Lecture #10

Classification Annotation (GO/KEGG Pathways)

Annotation

- Annotation uses biological research databases of many types to interpret analytic results.
- It closes the gap between knowledge of sequence and knowledge of function.
- This knowledge is widely scattered and encoded in many different formats.
- Challenge is to develop tools that can be used to access these data, and integrate them.

Some Uses of Annotation

- Perform dimension-reduction at an early stage
- Introduce constraints on relationships between statistical model parameters during model building
- To interpret discovered patterns at the conclusion
- The data evolve rapidly, and it is important to track the version number.

Annotation Resources

Major classes of resources:

- Genes and gene products
- Pathways and gene clusters
- Biochemical pathway elements
- Scientific literature
- Assay-oriented resources that link probe identifiers with associated sequence catalog entries

Bioconductor

Provides access to annotation through:

- 1. Direct real-time queries to Web services
 - May not be reproducible later
- 1. Curated, downloadable modules
 - Reproducible, but may have obsolete information

National Center for Biotechnology Information (NCBI)

EntrezGene: a catalog of genetic loci

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

UniGene defines sequence clusters

http://www.ncbi.nlm.nih.gov/unigene

RefSeq: a non-redundant data set of sequences, including DNA, transcripts and proteins

http://www.ncbi.nlm.nih.gov/RefSeq/

Other resources

Enzyme Commision (EC) numbers are assigned to different enzymes and linked to genes though EntrezGene.

Gene Ontology (GO) is a structured vocabulary of terms describing gene products

PubMed tool for working with published journal articles related to medicine and health

Pathway annotation packages

The Kyoto Encyclopedia of Genes and Genomes (KEGG): can map EntezGene IDs to KEGG pathways.

The cancer Molecular Analysis Project (cMAP): a project providing software and data for exploration of data relevant to cancer. Pathway data is from Biocarta and KEGG

MetaData node of the Bioconductor portal lists R packages that encode annotation resources.

http://www.bioconductor.org/data/metaData.html

Important!! The associations and data are likely to undergo constant change and you will want to update the meta-data packages on a regular basis.

Annotating a platform: HG-U95av2

> biocLite('hgu95av2.db')

> library("hgu95av2.db")

Loading required package: org.Hs.eg.db

> ls("package:hgu95av2.db")

[1] "hgu95av2" "hgu95av2_dbconn" "hgu95av2_dbfile"
[4] "hgu95av2_dbInfo" "hgu95av2_dbschema" "hgu95av2ACCNUM"
[7] "hgu95av2ALIAS2PROBE" "hgu95av2CHR" "hgu95av2CHRLENGTHS"
[10] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND" "hgu95av2ENSEMBL"
[13] "hgu95av2ENSEMBL2PROBE" "hgu95av2ENTREZID" "hgu95av2ENZYME"

"hgu95av2GO" [16] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME" [19] "hgu95av2GO2ALLPROBES" "hgu95av2GO2PROBE" "hgu95av2MAP" [22] "hgu95av2MAPCOUNTS" "hgu95av2OMIM" "hgu95av2ORGANISM" [25] "hgu95av2ORGPKG" "hgu95av2PATH" "hgu95av2PATH2PROBE" [28] "hgu95av2PFAM" "hgu95av2PMID" "hgu95av2PMID2PROBE" [31] "hgu95av2PROSITE" "hgu95av2SYMBOL" "hgu95av2REFSEQ" Lecture 7. Annotation & GSEA [34] "hgu95av2UNIGENE" "hgu95av2UNIPROT"

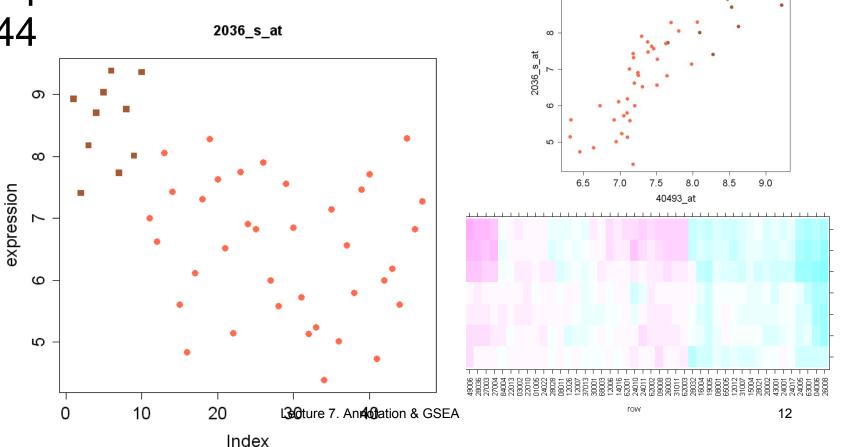
Number of Mapped Probes

> hgu95av2()

Quality control information for hgu95av2:

This package has the following mappings: hgu95av2ACCNUM has 12625 mapped keys (of 12625 keys) hgu95av2ALIAS2PROBE has 37969 mapped keys (of 110391 keys) hgu95av2CHR has 11721 mapped keys (of 12625 keys) hgu95av2CHRLENGTHS has 93 mapped keys (of 93 keys) hgu95av2CHRLOC has 11609 mapped keys (of 12625 keys) hgu95av2CHRLOCEND has 11609 mapped keys (of 12625 keys) hgu95av2ENSEMBL has 11468 mapped keys (of 12625 keys) hgu95av2ENSEMBL2PROBE has 9072 mapped keys (of 19971 keys) hgu95av2ENTREZID has 11724 mapped keys (of 12625 keys) hgu95av2ENZYME has 2046 mapped keys (of 12625 keys) hgu95av2ENZYME has 2046 mapped keys (of 12625 keys) hgu95av2ENZYME has 11724 mapped keys (of 912 keys) hgu95av2ENZYME2PROBE has 747 mapped keys (of 12625 keys) Additional Information about this package:

DB schema: HUMANCHIP_DB DB schema version: 2.1 Organism: Homo sapiens Date for NCBI data: 2010-Mar1 Date for GO data: 20100320 Date for KEGG data: 2010-Feb28 Date for Golden Path data: 2009-Jul5 Date for IPI data: 2010-Feb10 Date for Ensembl data: 2010-Mar3

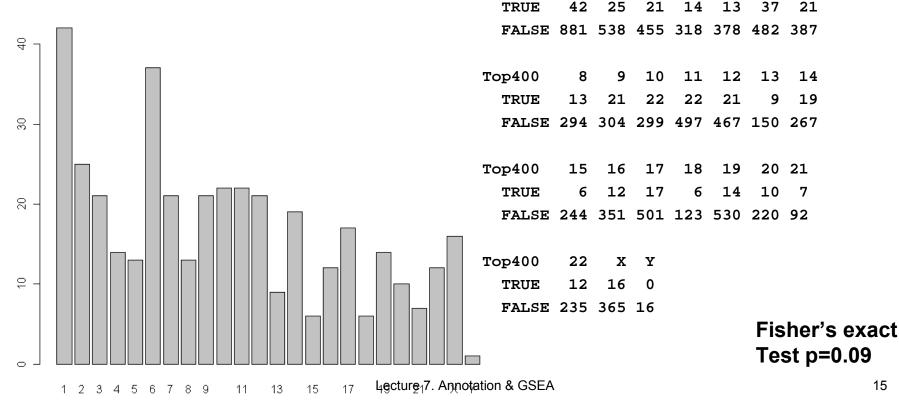


 Expression profile for 1 probe from CD44 Expression profile for multiple probe sets (CD44)

σ

Characterize Gene Lists

- Identify subset of interesting genes.
 e.g. use differential expression analysis
 - Perform non-specific filtering
 - Univariate T-tests
 - Pick subset of top ranking genes
- 2. Characterize subset
 - Produce linked HTML table of results
 - Distribution across chromosomes
 - Distribution across predefined gene sets



			of Resul	ts.html	
C The Fe	eatures in ALLsub - Wind	ows Internet	Explorer		
	🙋 C:\Program Files\R\kims\PM599\	ALLsub.html		🖌 🗲 🗙 Google	P
File Edit	View Favorites Tools Help				
х 📆 -					
🚖 Favorites	: 🛛 👍 🔊 Web Slice Gallery 👻 🏉 Su	iggested Sites 🔻			
🏉 The Fea	tures in ALLsub			🏠 🔹 🗟 🕤 🚍 🖶 🝷 Pag	e 🔻 Safety 👻 Tools 👻 🔞 👻
Broho	Sumbol	T	he Features in ALL	sub	Dathman

Probe	Symbol	Description	Cytoband	UniGene	Gene Ontology	Pathway
<u>1914 at</u>	CCNA1	cyclin A1	<u>13q12.3-q13</u>	<u>Hs.417050</u>	protein binding nucleus cytosol cell cycle mitosis male meiosis I spermatogenesis microtubule cytoskeleton cell division	<u>Cell cycle</u> <u>Progesterone-mediated</u> <u>oocyte maturation</u> <u>Pathways in cancer</u> <u>Acute myeloid leukemia</u>
<u>37809 at</u>	ноха9	homeobox A9	1/010-014	<u>Hs.659350</u> <u>Hs.716765</u>	transcription factor activity protein binding nucleus transcription factor complex cytoplasm regulation of transcription, DNA-dependent multicellular organismal development anterior/posterior pattern formation proximal/distal pattern formation transcription activator activity mammary gland development	

Gene list vs Chromosome

 Number of genes by Chromosome (n=400 genes)

Top400

Test for association with

Chromosomes: 1-22, X, Y

Gene Set Analysis

Goal: Use predefined sets of genes in order to better interpret results from an experiment.

Predefined sets can be based on functional annotation, or prior experiments:

- Gene Ontology Annotation project (GOA)
- KEGG
- Chromosome bands
- Protein domains,...

Approach: Test for over- or under-representation of gene sets in your gene subset.

Warning! Multiple testing is a concern.

Gene Ontology (GO) Consortium

http://www.geneontology.org/GO.teaching.resources.shtml#post (Clark)

- **Objectives:** To build **controlled vocabularies** that allow researchers to describe gene products in a consistent way.
- 1) To support the **annotation** of genomes, genes and gene products to these ontologies;
- 2) To provide **open and public access** to the ontologies;
- 3) To extend the **community** of people using GO.

Three Ontologies in GO

The GO Consortium produces three ontologies covering the concepts that could be described as:

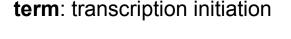
- Molecular Function: elemental activity or task: DNA binding
- Biological Process: broad objective or goal: mitosis, signal transduction.
- Cellular Component: Cecture 7. Annotation & GSEA

Gene Ontology (GO)

GO ontologies are structured as directed acyclic graphs (DAGs), that represent a network in which each term may be the *child* of more than 1 *parent*

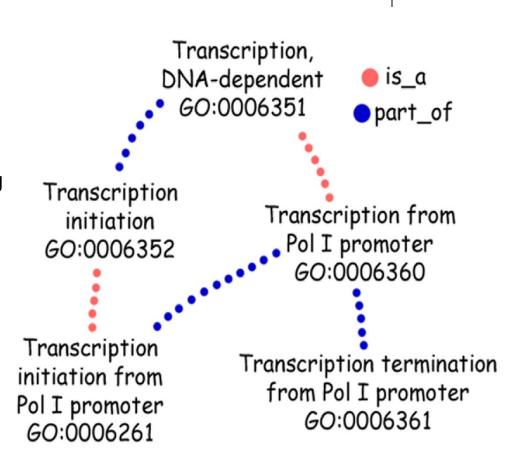
Child terms are more specific than parents.

Child-parent relationship can be either


• *is a* relation

e.g. "nuclear chromosome" is a child of "chromosome"

is a (part of) relation

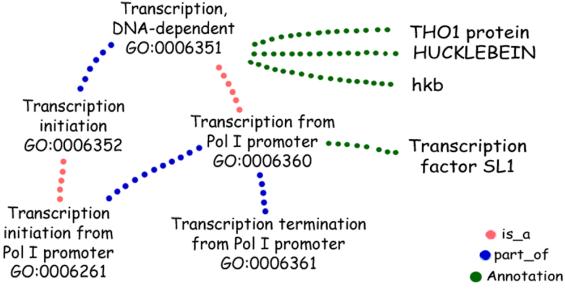

e.g. "nucleus" is a child of "cell"

What is in a GO term?

id: GO:0006352 (GO:7 digit code)

definition: Processes involved in starting transcription, the synthesis of RNA by RNA polymerases using a DNA template.

http://www.geneontology.org/GO.teaching.resources.shtml#post Lecture 7. Annotation & GSEA


Annotation of Gene Products

Mapping gene products to terms is not part of GO.

The gene products are **electronically and then manually annotated** to appropriate

gene products[.]

This annotation shows that HUCKLEBEIN protein is involved in the process of DNAdependent transcription. Term characteristics are inherited, so Transcription factor SL1 is understood also to be involved in DNA-dependent transcription and its parents.

Lecture 7. Annotation & GSEA

http://www.geneontology.org/GO.teaching.resources.shtml#post

Gene Set Analysis using GO

Goal: Determine if the frequency of genes annotated at a GO term are overrepresented in your subset of "interesting" genes.

	Define the "gene univer Classify gene by GO terr		in Gene Subse t	Not in Gene Subset
	& subset membersh		N ₁₁	N ₁₂
3.	Test independence using	term		
	'Hypergeometric testir	Not in GO term	N ₂₁	N ₂₂
	e.g. use Fisher's exact	test		
4.	Repeat 2 & 3 for each G	Oreatego	ory (mu	Itiple 22

The Importance of the Gene Universe Universe = 1,000 genes

	in Gene Subse t	Not in Gene Subset		in Gene Subse t	Not in Gene Subset
in GO	10	30	in GO	10	30
Not in GO	390 Fisher's p =	570	Not in GO	390	4570
% in GO	Fisher's p = 2.5%	5%	% in GO	2.5%	0.65%

Comments:

- The gene universe should be defined by the genes that are represented on your microarray.
- It is also sensible for gene expression studies to limit the universe to genes that are expressed. (e.g. apply a non-specific filter)

See "Use and misuse of the gene ontology annotations" (Rhee et al. Nat Rev Genet, 2008)

Gene Set Analysis using GO

Gene to GO BP test for over-representation 2746 GO BP ids tested (42 have p < 0.001) Selected gene set size: 400 Gene universe size: 3878 Annotation package: hgu95av2 250 20 Frequency 150 9 20 0 0.2 0.8 0.4 0.6 0.0 1.0 p-values

Lecture 7. Annotation & GSEA

Gene Set Analysis using GO

Top hits for p<0.001

GOBPID	Pvalue	OddsRatio	ExpCount	Count	Size
1 GO:0023052	6.403056e-08	1.799922	117.68953	165	1141
2 GO:0007166	2.678169e-07	2.122942	42.90872	75	416
3 GO:0006955	4.570910e-07	2.325098	29.80918	57	289
4 GO:0023033	2.816269e-06	1.949264	47.03455	77	456
5 GO:0002376	4.837927e-06	1.945569	44.45591	73	431
6 GO:0023060	4.949857e-05	1.577090	100.67045	134	976
			Τe	erm	
1			signal:	ing	
2 cell surfa	ce receptor l:	inked signa	aling pathw	vay	
3		im	mune respon	nse	
4		sign	aling path	way	
5		immune s	ystem proce	ess	
6		signal	transmiss	ion	
	Lecture	7. Annotation & C	GSEA		

Gene Set Enrichment Analysis (GSEA)

Use: To find biological themes in gene sets

Approach: Use a continuous-valued score, e.g. tstatistic, and see whether its values are associated with the gene sets of interest.

For the 2-sample scenario:

Let K denote the gene set

|K| the number of genes in the gene set

t_k the t-statistic for differential expression for gene k \in K $\sqrt{|K|} \sum_{k \in K} l_k^k$

Test statistic:

If genes are independent, under H_0 , $z_k \sim N(0, 1)$.

Gene Set Enrichment Analysis

Comment: Despite making the same strong assumption we've made before about the genes behaving independently, the statistic seems to lead to reasonable results.

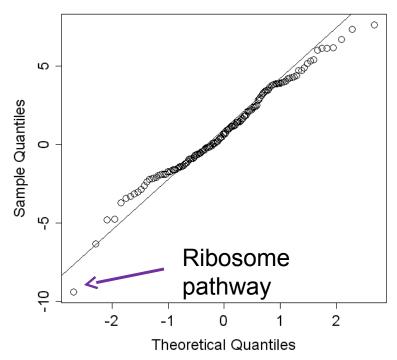
The difference from Hypergeometric testing is that we don't need to classify genes as differentially expressed or not.

Strength: increase statistical power of analyses by aggregating the signal across groups of related genes.

Pathways as Gene Sets

- **KEGG** (Kyoto Encyclopedia of Genes and Genomes) provides mappings from genes to pathways.
- In Bioconductor, we can map probes from microarrays to KEGG pathways and ask if

Pathwa y					Gene n
А	1	1	0	0	1
B 	1	0	1		0
ZZ	0	0	1		1

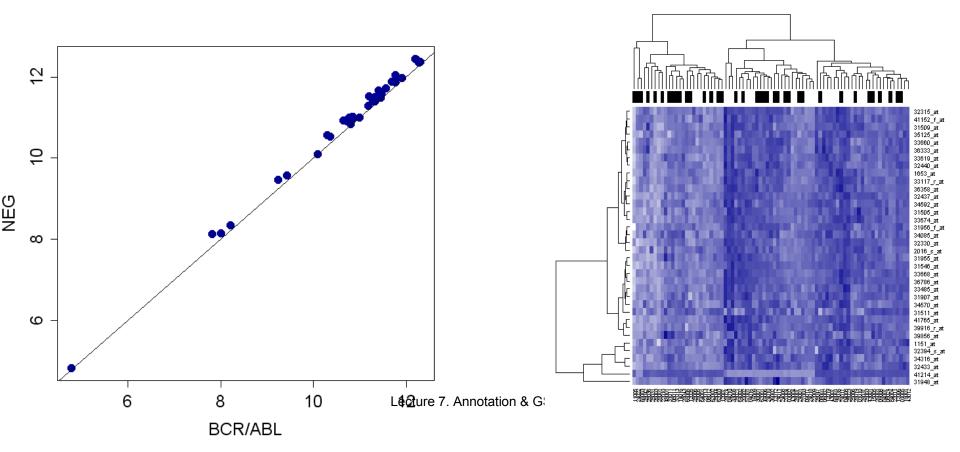

Example: ALL (Ch13)

- 1. Preprocess ALL data
 - filter on IQR
 - require gene in EntrezGene
 - restrict to 1 probe/gene

using max IQR

- 2. Get all pathways that include probes found in 1.
- 3. Reduce data set to probes in pathways identified in 2.
- 4. Require pathways to

 Compute z_k for each pathway and plot Q-Q plot.



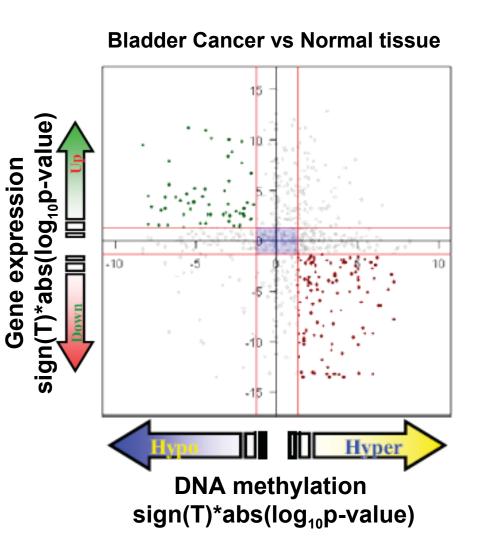
Normal Q-Q Plot

Ribosome Pathway

 Average expression level in NEG vs BCR/ABL samples Heatmap for genes in Ribosome Pathway

DNA-Methylation vs. Gene Expression

Some facts:


- DNA methylation is a mechanism for silencing genes
- Lots of aberrant DNA methylation is present in cancer
- **Question:** In cancer, is DNA methylation associated with gene silencing?

Approach:

- 1. Use DNA methylation microarrays in samples of cancer and normal tissue and identify probes that are differentially methylated
- 2. Use gene expression microarrays in samples of cancer and normal tissue and identify probes that are differentially expressed

Compare results

DNA-Methylation vs. Gene Expression

Observed Number of Genes

GEX	Нур	NS	Нур	%Tot
	0		er	al
Ť	56	106	63	39%
NS	71	109	116	41%
ſ	25	92	117	20%
% Total	31% Fisher	39% s exact	: p = 0.00	01

Observed/Expected Frequencies

GE X	Hyp o	NS	Hyp er
1	1.24	1.1 6	0.71
NS	1.19	0.9 1	1.00

33

Major classes of resources:

- EntrezGene ID
- Chromosome information
- GO
- KEGG
- Scientific literature
- ...

