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on�line tuning we can distinguish between three main approaches to controller

design�

�� Shaping of transfer functions� In this approach the designer speci�es

the magnitude of some transfer function�s� as a function of frequency� and

then �nds a controller which gives the desired shape�s��

�a� Loop shaping� This is the classical approach in which the magnitude

of the open�loop transfer function� L�j��� is shaped� Usually no

optimization is involved and the designer aims to obtain jL�j��j with

desired bandwidth� slopes etc� We will look at this approach in detail

later in this chapter� However� classical loop shaping is di!cult to apply

for complicated systems� and one may then instead use the Glover�

McFarlaneH� loop�shaping design presented in Chapter �� The method

consists of a second step where optimization is used to make an initial

loop�shaping design more robust�

�b� Shaping of closed�loop transfer functions	 such as S	 T and KS�

Optimization is usually used� resulting in various H� optimal control

problems such as mixed weighted sensitivity� more on this later�

	� The signal�based approach� This involves time domain problem

formulations resulting in the minimization of a norm of a transfer function�

Here one considers a particular disturbance or reference change and then

one tries to optimize the closed�loop response� The �modern� state�space

methods from the �����s� such as Linear Quadratic Gaussian �LQG�

control� are based on this signal�oriented approach� In LQG the input

signals are assumed to be stochastic �or alternatively impulses in a

deterministic setting� and the expected value of the output variance �or

the 	�norm� is minimized� These methods may be generalized to include

frequency dependent weights on the signals leading to what is called the

Wiener�Hopf �or H��norm� design method�

By considering sinusoidal signals� frequency�by�frequency� a signal�based

H� optimal control methodology can be derived in which the H� norm of

a combination of closed�loop transfer functions is minimized� This approach

has attracted signi�cant interest� and may be combined with model

uncertainty representations� to yield quite complex robust performance

problems requiring ��synthesis� an important topic which will be addressed

in later chapters�


� Numerical optimization� This often involves multi�objective optimiza�

tion where one attempts to optimize directly the true objectives� such as

rise times� stability margins� etc� Computationally� such optimization prob�

lems may be di!cult to solve� especially if one does not have convexity�

Also� by e
ectively including performance evaluation and controller de�

sign in a single step procedure� the problem formulation is far more criti�

cal than in iterative two�step approaches� The numerical optimization ap�
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proach may also be performed on�line� which might be useful when dealing

with cases with constraints on the inputs and outputs� On�line optimiza�

tion approaches such as model predictive control are likely to become more

popular as faster computers and more e!cient and reliable computational

algorithms are developed�

��� Loop shaping

In the classical loop�shaping approach to controller design� �loop shape� refers

to the magnitude of the loop transfer function L � GK as a function of

frequency� An understanding of how K can be selected to shape this loop

gain provides invaluable insight into the multivariable techniques and concepts

which will presented later in the book� and so we will discuss loop shaping in

some detail in the next two sections�

��	�� Trade�o
s in terms of L

Recall equation �	����� which yields the closed�loop response in terms of the

control error e � y � r�

e � � �I � L���� �z �
S

r � �I � L���� �z �
S

Gdd� �I � L���L� �z �
T

n �	����

For �perfect control� we want e � y � r � �� that is� we would like

e � � � d� � � r � � � n �	����

The �rst two requirements in this equation� namely disturbance rejection and

command tracking� are obtained with S � �� or equivalently� T � I � Since

S � �I � L���� this implies that the loop transfer function L must be large

in magnitude� On the other hand� the requirement for zero noise transmission

implies that T � �� or equivalently� S � I � which is obtained with L � �� This

illustrates the fundamental nature of feedback design which always involves a

trade�o
 between con"icting objectives� in this case between large loop gains

for disturbance rejection and tracking� and small loop gains to reduce the

e
ect of noise�

It is also important to consider the magnitude of the control action u �which

is the input to the plant�� We want u small because this causes less wear and

saves input energy� and also because u is often a disturbance to other parts

of the system �e�g� consider opening a window in your o!ce to adjust your

body temperature and the undesirable disturbance this will impose on the air

conditioning system for the building�� In particular� we usually want to avoid
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fast changes in u� The control action is given by u � K�r � ym� and we �nd

as expected that a small u corresponds to small controller gains and a small

L � GK�

The most important design objectives which necessitate trade�o
s in

feedback control are summarized below�

�� Performance� good disturbance rejection� needs large controller gains� i�e�

L large�

	� Performance� good command following� L large�


� Stabilization of unstable plant� L large�

�� Mitigation of measurement noise on plant outputs� L small�

�� Small magnitude of input signals� K small and L small�

�� Physical controller must be strictly proper� K � � at high frequencies�

�� Nominal stability �stable plant�� L small �because of RHP�zeros and time

delays��

�� Robust stability �stable plant�� L small �because of uncertain or neglected

dynamics��

Fortunately� the con"icting design objectives mentioned above are generally

in di
erent frequency ranges� and we can meet most of the objectives by using

a large loop gain �jLj 
 �� at low frequencies below crossover� and a small

gain �jLj � �� at high frequencies above crossover�

��	�� Fundamentals of loop�shaping design

By loop shaping one usually means a design procedure that involves explicitly

shaping the magnitude of the loop transfer function� jL�j��j� Here L�s� �

G�s�K�s� where K�s� is the feedback controller to be designed and G�s�

is the product of all other transfer functions around the loop� including

the plant� the actuator and the measurement device� Essentially� to get the

bene�ts of feedback control we want the loop gain� jL�j��j� to be as large

as possible within the bandwidth region� However� due to time delays� RHP�

zeros� unmodelled high�frequency dynamics and limitations on the allowed

manipulated inputs� the loop gain has to drop below one at and above

some frequency which we call the crossover frequency �c� Thus� disregarding

stability for the moment� it is desirable that jL�j��j falls sharply with

frequency� To measure how jLj falls with frequency we consider the logarithmic

slope N � d ln jLj�d ln�� For example� a slope N � �� implies that jLj drops

by a factor of �� when � increases by a factor of ��� If the gain is measured

in decibels �dB� then a slope of N � �� corresponds to �	� dB� decade� The

value of �N at higher frequencies is often called the roll�o� rate�

The design of L�s� is most crucial and di!cult in the crossover region

between �c �where jLj � �� and ��	� �where � L � ������� For stability� we at

least need the loop gain to be less than � at frequency ��	�� i�e�� jL�j��	��j � ��
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Thus� to get a high bandwidth �fast response� we want ��	� large� that is� we

want the phase lag in L to be small� Unfortunately� this is not consistent with

the desire that jL�j��j should fall sharply� For example� the loop transfer

function L � ��sn �which has a slope N � �n on a log�log plot� has a phase

� L � �n � ���� Thus� to have a phase margin of ��� we need � L 
 ��
���

and the slope of jLj cannot exceed N � ��	��

In addition� if the slope is made steeper at lower or higher frequencies� then

this will add unwanted phase lag at intermediate frequencies� As an example�

consider L��s� given in �	��
� with the Bode plot shown in Figure 	�
� Here

the slope of the asymptote of jLj is �� at the gain crossover frequency �where

jL��j�c�j � ��� which by itself gives ���� phase lag� However� due to the

in"uence of the steeper slopes of �	 at lower and higher frequencies� there is

a �penalty� of about �
�� at crossover� so the actual phase of L� at �c is

approximately ��	���

The situation becomes even worse for cases with delays or RHP�zeros in

L�s� which add undesirable phase lag to L without contributing to a desirable

negative slope in L� At the gain crossover frequency �c� the additional phase

lag from delays and RHP�zeros may in practice be �
�� or more�

In summary� a desired loop shape for jL�j��j typically has a slope of about

�� in the crossover region� and a slope of �	 or higher beyond this frequency�

that is� the roll�o
 is 	 or larger� Also� with a proper controller� which is

required for any real system� we must have that L � GK rolls o
 at least

as fast as G� At low frequencies� the desired shape of jLj depends on what

disturbances and references we are designing for� For example� if we are

considering step changes in the references or disturbances which a
ect the

outputs as steps� then a slope for jLj of �� at low frequencies is acceptable�

If the references or disturbances require the outputs to change in a ramp�like

fashion then a slope of �	 is required� In practice� integrators are included in

the controller to get the desired low�frequency performance� and for o
set�free

reference tracking the rule is that

� L�s� must contain at least one integrator for each integrator in r�s��

To see this� let L�s� � bL�s��snI where bL��� is nonzero and �nite and nI is

the number of integrators in L�s� � sometimes nI is called the system type�

Consider a reference signal of the form r�s� � ��snr � For example� if r�t� is

a unit step then r�s� � ��s �nr � ��� and if r�t� is a ramp then r�s� � ��s
�

�nr � 	�� The �nal value theorem for Laplace transforms is

lim
t��

e�t� � lim
s��

se�s� �	����

In our case� the control error is

e�s� � � �

� � L�s�
r�s� � � snI�nr

snI � bL�s�
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and to get zero o
set �i�e� e�t��� � �� we must from �	���� require nI 
 nr�

and the rule follows� In Section 	����� we discuss how to specify the loop shape

when disturbance rejection is the primary objective of control�

In conclusion� one can de�ne the desired loop transfer function in terms of

the following speci�cations�

�� The gain crossover frequency� �c� where jL�j�c�j � ��

	� The shape of L�j��� e�g�� in terms of the slope of jL�j��j in certain

frequency ranges� Typically� we desire a slope of about N � �� around

crossover� and a larger roll�o
 at higher frequencies� The desired slope at

lower frequencies depends on the nature of the disturbance or reference

signal�


� The system type� de�ned as the number of pure integrators in L�s��

Loop�shaping design is typically an iterative procedure where the designer

shapes and reshapes jL�j��j after computing the phase and gain margins�

the peaks of closed�loop frequency responses �MT and MS�� selected closed�

loop time responses� the magnitude of the input signal� etc� The procedure is

illustrated next by an example�

Example ��
 Loop�shaping design for the inverse response process�
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Figure ����� Frequency response of L�s� in ������ for loop�shaping design with

Kc � 
�
�� �GM� ����� PM� ���� �c � 
���� ��	� � 
���� MS � ����� MT � �����

We will now design a loop�shaping controller for the example process in �	�	��

which has a RHP�zero at s � 
��� The RHP�zero limits the achievable bandwidth

and so the crossover region �de�ned as the frequencies between �c and ��	�� will

be at about 
�� rad�s� We only require the system to have one integrator �type �
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Figure ���	� Response to step in reference for loop�shaping design�
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Figure ���
� Magnitude Bode plot of controller ������ for loop�shaping design�

system�� and therefore a reasonable approach is to let the loop transfer function have

a slope of �� at low frequencies� and then to roll o� with a higher slope at frequencies

beyond 
�� rad�s� We choose the following loop�shape

L�s� � �Kc

���s� ��

s��s� ���
���s � ��

������

The frequency response �Bode plots� of L is shown in Figure 	�
�� The asymptotic

slope of jLj is �� up to � rad�s where it changes to ��� The controller corresponding

to the loop�shape in �	�

� is

K�s� � Kc

��
s� ����s� ��

s��s� ���
���s� ��
� Kc � 
�
� ������

The controller has zeros at the locations of the plant poles� This is desired in this case

because we do not want the slope of the loop shape to drop at the break frequencies

���
 � 
�� �rad�s� and ��� � 
�� �rad�s� just before crossover� The controller

gain Kc was selected to get a reasonable trade�o� between speed of response and

the robustness margin to instability� The phase of L is ��
� at low frequency� and
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at � � 
�� �rad�s� the additional contribution from the term ��s��

�s��

in �	�

� is

��
�� so for stability we need �c � 
�� �rad�s�� The selection of Kc � 
�
� yields

�c � 
��� �rad�s� corresponding to GM� ���� and PM����� The corresponding time

response is shown in Figure 	�
�� It is seen to be much better than the responses with

either the simple PI�controller in Figure 	�� or with the P�controller in Figure 	�
�

Figure 	�
� also shows that the magnitude of the input signal is reasonable �assuming

the signals have been scaled such that we want the input to be less than about � in

magnitude�� This means that the controller gain is not too large at high frequencies�

The magnitude Bode plot for the controller �	�
	� is shown in Figure 	�
�� It is

interesting to note that in the crossover region around � � 
�� �rad�s� the controller

gain is quite constant� around � in magnitude� which is similar to the �best� gain

found using a P�controller �see Figure 	�
��

Limitations imposed by RHP�zeros and time delays�

Based on the above loop�shaping arguments we can now examine how the

presence of delays and RHP�zeros limit the achievable control performance�

We have already argued that if we want the loop shape to have a slope of

�� around crossover ��c�� with preferably a steeper slope before and after

crossover� then the phase lag of L at �c will necessarily be at least �����

even when there are no RHP�zeros or delays� Therefore� if we assume that for

performance and robustness we want a phase margin of about 
�� or more�

then the additional phase contribution from any delays and RHP�zeros at

frequency �c cannot exceed about �����

First consider a time delay �� It yields an additional phase contribution of

���� which at frequency � � ��� is�� rad ����� �which is more than������

Thus� for acceptable control performance we need �c � ���� approximately�

Next consider a real RHP�zero at s � z� To avoid an increase in slope caused

by this zero we place a pole at s � �z such that the loop transfer function

contains the term �s�z

s�z � the form of which is referred to as all�pass since its

magnitude equals � at all frequencies� The phase contribution from the all�

pass term at � � z�	 is �	 arctan��	�� � ��
� �which is close to ������ so

for acceptable control performance we need �c � z�	� approximately�

��	�� Inverse�based controller design

In Example 	��� we made sure that L�s� contained the RHP�zero of G�s��

but otherwise the speci�ed L�s� was independent of G�s�� This suggests the

following possible approach for a minimum�phase plant �i�e� one with no RHP�

zeros or time delays�� Select a loop shape which has a slope of �� throughout

the frequency range� namely

L�s� �
�c

s

�	��
�

�
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where �c is the desired gain crossover frequency� This loop shape yields a

phase margin of ��� and an in�nite gain margin since the phase of L�j��

never reaches ������ The controller corresponding to �	��
� is

K�s� �
�c

s
G���s� �	����

That is� the controller inverts the plant and adds an integrator ���s�� This

is an old idea� and is also the essential part of the IMC �Internal Model

Control� design procedure of Morari �Morari and Za�riou� ����� which has

proved successful in many applications� However� there are at least two good

reasons for why this controller may not be a good choice�

�� The controller will not be realizable if G�s� has more poles than zeros� and

may in any case yield large input signals� These problems may be partly

�xed by adding high�frequency dynamics to the controller�

	� The loop shape resulting from �	��
� is not generally desirable� unless the

references and disturbances a
ect the outputs as steps� This is illustrated

by the following example�

Example ��� Disturbance process� We now introduce our second main

example process and control problem in which disturbance rejection is an important

objective in addition to command tracking� We assume that the plant has been

appropriately scaled as outlined in Section 
���

Problem formulation� Consider the disturbance process described by

G�s� �

�



�
s� �

�

�
�
�s� ���
� Gd�s� �

�



�
s� �

������

with time in seconds� A block diagram is shown in Figure 	�	�� The control objectives

are�


� Command tracking� The rise time �to reach �
� of the �nal value� should be less

than 
�� �s� and the overshoot should be less than ���

	� Disturbance rejection� The output in response to a unit step disturbance should

remain within the range ���� �
 at all times� and it should return to 
 as quickly

as possible �jy�t�j should at least be less than 
�� after � s��

�� Input constraints� u�t� should remain within the range ���� �
 at all times to avoid

input saturation �this is easily satis�ed for most designs��

Analysis� Since Gd�
� � �

 we have that without control the output response to a

unit disturbance �d � �� will be �

 times larger than what is deemed to be acceptable�

The magnitude jGd�j��j is lower at higher frequencies� but it remains larger than �

up to �d � �
 �rad�s� �where jGd�j�d�j � ��� Thus� feedback control is needed up to

frequency �d� so we need �c to be approximately equal to �
 rad�s for disturbance

rejection� On the other hand� we do not want �c to be larger than necessary because

of sensitivity to noise and stability problems associated with high gain feedback� We

will thus aim at a design with �c � �
 �rad�s
�
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Inverse�based controller design� We will consider the �inverse�based� design as

given by �	�
�� and �	�
�� with �c � �
� This yields an unrealizable controller and

therefore we choose to approximate the plant term �
�
�s � ��� by �
��s � �� and

then in the controller we let this term be e�ective over one decade� i�e�� we use

�
��s� ����
�
�s � �� to give the realizable design

K��s� �
�c

s
�
s� �

�




��s� �


�
�s� �
� L��s� �

�c
s


��s� �

�
�
�s� ����
�
�s� ��
� �c � �


������
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Figure ����� Responses with �inverse�based� controller K��s� for disturbance

process�

The response to a step reference is excellent as shown in Figure 	�
� �a�� The rise

time is about 
��� s and there is no overshoot so the speci�cations are more than

satis�ed� However� the response to a step disturbance �Figure 	�
� �b�� is much too

sluggish� Although the output stays within the range ���� �
� it is still 
��� at t � �

s �whereas it should be less than 
���� Because of the integral action the output does

eventually return to zero� but it does not drop below 
�� until after �� s�

The above example illustrates that the simple �inverse�based� design

method where L has a slope of about N � �� at all frequencies� does

not always yield satisfactory designs� The objective of the next section is

to understand why the disturbance response was so poor� and to propose a

more desirable loop shape for disturbance rejection�

��	�� Loop shaping for disturbance rejection

At the outset we assume that the disturbance has been scaled such that at each

frequency jd���j � �� and the main control objective is to achieve je���j � ��

With feedback control we have e � y � SGdd� so to achieve je���j � � for

jd���j � � �the worst�case disturbance� we require jSGd�j��j � ����� or

equivalently�

j� � Lj 
 jGdj �� �	����
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At frequencies where jGdj 
 �� this is approximately the same as requiring

jLj 
 jGdj� However� in order to minimize the input signals� thereby reducing

the sensitivity to noise and avoiding stability problems� we do not want to use

larger loop gains than necessary �at least at frequencies around crossover��

A reasonable initial loop shape Lmin�s� is then one that just satis�es the

condition

jLminj � jGdj �	����

where the subscript min signi�es that Lmin is the smallest loop gain to satisfy

je���j � �� Since L � GK the corresponding controller with the minimum

gain satis�es

jKminj � jG��Gdj �	����

In addition� to improve low�frequency performance �e�g� to get zero steady�

state o
set�� we often add integral action at low frequencies� and use

jKj � js� �I
s

jjG��Gdj �	����

This can be summarized as follows�

� For disturbance rejection a good choice for the controller is one which

contains the dynamics �Gd� of the disturbance and inverts the dynamics

�G� of the inputs �at least at frequencies just before crossover��

� For disturbances entering directly at the plant output� Gd � �� and we

get jKminj � jG��j� so an inverse�based design provides the best trade�o


between performance �disturbance rejection� and minimum use of feedback�

� For disturbances entering directly at the plant input �which is a common

situation in practice � often referred to as a load disturbance�� we have

Gd � G and we get jKminj � �� so a simple proportional controller with

unit gain yields a good trade�o
 between output performance and input

usage�

� Notice that a reference change may be viewed as a disturbance directly

a
ecting the output� This follows from ������� from which we get that a

maximum reference change r � R may be viewed as a disturbance d � �

with Gd�s� � �R where R is usually a constant� This explains why selecting

K to be like G�� �an inverse�based controller� yields good responses to step

changes in the reference�

In addition to satisfying jLj � jGdj �eq� 	���� at frequencies around

crossover� the desired loop�shape L�s� may be modi�ed as follows�

�� Around crossover make the slopeN of jLj to be about��� This is to achieve

good transient behaviour with acceptable gain and phase margins�

	� Increase the loop gain at low frequencies as illustrated in �	���� to improve

the settling time and to reduce the steady�state o
set� Adding an integrator

yields zero steady�state o
set to a step disturbance�
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� Let L�s� roll o
 faster at higher frequencies �beyond the bandwidth� in

order to reduce the use of manipulated inputs� to make the controller

realizable and to reduce the e
ects of noise�

The above requirements are concerned with the magnitude� jL�j��j� In

addition� the dynamics �phase� of L�s� must be selected such that the closed�

loop system is stable� When selecting L�s� to satisfy jLj � jGdj one should

replace Gd�s� by the corresponding minimum�phase transfer function with the

same magnitude� that is� time delays and RHP�zeros in Gd�s� should not be

included in L�s� as this will impose undesirable limitations on feedback� On

the other hand� any time delays or RHP�zeros in G�s� must be included in

L � GK because RHP pole�zero cancellations between G�s� and K�s� yield

internal instability� see Chapter ��

Remark� The idea of including a disturbance model in the controller is well known

and is more rigorously presented in� for example� research on the internal model

principle �Wonham� ������ or the internal model control design for disturbances

�Morari and Za�riou� ��	��� However� our development is simple� and su�cient for

gaining the insight needed for later chapters�

Example ��� Loop�shaping design for the disturbance process
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Figure ����� Block diagram representation of the disturbance process in ������

Consider again the plant described by �	�

�� The plant can be represented by

the block diagram in Figure 	�	�� and we see that the disturbance enters at the plant

input in the sense that G and Gd share the same dominating dynamics as represented

by the term �

���
s � ���

Step �� Initial design� From �	�
�� we know that a good initial loop shape looks like

jLminj � jGdj �
�� ���

��s��
�� at frequencies up to crossover� The corresponding controller

is K�s� � G��Lmin � 
���
�
�s����� This controller is not proper �i�e� it has more

zeros than poles�� but since the term �
�
�s���� only comes into e�ect at ��
�
� � �
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�rad�s�� which is beyond the desired gain crossover frequency �c � �
 �rad�s�� we may

replace it by a constant gain of � resulting in a proportional controller

K��s� � 
�� ������

The magnitude of the corresponding loop transfer function� jL��j��j� and the

response �y��t�� to a step change in the disturbance are shown in Figure 	�	
� This

simple controller works surprisingly well� and for t � �s the response to a step change

in the disturbance response is not much di�erent from that with the more complicated

inverse�based controller K��s� of �	�
�� as shown earlier in Figure 	�
�� However�

there is no integral action and y��t�� � as t���
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Figure ����� Loop shapes and disturbance responses for controllers K�� K� and K�

for the disturbance process�

Step �� More gain at low frequency� To get integral action we multiply the

controller by the term s��I
s

� where �I is the frequency up to which the term is

e�ective �the asymptotic value of the term is 
 for � � �I�� For performance we

want large gains at low frequencies� so we want �I to be large� but in order to

maintain an acceptable phase margin �which is ����� for controller K�� the term

should not add too much negative phase at frequency �c� so �I should not be too

large� A reasonable value is �I � 
���c for which the phase contribution from s��I
s

is arctan���
��� � �
� � ���� at �c� In our case �c � �
 �rad�s�� so we select the

following controller

K��s� � 
��
s � �

s

������

The resulting disturbance response �y�� in shown in Figure 	�	
 satis�es the

requirement that jy�t�j � 
�� at time t � � s� but y�t� exceeds � for a short time�

Also� the response is slightly oscillatory as might be expected since the phase margin

is only ��� and the peak values for jSj and jT j are MS � ���	 and MT � ��	� �see

Table 	�	��

Step �� High�frequency correction� To increase the phase margin and improve

the transient response we supplement the controller with �derivative action� by

multiplying K��s� by a lead�lag term which is e�ective over one decade starting
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at �
 rad�s�

K��s� � 
��
s� �

s


�
�s� �


�

�s � �

������

The corresponding disturbance response �y�� is seen to be faster initially and y��t�

stays below ��

Table ���� Alternative loop�shaping designs for the disturbance process

Reference Disturbance

GM PM �c MS MT tr ymax ymax y�t � ��

Spec�� � �
 	 �� 	 ��
� 	 � 	 
��

K� ���� ����� ���� ���� � ��� ��

 
��� ���

K� ��
� ����� 	��	 ��	� ���� ��� ���� ���� ���

K� ���� �
��� 	��� ���	 ��	� ��� ���� ���� �

�

K� ���� �
��� ���� ���� ���� ��� ���� 
��� �

�

Table 	�	 summarizes the results for the four loop�shaping designs� the inverse�

based design K� for reference tracking and the three designs K�� K� and K�

for disturbance rejection� Although controller K� satis�es the requirements for

disturbance rejection� it is not satisfactory for reference tracking� the overshoot is

��� which is signi�cantly higher than the maximum value of ��� On the other

hand� the inverse�based controller K� inverts the term ����
s � �� which is also in

the disturbance model� and therefore yields a very sluggish response to disturbances

�the output is still 
��� at t � � s whereas it should be less than 
����

��	�� Two degrees�of�freedom design

For the disturbance process example we see from Table 	�	 that none of

the controller designs meet all the objectives for both reference tracking and

disturbance rejection� The problem is that for reference tracking we typically

want the controller to look like �
sG

�� see �	����� whereas for disturbance

rejection we want the controller to look like �
sG

��Gd� see �	����� We cannot

achieve both of these simultaneously with a single �feedback� controller�

The solution is to use a two degrees�of�freedom controller where the

reference signal r and output measurement ym are independently treated by

the controller� rather than operating on their di
erence r � ym� There exist

several alternative implementations of a two degrees�of�freedom controller�

The most general form is shown in Figure ��
�b� on page �	 where the

controller has two inputs �r and ym� and one output �u�� However� the

controller is often split into two separate blocks as shown in Figure 	�		 where

Ky denotes the feedback part of the controller andKr a reference pre�lter� The

feedback controllerKy is used to reduce the e
ect of uncertainty �disturbances

and model error� whereas the pre�lter Kr shapes the commands to improve

performance� In general� it is optimal to design the combined two degrees�of�
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Figure ����� Two degrees�of�freedom controller�

freedom controller K in one step� However� in practice Ky is often designed

�rst for disturbance rejection� and then Kr is designed to improve reference

tracking� This is the approach taken here�

Let T � L���L��� �with L � GKy� denote the complementary sensitivity

function for the feedback system� Then for a one degree�of�freedom controller

y � Tr� whereas for a two degrees�of�freedom controller y � TKrr� If the

desired transfer function for reference tracking �often denoted the reference

model� is Tref � then the corresponding ideal reference pre�lter Kr satis�es

TKr � Tref � or

Kr�s� � T���s�Tref�s� �	����

Thus� in theory we may design Kr�s� to get any desired tracking response

Tref�s�� However� in practice it is not so simple because the resulting Kr�s�

may be unstable �if G�s� has RHP�zeros� or unrealizable� and relatively

uncertain if T �s� is not known exactly� A convenient practical choice of

pre�lter is the lead�lag network
Kr�s� �

�leads� �

�lags� �

�	����

Here we select �lead 
 �lag if we want to speed up the response� and �lead � �lag

if we want to slow down the response� If one does not require fast reference

tracking� which is the case in many process control applications� a simple lag

is often used �with �lead � ���

Example ��
 Two degrees�of�freedom design for the disturbance process

In Example 	�� we designed a loop�shaping controller K��s� for the plant in �	�

�

which gave good performance with respect to disturbances� However� the command


