

Outline

- Definitions
- General applications
- Methods
 - Hierarchical clustering
 - Distance metrics
 - Grouping metrics
 - Pros and cons
 - *k*-means
 - Pros and cons
 - SOM
 - Pros and cons

What is clustering

- Clustering is an <u>unsupervised</u> analysis technique used to group similar objects (genes or samples) together
- Builds structure to help explain the relationships that may exist between the objects
 - Dendrogram

Applications of clustering

- Like many techniques in microarray analysis, clustering is not a new approach for classification
- Clustering has been utilized as a classification method in multiple applications
 - Phylogenetics (taxonomy)
 - Sociology (demographics)
 - Linguistics (word usage)
 - Business (money market)

Some clustering methods

- There are multiple types of clustering methods
 - Hierarchical (HCA)
 - k-means
 - Self-organizing maps (SOM)
 - Clique partitioning

Some clustering methods

- There are multiple types of clustering methods
 - Hierarchical (HCA)
 - k-means
 - Self-organizing maps (SOM)

HCA Clustering Procedure (genes)

1.) Each gene begins as its own cluster

- 2.) Look for "closest" pair of clusters
- 3.) Merge them into their own cluster
- 4.) Evaluate all distances from this new cluster and the remaining clusters

HCA Clustering Procedure (genes)

1.) Each gene begins as its own cluster

- 2.) Look for "closest" pair of clusters
- 3.) Merge them into their own cluster
- 4.) Evaluate all distances from this new cluster and the remaining clusters
- 5.) Repeat until no clusters remain

Distances and Similarities

- The choice of distant or similarity metric can effect what we determine to be the "closest" genes
 - Euclidean
 - Manhattan
 - Pearson's correlation

Euclidean Distance

 Square root of summation of the squared differences between two gene vectors

$$d= \sqrt{\sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{y}_i)^2}$$

where x_i is expression value at sample i $y_i \text{ is expression value at sample i} \\ n \text{ is number of total samples}$

Manhattan Distance

х -

Manhattan

 Absolute value of summation of the differences between two gene vectors

$$\mathbf{d} = \sum_{i=1}^{n} |\mathbf{x}_{i} - \mathbf{y}_{i}|$$

Pearson's Correlation

Summation of products of two gene vectors, normalized by the product of their standard deviations

Samples

Grouping metrics

- The choice of grouping method can alter the cluster membership of the genes as they are partitioned
 - Average linkage (UPGMA)
 - Single linkage (nearest neighbor)
 - Complete linkage (furthest neighbor)
 - Ward's method

Average Linkage

 Calculate the distance between each point (gene) in a cluster and all other points (genes) in another cluster.

• The two clusters with the lowest average distance are joined together to form the new cluster.

Average Linkage

• Two clusters are grouped to form new cluster

Single Linkage

 Calculate the distance between each point (gene) in a cluster and all other points (genes) in another cluster.

 The two clusters with members having the least dissimilarity are joined together (nearest neighbors).

 $\mathbf{d}_{\mathbf{j}} = \min\left(\mathbf{p}_{\mathbf{i}} - \mathbf{p}_{\mathbf{k}}\right)$

Single Linkage

• Two clusters are grouped to form new cluster

Complete Linkage

 Calculate the distance between each point (gene) in a cluster and all other points (genes) in another cluster.

 The two clusters with members having the maximum dissimilarity are joined together (furthest neighbors).

 $d_j = \max(p_i - p_k)$

Complete Linkage

• Two clusters are grouped to form new cluster

Ward's Method

- Determine mean of each cluster from average linkage
- Calculate total sum of squared deviations from the mean of each cluster
- The two clusters with the smallest increase in error sum of squares are joined together

 $e_j = \sum (p_\mu - p_i)^2$

Ward's Method

• Two clusters are grouped to form new cluster

Dendrogram Example

HCA pros and cons

Advantages

- Provides an informative display of ordered objects
- Sub-clusters may provide to be useful in discovery
- Relatively simple to implement

Disadvantages

- Early groupings are nested in later result groupings
- Grouping metrics can provide inconsistent results
- Tree structure is dynamic (i.e. not model-based)

Some clustering methods

- There are multiple types of clustering methods
 - Hierarchical (HCA)
 - k-means
 - Self-organizing maps (SOM)

• Start with a user-defined number of clusters (*k*-value)

- Start with a user-defined number of clusters (*k*-value)
- k points are projected into space to estimate the center of k separate clusters

- Start with a user-defined number of clusters (k-value)
- k points are projected into space to estimate the center of k separate clusters
- The distances from each point to all *k* clusters are calculated to determine which points are closest to which cluster centers

- Start with a user-defined number of clusters (k-value)
- k points are projected into space to estimate the center of k separate clusters
- The distances from each point to all *k* clusters are calculated to determine which points are closest to which cluster centers
- The n-dimensional space is then partitioned into k regions of points

- Start with a user-defined number of clusters (k-value)
- k points are projected into space to estimate the center of k separate clusters
- The distances from each point to all *k* clusters are calculated to determine which points are closest to which cluster centers
- The n-dimensional space is then partitioned into k regions of points
- The k cluster centers are adjusted to where the middle point (centroid) of the partitioned space is located

- Start with a user-defined number of clusters (k-value)
- k points are projected into space to estimate the center of k separate clusters
- The distances from each point to all *k* clusters are calculated to determine which points are closest to which cluster centers
- The n-dimensional space is then partitioned into k regions of points
- The k cluster centers are adjusted to where the middle point (centroid) of the partitioned space is located
- This process is repeated n iterations or until convergence has occurred

k-means pros and cons

Advantages

- Good discovery tool
- Can alleviate fuzzy partitioning of genes/samples
 - Specify k and algorithm will return k clusters

Disadvantages

- What is the appropriate number of clusters when the data structure is unknown?
- Number of iterations necessary for convergence can be computationally expensive
- The convergence criteria for k-means may only provide a local optima
- Starting point may alter termination points
- Robustness in distance algorithms (similar to HCA)

Some clustering methods

- There are multiple types of clustering methods
 - Hierarchical (HCA)
 - k-means
 - Self-organizing maps (SOM)

- Self-organizing maps are an iterative fitting algorithm similar to k-means
- The grid shape and size are the parameters that are user defined
 - Similar to the *k* clusters from *k*-means
 - Hexagonal, rectangular, etc.
 - Dimensions (e.g. 3x4)

 A initial grid type of n x m dimensions is specified

- A initial grid type of n x m dimensions is specified
- The cells in the grid are identified as nodes and each node is initialized with some random weight (vector of weights)

W ₁	W ₂	W ₃	
		W ₇	
		W ₁₁	

- A initial grid type of n x m dimensions is specified
- The cells in the grid are identified as nodes and each node is initialized with some random weight (vector of weights)
- A vector is chosen at random and compared to the grid nodes to determine which weight is the most similar to the input vector
 - Distance such as Euclidean distance is calculated between the input vector and all other node vectors
 - The most similar node is referred as the best matching node (BMU)

- A initial grid type of n x m dimensions is specified
- The cells in the grid are identified as nodes and each node is initialized with some random weight (vector of weights)
- A vector is chosen at random and compared to the grid nodes to determine which weight is the most similar to the input vector
 - Distance such as Euclidean distance is calculated between the input vector and all other node vectors
 - The most similar node is referred as the best matching node (BMU)
- A neighborhood radius is established around the BMU node and the weights for the neighbor nodes to the BMU are adjusted according to similarity to the input vector
 - Radius gets smaller and smaller each iteration by a decay function

- A initial grid type of n x m dimensions is specified
- The cells in the grid are identified as nodes and each node is initialized with some random weight (vector of weights)
- A vector is chosen at random and compared to the grid nodes to determine which weight is the most similar to the input vector
 - Distance such as Euclidean distance is calculated between the input vector and all other node vectors
 - The most similar node is referred as the best matching node (BMU)
- This process is repeated N times,

• Visual depiction of class structure

SOM Classification example Golub et al. data with 1x3 grid

SOMs pros and cons

- Advantages
 - Good discovery tool
- Disadvantages
 - Can be computationally expensive
 - Much of the partitioning is dependent upon the grid design

References

- ¹Alizadeh A, et. al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. *Nature*. **403**, 503-511.
- ²Datta S and Datta S. (2003) Comparison and validation of statistical clustering techniques for microarray gene expression data. *Bioinformatics*. **19**, 459-466.
- ³SOM tutorial
 - http://www.ai-junkie.com/som1.html

R Code

R Code

```
# plot classifier
bins <- as.numeric(knn1(dat.som$code, dat,c(1:3)))
plot(crabs.som$grid, type = "n")
symbols(dat.som$grid$pts[, 1],dat.som$grid$pts[, 2],circles = rep(0.85, 3), inches = FALSE, add = TRUE)
text(dat.som$grid$pts[bins, ] + rnorm(76, 0, 0.1),as.character(ann),cex=0.6,col=`red')
```

