’s studies on the stability analysis of 
motion was adopted by E.J. Routh, who completed a condi-
tion of stability, known as the Routh stability criterion, for 
a general characteristic equation

	 s a s a s a s a 0n n n
n n1

1
2

2
1g+ + + + + =- -
- 	 (30)

in his Adams Prize essay, “A Treatise on the Stability of a 
Given State of Motion, Particularly Steady Motion” in 1877 
[17]. The Routh stability criterion specifies that for the sta-
bility of a dynamic system: 1) all the coefficients ai  in (30) 
must be positive, and 2) all the first-column elements of the 
Routh array must be positive, which is constructed using 
coefficients ai  of the characteristic equation. Routh proved 
this criterion by way of Cauchy’s index theorem [17], [18].

In continental Europe, Ivan A. Vyshnegradsky, a Rus-
sian professor at the St. Petersburg Technological Institute 
and later the Russian Minister of Finance, in 1877 indepen-
dently obtained a stability condition together with a stabil-
ity diagram (that is, the Vyshnegradsky criterion) similar 
to that of Maxwell for Watt’s governor and steam engine 
[19], [20]. Vyshnegradsky’s stability diagram showed the 
nature of the transient response according to typical pole 
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constellations for various regions in the s-plane. The work 
of Vyshnegradsky was continued, independently of Max-
well and Routh, by two professors at ETH Zürich, an engi-
neer Aurel Stodola and a mathematician Adolph Hurwitz, 
whose collaboration led to the Hurwitz stability criterion 
(1895) [21], [22]. This criterion specifies that all the leading 
principal minors , , , n1 2 fD D D  (that is, the Hurwitz deter-
minants) of the Hurwitz matrix constructed using coeffi-
cients ai  of the characteristic equation must be positive for 
stability. Later, in 1911, Italian mathematician Enrico Bom-
piani showed the equivalence of the Routh and Hurwitz 
stability criteria [23]–[25].

Alexandr Mikhailovich Lyapunov (1857–1918), professor 
of mechanics at Kharkov University in Russia and a former 
student of P.L. Chebyshev, made a breakthrough in stabil-
ity analysis when he presented his doctoral dissertation, 
“The General Problem of the Stability of Motion,” in 1892 
[26]. His work (Lyapunov stability theory) was seminal in 
control theory because his methods were applicable to non-
linear systems. His idea was a generalization of the concept 
that a system is stable if the total mechanical energy of it is 
decreasing. Lyapunov was aware of the work by Routh, but 
his own work remained largely unknown in the English-
speaking world until after World War II [27].

With the development of electricity and various electric 
appliances in the early 20th century, telephones and elec-
tronic feedback amplifiers were invented in the United 
States, particularly at the Bell Telephone Laboratories [28], 
[29]. In relation to feedback amplifiers, the stability prob-
lem came into focus again at this time, and several graphi-
cal techniques for stability analysis were developed, for 
example, by Harry Nyquist (the Nyquist stability criteri-
on, 1932) [30] and Hendrik Bode (Bode plot, gain margin, 
phase margin, 1940) [31], [32]. In this period, proportional-
integral-derivative control was developed and analyzed 
mainly by Elmer Sperry (1910) [33], Nicolas Minorsky (1922) 
[34], John G. Ziegler, and Nathaniel B. Nichols (1942) [35]-
[38]. Furthermore, the concepts of transfer function, block 
diagram, and servomechanism were defined clearly and 

used successfully for stability analysis at the Massachu-
setts Institute of Technology [2], [39], [40]. This graphical 
and symbolic representation of a complex dynamic system 
characterized the concept of feedback clearly and made it 
easy to understand complex connections between the com-
ponent dynamics of the overall feedback control system.

During World War II, demands for military systems 
based on feedback control, such as automatic airplane pi-
lots, radar control systems, and gun-positioning systems, 
provided a large impetus to the development of control 
theory and practice and resulted in significant growth of 
automatic control. Control engineering then became an 
independent discipline. In 1948, Walter Evans developed 
another graphical method for stability analysis, termed the 
root-locus method, using the transfer function of a feed-
back control system [41]–[44].

After World War II, stability conditions for a class of 
nonlinear systems, as shown in Figure 13, were developed 
mainly in the time domain and also in the frequency do-
main by Vasile M. Popov (the Popov criterion, 1961) [45] 
and George Zames (the circle criterion, 1966) [46]–[48]. The 
nonlinear system with linear time-invariant feedforward 
dynamics and a sector-bounded nonlinearity, as shown in 
Figure 13, was originally introduced from the “compand-
ing” problem in communications. Furthermore, Zames, Ir-
win W. Sandberg, and coworkers developed a small-gain 
theorem for a more general nonlinear system from an in-
put–output stability point of view [49], [50].

Later, Rudolf E. Kalman and coworkers (1960) [51]–[53] 
analyzed the stability of control systems in state space us-
ing eigenvalues of system matrices. For a linear discrete-
time system, Eliahu I. Jury developed the Jury stability 
criterion (1961), which is a method for determining stability 
by analyzing the coefficients of its characteristic equation. 
It is a discrete-time version of the Routh stability criterion 
[54]–[56]. More recently, Vladimir L. Kharitonov derived a 
stability condition for interval polynomials with real coef-
ficients, such as (31) (Kharitonov’s theorem, 1978) [57], and a 
stability condition for multivariate polynomials [58]
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where li  and ui  are the upper limit and lower limit, respec-
tively, of the coefficients , , , , ,a i n0 1 2i f= .

Conclusion
Maxwell’s paper “On Governors” was motivated by a hunt-
ing problem reported in industry during the Industrial 
Revolution. Maxwell 1) successfully analyzed, for the first 
time, the stability of a dynamic system by using a linear 
differential equation of motion, 2) obtained a specific sta-
bility condition a a a1 2 32  for a linear differential equation 
of the third order from the solutions of its characteristic 
equation ,s a s a s a a0 0i

3
1

2
2 3 2+ + + = , 3) introduced the 

G (s )
+

–

Nonlinear Block

LTI System

φ φ σ
σ

Figure 13 A nonlinear system. The dynamics of the forward path 
are linear time invariant, and the feedback path contains a mem-
oryless sector-bounded nonlinearity.
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linearization of a nonlinear differential equation, 4) classi-
fied the motion of a machine into four kinds in view of the 
stability of a linear system, and 5) proposed an unsolved 
problem to determine stability conditions for a linear dif-
ferential equation of the nth order.

However, Maxwell’s paper was incomprehensible be-
cause it lacked descriptions and figures. Thus, this article 
presents illustrative figures and free-body diagrams of 
the considered governors to aid in gaining a better under-
standing of Maxwell’s seminal paper. Most of the equations 
in Maxwell’s paper have been rederived using present-day 
stability terminology and comprehensible explanations. 
Furthermore, a proof of Maxwell’s result is also presented. 
Finally, the history of further developments in the stability 
analysis of dynamic systems is briefly summarized.
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The Maximum Principle

The physical processes which take place in technology arc, as a rule, controllable, i.e., they can be realized by vari-
ous means depending on the will of man. In this connection, there arises the question of finding the very best (in 

one sense or another) or, as is said, the optimal control of the process. For example, one can speak about optimality 
in the sense of rapidity of action, i.e., about achieving the aim of the process in the shortest time; about achieving 
this aim with a minimum expenditure of energy, etc. Mathematically formulated, these are problems in the calculus 
of variations, which in fact owes its origin to these problems. However, the solution of a whole range of variational 
problems, which are important in contemporary technology, is outside the classical calculus of variations... In its 
essential features, this solution is unified in one general mathematical method, which we call the maximum prin-
ciple. It should be noted that all the fundamental necessary conditions in the classical calculus of variations (with 
ordinary derivatives) follow from the maximum principle.

—L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko,   
The Mathematical Theory of Optimal Processes, authorized translation from the Russian translator K. N. Trirogoff, 

Aerospace Corporation, El Segundo, California, Interscience Publishers, 1962.


