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on-line tuning we can distinguish between three main approaches to controller
design:

1. Shaping of transfer functions. In this approach the designer specifies
the magnitude of some transfer function(s) as a function of frequency, and
then finds a controller which gives the desired shape(s).

(a) Loop shaping. This is the classical approach in which the magnitude
of the open-loop transfer function, L(jw), is shaped. Usually no
optimization is involved and the designer aims to obtain |L(jw)| with
desired bandwidth, slopes etc. We will look at this approach in detail
later in this chapter. However, classical loop shaping is difficult to apply
for complicated systems, and one may then instead use the Glover-
McFarlane H ., loop-shaping design presented in Chapter 9. The method
consists of a second step where optimization is used to make an initial
loop-shaping design more robust.

(b) Shaping of closed-loop transfer functions, such as S, T and KS.
Optimization is usually used, resulting in various H~, optimal control
problems such as mixed weighted sensitivity; more on this later.

2. The signal-based approach. This involves time domain problem

formulations resulting in the minimization of a norm of a transfer function.
Here one considers a particular disturbance or reference change and then
one tries to optimize the closed-loop response. The “modern” state-space
methods from the 1960’s, such as Linear Quadratic Gaussian (LQG)
control, are based on this signal-oriented approach. In LQG the input
signals are assumed to be stochastic (or alternatively impulses in a
deterministic setting) and the expected value of the output variance (or
the 2-norm) is minimized. These methods may be generalized to include
frequency dependent weights on the signals leading to what is called the
Wiener-Hopf (or Hz-norm) design method.
By considering sinusoidal signals, frequency-by-frequency, a signal-based
H o~ optimal control methodology can be derived in which the H,, norm of
a combination of closed-loop transfer functions is minimized. This approach
has attracted significant interest, and may be combined with model
uncertainty representations, to yield quite complex robust performance
problems requiring p-synthesis; an important topic which will be addressed
in later chapters.

3. Numerical optimization. This often involves multi-objective optimiza-
tion where one attempts to optimize directly the true objectives, such as
rise times, stability margins, etc. Computationally, such optimization prob-
lems may be difficult to solve, especially if one does not have convexity.
Also, by effectively including performance evaluation and controller de-
sign in a single step procedure, the problem formulation is far more criti-
cal than in iterative two-step approaches. The numerical optimization ap-
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proach may also be performed on-line, which might be useful when dealing
with cases with constraints on the inputs and outputs. On-line optimiza-
tion approaches such as model predictive control are likely to become more
popular as faster computers and more efficient and reliable computational
algorithms are developed.

2.6 Loop shaping

In the classical loop-shaping approach to controller design, “loop shape” refers
to the magnitude of the loop transfer function L = GK as a function of
frequency. An understanding of how K can be selected to shape this loop
gain provides invaluable insight into the multivariable techniques and concepts
which will presented later in the book, and so we will discuss loop shaping in
some detail in the next two sections.

2.6.1 Trade-offs in terms of L

Recall equation (2.19), which yields the closed-loop response in terms of the
control error e =y — r:

e=—(T+L)'r+(T+L)"'Ged-(I+L)"'Ln (2.48)
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For “perfect control” we want e = y — r = 0; that is, we would like
ex0-d+0-r4+0-n (2.49)

The first two requirements in this equation, namely disturbance rejection and
command tracking, are obtained with S = 0, or equivalently, T' &~ I. Since
S = (I + L)1, this implies that the loop transfer function L must be large
in magnitude. On the other hand, the requirement for zero noise transmission
implies that T' ~ 0, or equivalently, S = I, which is obtained with L = 0. This
illustrates the fundamental nature of feedback design which always involves a
trade-off between conflicting objectives; in this case between large loop gains
for disturbance rejection and tracking, and small loop gains to reduce the
effect of noise.

It is also important to consider the magnitude of the control action u (which
is the input to the plant). We want u small because this causes less wear and
saves input energy, and also because u is often a disturbance to other parts
of the system (e.g. consider opening a window in your office to adjust your
body temperature and the undesirable disturbance this will impose on the air
conditioning system for the building). In particular, we usually want to avoid
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fast changes in u. The control action is given by u = K(r — y,,) and we find
as expected that a small u corresponds to small controller gains and a small
L=_GK.

The most important design objectives which necessitate trade-offs in
feedback control are summarized below:

1. Performance, good disturbance rejection: needs large controller gains, i.e.

L large.

Performance, good command following: L large.

Stabilization of unstable plant: L large.

Mitigation of measurement noise on plant outputs: L small.

Small magnitude of input signals: K small and L small.

Physical controller must be strictly proper: K — 0 at high frequencies.

Nominal stability (stable plant): L small (because of RHP-zeros and time

delays).

8. Robust stability (stable plant): L small (because of uncertain or neglected
dynamics).

Nt W

Fortunately, the conflicting design objectives mentioned above are generally
in different frequency ranges, and we can meet most of the objectives by using
a large loop gain (|L| > 1) at low frequencies below crossover, and a small
gain (|L| < 1) at high frequencies above crossover.

2.6.2 Fundamentals of loop-shaping design

By loop shaping one usually means a design procedure that involves explicitly
shaping the magnitude of the loop transfer function, |L(jw)|. Here L(s) =
G(s)K(s) where K(s) is the feedback controller to be designed and G(s)
is the product of all other transfer functions around the loop, including
the plant, the actuator and the measurement device. Essentially, to get the
benefits of feedback control we want the loop gain, |L(jw)|, to be as large
as possible within the bandwidth region. However, due to time delays, RHP-
zeros, unmodelled high-frequency dynamics and limitations on the allowed
manipulated inputs, the loop gain has to drop below one at and above
some frequency which we call the crossover frequency w.. Thus, disregarding
stability for the moment, it is desirable that |L(jw)| falls sharply with
frequency. To measure how | L| falls with frequency we consider the logarithmic
slope N = dIn|L|/dInw. For example, a slope N = —1 implies that |L| drops
by a factor of 10 when w increases by a factor of 10. If the gain is measured
in decibels (dB) then a slope of N = —1 corresponds to —20 dB/ decade. The
value of — NV at higher frequencies is often called the roll-off rate.

The design of L(s) is most crucial and difficult in the crossover region
between w, (where |L| = 1) and w;gg (where ZL = —180°). For stability, we at
least need the loop gain to be less than 1 at frequency wisgo, i.e., |L(jwiso)| < 1.
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Thus, to get a high bandwidth (fast response) we want wygo large, that is, we
want the phase lag in L to be small. Unfortunately, this is not consistent with
the desire that |L(jw)| should fall sharply. For example, the loop transfer
function L = 1/s™ (which has a slope N = —n on a log-log plot) has a phase
LL = —n - 90°. Thus, to have a phase margin of 45° we need /L > —135°,
and the slope of |L| cannot exceed N = —1.5.

In addition, if the slope is made steeper at lower or higher frequencies, then
this will add unwanted phase lag at intermediate frequencies. As an example,
consider L;(s) given in (2.13) with the Bode plot shown in Figure 2.3. Here
the slope of the asymptote of |L| is —1 at the gain crossover frequency (where
|Li(jw.)| = 1), which by itself gives —90° phase lag. However, due to the
influence of the steeper slopes of —2 at lower and higher frequencies, there is
a “penalty” of about —35° at crossover, so the actual phase of L; at w,. is
approximately —125°.

The situation becomes even worse for cases with delays or RHP-zeros in
L(s) which add undesirable phase lag to L without contributing to a desirable
negative slope in L. At the gain crossover frequency w,, the additional phase
lag from delays and RHP-zeros may in practice be —30° or more.

In summary, a desired loop shape for |L(jw)| typically has a slope of about
—1 in the crossover region, and a slope of —2 or higher beyond this frequency,
that is, the roll-off is 2 or larger. Also, with a proper controller, which is
required for any real system, we must have that L = GK rolls off at least
as fast as G. At low frequencies, the desired shape of |L| depends on what
disturbances and references we are designing for. For example, if we are
considering step changes in the references or disturbances which affect the
outputs as steps, then a slope for |L| of —1 at low frequencies is acceptable.
If the references or disturbances require the outputs to change in a ramp-like
fashion then a slope of —2 is required. In practice, integrators are included in
the controller to get the desired low-frequency performance, and for offset-free
reference tracking the rule is that

o L(s) must contain at least one integrator for each integrator in r(s).

To see this, let L(s) = Z(s)/s’” where E(O) is nonzero and finite and ny is
the number of integrators in L(s) — sometimes ny is called the system type.
Consider a reference signal of the form r(s) = 1/s"". For example, if r(t) is
a unit step then r(s) = 1/s (n, = 1), and if r(¢) is a ramp then r(s) = 1/s>
(n, = 2). The final value theorem for Laplace transforms is

lim e(t) = lim se(s) (2.50)

t—o0 5—0
In our case, the control error is
1 gnI—nr

e(s) = —TL(S)T(S =

sy L(s)
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and to get zero offset (i.e. e(t = oo) = 0) we must from (2.50) require n; > n,,
and the rule follows. In Section 2.6.4, we discuss how to specify the loop shape
when disturbance rejection is the primary objective of control.

In conclusion, one can define the desired loop transfer function in terms of
the following specifications:

1. The gain crossover frequency, w,, where |L(jw.)| = 1.

2. The shape of L(jw), e.g., in terms of the slope of |L(jw)| in certain
frequency ranges. Typically, we desire a slope of about N = —1 around
crossover, and a larger roll-off at higher frequencies. The desired slope at
lower frequencies depends on the nature of the disturbance or reference
signal.

3. The system type, defined as the number of pure integrators in L(s).

Loop-shaping design is typically an iterative procedure where the designer
shapes and reshapes |L(jw)| after computing the phase and gain margins,
the peaks of closed-loop frequency responses (M and Mg), selected closed-
loop time responses, the magnitude of the input signal, etc. The procedure is
illustrated next by an example.

Example 2.6 Loop-shaping design for the inverse response process.
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Figure 2.16: Frequency response of L(s) in (2.51) for loop-shaping design with
K. = 0.05. (GM= 2.92, PM= 54°, w, = 0.15, wiso = 0.43, Ms = 1.75, Mr = 1.11)

We will now design a loop-shaping controller for the example process in (2.27)
which has a RHP-zero at s = 0.5. The RHP-zero limits the achievable bandwidth
and so the crossover region (defined as the frequencies between w. and wigo) will
be at about 0.5 rad/s. We only require the system to have one integrator (type 1
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Figure 2.17: Response to step in reference for loop-shaping design.
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Figure 2.18: Magnitude Bode plot of controller (2.52) for loop-shaping design.

system), and therefore a reasonable approach is to let the loop transfer function have

a slope of —1 at low frequencies, and then to roll off with a higher slope at frequencies
beyond 0.5 rad/s. We choose the following loop-shape

L(s) = 3K (—25+1)

“5(25+1)(0.335 + 1) (2.51)

The frequency response (Bode plots) of L is shown in Figure 2.16. The asymptotic
slope of |L| is —1 up to 3 rad/s where it changes to —2. The controller corresponding
to the loop-shape in (2.51) is

K(s) = K. (10s +1)(5s + 1)

K. =0.05 2.52
“s(25+1)(0.33s +1)" ¢ (2:52)

The controller has zeros at the locations of the plant poles. This is desired in this case
because we do not want the slope of the loop shape to drop at the break frequencies
1/10 = 0.1 [rad/s] and 1/5 = 0.2 [rad/s] just before crossover. The controller
gain K. was selected to get a reasonable trade-off between speed of response and
the robustness margin to instability. The phase of L is —90° at low frequency, and
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at w = 0.5 [rad/s] the additional contribution from the term _Zi:_"il in (2.51) is
—90°, so for stability we need w. < 0.5 [rad/s]. The selection of K. = 0.05 yields
we = 0.15 [rad/s] corresponding to GM= 2.92 and PM=54°. The corresponding time
response is shown in Figure 2.17. It is seen to be much better than the responses with
either the simple Pl-controller in Figure 2.7 or with the P-controller in Figure 2.5.
Figure 2.17 also shows that the magnitude of the input signal is reasonable (assuming
the signals have been scaled such that we want the input to be less than about 1 in
magnitude). This means that the controller gain is not too large at high frequencies.
The magnitude Bode plot for the controller (2.52) is shown in Figure 2.18. It is
interesting to note that in the crossover region around w = 0.5 [rad/s] the controller
gain 18 quite constant, around 1 in magnitude, which is similar to the “best” gain
found using a P-controller (see Figure 2.5).

Limitations imposed by RHP-zeros and time delays.

Based on the above loop-shaping arguments we can now examine how the
presence of delays and RHP-zeros limit the achievable control performance.
We have already argued that if we want the loop shape to have a slope of
—1 around crossover (w.), with preferably a steeper slope before and after
crossover, then the phase lag of L at w. will necessarily be at least —90°,
even when there are no RHP-zeros or delays. Therefore, if we assume that for
performance and robustness we want a phase margin of about 35° or more,
then the additional phase contribution from any delays and RHP-zeros at
frequency w, cannot exceed about —55°.

First consider a time delay 6. It yields an additional phase contribution of
—6w, which at frequency w = 1/6 is —1 rad = —57° (which is more than —55°).
Thus, for acceptable control performance we need w. < 1/6, approximately.

Next consider a real RHP-zero at s = z. To avoid an increase in slope caused
by this zero we place a pole at s = —z such that the loop transfer function
contains the term _si";z, the form of which is referred to as all-pass since its
magnitude equals 1 at all frequencies. The phase contribution from the all-
pass term at w = z/2 is —2arctan(0.5) = —53° (which is close to —55°), so
for acceptable control performance we need w. < z/2, approximately.

2.6.3 Inverse-based controller design

In Example 2.6, we made sure that L(s) contained the RHP-zero of G(s),
but otherwise the specified L(s) was independent of G(s). This suggests the
following possible approach for a minimum-phase plant (i.e, one with no RHP-
zeros or time delays). Select a loop shape which has a slope of —1 throughout
the frequency range, namely

L(s) =22 (2.53)
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where w, is the desired gain crossover frequency. This loop shape yields a
phase margin of 90° and an infinite gain margin since the phase of L(jw)
never reaches —180°. The controller corresponding to (2.53) is
We 1

K(s) = ?G’ (s) (2.54)
That is, the controller inverts the plant and adds an integrator (1/s). This
is an old idea, and is also the essential part of the IMC (Internal Model
Control) design procedure of Morari (Morari and Zafiriou, 1989) which has
proved successful in many applications. However, there are at least two good
reasons for why this controller may not be a good choice:

1. The controller will not be realizable if G(s) has more poles than zeros, and
may in any case yield large input signals. These problems may be partly
fixed by adding high-frequency dynamics to the controller.

2. The loop shape resulting from (2.53) is not generally desirable, unless the
references and disturbances affect the outputs as steps. This is illustrated
by the following example.

Example 2.7 Disturbance process. We now introduce our second main
example process and control problem in which disturbance rejection is an important
objective in addition to command tracking. We assume that the plant has been
appropriately scaled as outlined in Section 1.4.

Problem formulation. Consider the disturbance process described by

200 1 100
)= im0 “O = 041

(2.55)

with time in seconds. A block diagram is shown in Figure 2.20. The control objectives
are:

1. Command tracking: The rise time (to reach 90% of the final value) should be less
than 0.3 [s] and the overshoot should be less than 5%.

2. Disturbance rejection: The output in response to a unit step disturbance should
remain within the range [—1,1] at all times, and it should return to 0 as quickly
as possible (|y(t)| should at least be less than 0.1 after 3 s).

3. Input constraints: u(t) should remain within the range [—1,1] at all times to avoid
input saturation (this is easily satisfied for most designs).

Analysis. Since Gq(0) = 100 we have that without control the output response to a
unit disturbance (d = 1) will be 100 times larger than what is deemed to be acceptable.
The magnitude |Gq(jw)| is lower at higher frequencies, but it remains larger than 1
up to wqg = 10 [rad/s] (where |Gq(jwq)| = 1). Thus, feedback control is needed up to
frequency wa, so we need we to be approzimately equal to 10 rad/s for disturbance
rejection. On the other hand, we do not want w. to be larger than necessary because
of sensitivity to noise and stability problems associated with high gain feedback. We
will thus aim at a design with w. &~ 10 [rad/s].
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Inverse-based controller design. We will consider the “inverse-based” design as
given by (2.53) and (2.54) with we. = 10. This yields an unrealizable controller and
therefore we choose to approzimate the plant term (0.05s + 1)* by (0.1s + 1) and
then in the controller we let this term be effective over one decade, i.e., we use
(0.1s 4+ 1)/(0.01s + 1) to give the realizable design

we10s+1 0.1s+1 We 0.1s+1
K = — —, L = — =10
o) =500t L) T S s 00D -
(2.56)
1.5 1.5
1 1
= =
0.5 0.5
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0 1 2 3 0 1 2 3
Time [sec] Time [sec]
(a) Tracking response. (b) Disturbance response.

Figure 2.19: Responses with “inverse-based” controller Ko(s) for disturbance
process.

The response to a step reference is excellent as shown in Figure 2.19 (a). The rise
time is about 0.16 s and there is no overshoot so the specifications are more than
satisfied. However, the response to a step disturbance (Figure 2.19 (b)) is much too
sluggish. Although the output stays within the range [—1,1], it is still 0.75 at t = 3
s (whereas it should be less than 0.1). Because of the integral action the output does
eventually return to zero, but it does not drop below 0.1 until after 23 s.

The above example illustrates that the simple “inverse-based” design
method where L has a slope of about N = —1 at all frequencies, does
not always yield satisfactory designs. The objective of the next section is
to understand why the disturbance response was so poor, and to propose a
more desirable loop shape for disturbance rejection.

2.6.4 Loop shaping for disturbance rejection

At the outset we assume that the disturbance has been scaled such that at each
frequency |d(w)| < 1, and the main control objective is to achieve |e(w)| < 1.
With feedback control we have e = y = SG4d, so to achieve |e(w)| < 1 for
|d(w)] = 1 (the worst-case disturbance) we require |SG4(jw)| < 1,Vw, or
equivalently,

1+ L|>|G4 VYw (2.57)
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At frequencies where |G4| > 1, this is approximately the same as requiring
|L| > |Gq4|. However, in order to minimize the input signals, thereby reducing
the sensitivity to noise and avoiding stability problems, we do not want to use
larger loop gains than necessary (at least at frequencies around crossover).
A reasonable initial loop shape Lmin(s) is then one that just satisfies the
condition

| Lusinl % |Gl (2.58)

where the subscript min signifies that L,;, is the smallest loop gain to satisfy
le(w)] < 1. Since L = GK the corresponding controller with the minimum
gain satisfies

| Kmin| = |GGy (2.59)

In addition, to improve low-frequency performance (e.g. to get zero steady-
state offset), we often add integral action at low frequencies, and use

S+ wy

1] = 1226 Gl (2.60)

This can be summarized as follows:

e For disturbance rejection a good choice for the controller is one which
contains the dynamics (G4) of the disturbance and inverts the dynamics
(G) of the inputs (at least at frequencies just before crossover).

e For disturbances entering directly at the plant output, G4 = 1, and we
get [Kmin| = |G|, so an inverse-based design provides the best trade-off
between performance (disturbance rejection) and minimum use of feedback.

e For disturbances entering directly at the plant input (which is a common
situation in practice — often referred to as a load disturbance), we have
G4 = G and we get |Kpin| = 1, so a simple proportional controller with
unit gain yields a good trade-off between output performance and input
usage.

e Notice that a reference change may be viewed as a disturbance directly
affecting the output. This follows from (1.17), from which we get that a
maximum reference change r = R may be viewed as a disturbance d = 1
with G4(s) = —R where R is usually a constant. This explains why selecting
K to be like G~! (an inverse-based controller) yields good responses to step
changes in the reference.

In addition to satisfying |L| ~ |Gq4| (eq. 2.58) at frequencies around
crossover, the desired loop-shape L(s) may be modified as follows:

1. Around crossover make the slope NV of |L| to be about —1. This is to achieve
good transient behaviour with acceptable gain and phase margins.

2. Increase the loop gain at low frequencies as illustrated in (2.60) to improve
the settling time and to reduce the steady-state offset. Adding an integrator
yields zero steady-state offset to a step disturbance.
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3. Let L(s) roll off faster at higher frequencies (beyond the bandwidth) in
order to reduce the use of manipulated inputs, to make the controller
realizable and to reduce the effects of noise.

The above requirements are concerned with the magnitude, |L(jw)|. In
addition, the dynamics (phase) of L(s) must be selected such that the closed-
loop system is stable. When selecting L(s) to satisfy |L| &~ |G4| one should
replace G4(s) by the corresponding minimum-phase transfer function with the
same magnitude, that is, time delays and RHP-zeros in G4(s) should not be
included in L(s) as this will impose undesirable limitations on feedback. On
the other hand, any time delays or RHP-zeros in G(s) must be included in
L = GK because RHP pole-zero cancellations between G(s) and K (s) yield
internal instability, see Chapter 4.

Remark. The idea of including a disturbance model in the controller is well known
and is more rigorously presented in, for example, research on the internal model
principle (Wonham, 1974), or the internal model control design for disturbances
(Morari and Zafiriou, 1989). However, our development is simple, and sufficient for
gaining the insight needed for later chapters.

Example 2.8 Loop-shaping design for the disturbance process

ld
0.5
T + w i-'- p Y
~ K(s) (0.05;1)2 + 15231 >

Figure 2.20: Block diagram representation of the disturbance process in (2.55)

Consider again the plant described by (2.55). The plant can be represented by
the block diagram in Figure 2.20, and we see that the disturbance enters at the plant
input in the sense that G and G4 share the same dominating dynamics as represented
by the term 200/(10s + 1).

Step 1. Initial design. From (2.58) we know that a good initial loop shape looks like
|Lmin| = |G4| = %| at frequencies up to crossover. The corresponding controller
is K(5) = G™ Linin = 0.5(0.055 4 1)%. This controller is not proper (i.e, it has more
zeros than poles), but since the term (0.05s+1)> only comes into effect at 1/0.05 = 20
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[rad/s], which is beyond the desired gain crossover frequency w. = 10 [rad/s], we may
replace it by a constant gain of 1 resulting in a proportional controller

Ki(s) =0.5 (2.61)

The magnitude of the corresponding loop transfer function, |Li(jw)|, and the
response (y1(t)) to a step change in the disturbance are shown in Figure 2.21. This
simple controller works surprisingly well, and for t < 3s the response to a step change
in the disturbance response is not much different from that with the more complicated
inverse-based controller Ko(s) of (2.56) as shown earlier in Figure 2.19. However,
there is no integral action and yi(t) — 1 as t — co.

10 15
Ls,L3
o 2 ’ . y
<10
Z Ly
E}
<10 0.5
10
Y3
5 Ls Y2
10° fol 0
107 10’ 10? 0 1 2 3
Frequency [rad/s] Time [sec]
(a) Loop gains. (b) Disturbance responses.

Figure 2.21: Loop shapes and disturbance responses for controllers K1, K> and K3
for the disturbance process.

Step 2. More gain at low frequency. To get integral action we multiply the
controller by the term 5'*'%, where wr s the frequency up to which the term is
effective (the asymptotic value of the term is 1 for w > wr). For performance we
want large gains at low frequencies, so we want wr to be large, but in order to
maintain an acceptable phase margin (which is 44.7° for controller K1) the term
should not add too much negative phase at frequency we, so wr should not be too
large. A reasonable value is wr = 0.2w. for which the phase contribution from 5+;JI
is arctan(1/0.2) — 90° = —11° at we. In our case we = 10 [rad/s], so we select the
following controller

s+ 2
s

Ka(s) =0.5 (2.62)

The resulting disturbance response (y2) in shown in Figure 2.21 satisfies the
requirement that |y(t)] < 0.1 at time t = 3 s, but y(t) ezceeds 1 for a short time.
Also, the response is slightly oscillatory as might be expected since the phase margin
is only 31° and the peak values for |S| and |T| are Ms = 2.28 and M = 1.89 (see
Table 2.2).

Step 3. High-frequency correction. 7o increase the phase margin and improve
the transient response we supplement the controller with “derivative action” by
multiplying Ka(s) by a lead-lag term which is effective over one decade starting
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at 20 rad/s:
s+2 0.05s+1

s 0.005s +1
The corresponding disturbance response (ys) is seen to be faster initially and ys(t)
stays below 1.

Ks(s) = 0.5 (2.63)

Table 2.2: Alternative loop-shaping designs for the disturbance process

Reference Disturbance
GM PM We Ms | Mr t, Ymax Ymax | Y(t =3)
Spec.— ~ 10 <3| <105 <1 <0.1
Ko 9.95 | 72.9° | 114 | 1.34 1 .16 1.00 0.95 .75
K 4.04 | 44.7° 8.48 1.83 | 1.33 21 1.24 1.35 .99
K> 3.24 | 30.9° 8.65 2.28 | 1.89 .19 1.51 1.27 .001
K3 19.7 | 50.9° 9.27 1.43 | 1.23 .16 1.24 0.99 .001

Table 2.2 summarizes the results for the four loop-shaping designs; the inverse-
based design Ko for reference tracking and the three designs Ki, K> and K3
for disturbance rejection. Although controller Ks satisfies the requirements for
disturbance rejection, it is not satisfactory for reference tracking; the overshoot is
24% which 1is significantly higher than the mazimum value of 5%. On the other
hand, the inverse-based controller Ko inverts the term 1/(10s + 1) which is also in
the disturbance model, and therefore yields a very sluggish response to disturbances
(the output is still 0.75 at t = 3 s whereas it should be less than 0.1).

2.6.5 Two degrees-of-freedom design

For the disturbance process example we see from Table 2.2 that none of
the controller designs meet all the objectives for both reference tracking and
disturbance rejection. The problem is that for reference tracking we typically
want the controller to look like %Gil see (2.54), whereas for disturbance
rejection we want the controller to look like %GilGd, see (2.60). We cannot
achieve both of these simultaneously with a single (feedback) controller.

The solution is to use a two degrees-of-freedom controller where the
reference signal r and output measurement y,, are independently treated by
the controller, rather than operating on their difference r — y,,. There exist
several alternative implementations of a two degrees-of-freedom controller.
The most general form is shown in Figure 1.3(b) on page 12 where the
controller has two inputs (r and y,,) and one output (u). However, the
controller is often split into two separate blocks as shown in Figure 2.22 where
K, denotes the feedback part of the controller and K, a reference prefilter. The
feedback controller K, is used to reduce the effect of uncertainty (disturbances
and model error) whereas the prefilter K, shapes the commands to improve
performance. In general, it is optimal to design the combined two degrees-of-
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Figure 2.22: Two degrees-of-freedom controller.

freedom controller K in one step. However, in practice K, is often designed
first for disturbance rejection, and then K, is designed to improve reference
tracking. This is the approach taken here.

Let 7= L(1+ L)™' (with L = GK,) denote the complementary sensitivity
function for the feedback system. Then for a one degree-of-freedom controller
y = T'r, whereas for a two degrees-of-freedom controller y = TK,r. If the
desired transfer function for reference tracking (often denoted the reference
model) is Tyef, then the corresponding ideal reference prefilter K, satisfies
TK, = ref, OT

K. (s) = T (s)Tret (5) (2.64)

Thus, in theory we may design K,(s) to get any desired tracking response
Tref(s). However, in practice it is not so simple because the resulting K,.(s)
may be unstable (if G(s) has RHP-zeros) or unrealizable, and relatively
uncertain if T'(s) is not known exactly. A convenient practical choice of
prefilter is the lead-lag network

TleadS + 1
K, = — 2.65
(5 = Dt (2.65

Here we select Tieaq > Tiag if we want to speed up the response, and Tieaqa < Tiag
if we want to slow down the response. If one does not require fast reference
tracking, which is the case in many process control applications, a simple lag
is often used (with 7Tjeqq = 0).

Example 2.9 Two degrees-of-freedom design for the disturbance process

In Ezample 2.8 we designed a loop-shaping controller K3(s) for the plant in (2.55)
which gave good performance with respect to disturbances. However, the command



