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Why be concerned with 
differentially expressed genes?

Differential expression allows us to form hypotheses 
about the genes that discriminate one state from 
another

Genes that are over/under-expressed in different 
states can provide: 

Models specific for tissues, disease, treatments, etc.
Markers for disease-state screening
Mechanistic analysis
Therapeutic targets



General Methodology
What is the general distribution of the genes?

Parametric tests assume that the data follows a specific distribution
Non-parametric tests do not make such assumptions

Can the data be transformed to give a more robust test?

For each gene, conduct a statistical test

Calculate the scoring statistic (e.g. test statistic) for each test

Determine if the scoring statistic exceeds the pre-determined threshold 

Correct the scoring statistic, accounting for the number of statistical tests 
Multiple testing correction



Gene filtering
Usually one of the preliminary steps to choosing differentially expressed 
genes involves reducing the number of genes to begin with

This will eliminate those genes that either have small/no expression 
intensity or genes whose expression does not vary across samples

In Affymetrix data:
The A/P calls can be a primary filter

e.g retain only those genes with a P call across n-i samples, where i can be 
1,2…n

Mean expression intensities that fall below a specified value
Low variance across all samples

In cDNA data:
Genes that have expression intensities where the background is larger than 
the signal

Results in negative value for either Cy5 or Cy3 net intensity
Low variance across all samples



Student’s t-test (two-sample)

X1,…Xm are N(µX,σ2) and Y1,…Yn are N(µY,σ2)
The variances are assumed to be equal, so the pooled variance is
calculated as:

The test-statistic for the null, µX= µY, is calculated as:

Under the null, µX= µY, the test statistic follows a tm+n-2 distribution



Student’s t-test example

Distribution of p-values for ~8,000 genes from Eisen et al. DLBCL data set
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F-test of variances

Test to determine the homogeneity of variances between two 
groups

Useful for determination of differential expression tests

s1
2 and s2

2 are sample variances with n1-1 and n2-1 degrees of 
freedom

Follows an F-distribution with numerator (n1-1) and denominator (n2-1)
Confidence interval: Fdf1,df2,α < s1

2/s2
2 < Fdf2,df1,1-α

Note: Fdf1,df2,α = 1/(Fdf2,df1,1-α)

This test is for two groups.  To test multiple groups, use Bartlett’s 
test (homogeneity of covariance)

F-test in R:
>var.test(x,y)



Welch’s modified t-test (two-sample)

X1,…Xm are N(µX,σ2
X) and Y1,…Yn are N(µY,σ2

Y)
The variances are different, so the test-statistic for the null, µX= µY,
is calculated as:

Under the null, µX= µY, the degrees of freedom are calculated as:



Fold Change
Significance tests determine differential expression between means as a function of 
variance

Fold change is a relative measure of the magnitude of difference between means
Variance is not assessed in calculation
Common fold change threshold is usually 1.5-3

Linear scale for each gene
Fold change = mean(X) / mean(Y)
Value of 1 is indicative of no change

Log scale for each gene
Fold change = mean(X) – mean(Y)
Value of 0 is indicative of no change

Remember that two-channel arrays values are intrinsically fold changes due to the two 
hybridizations (control and treated)

log(R) – log(G)

Combination of fold change and p-value provide most significantly differentially 
expressed genes



Fold vs. p-value plot (volcano)



Fold vs. p-value plot (volcano)



Wilcoxon-Mann-Whitney u-test (two-
sample)

Both samples are combined and the values are ranked in the 
pooled sample
Value Group Rank
20 1 3
30 1 4
15 2 2
60 2 5
10 2 1
The test statistic is calculated as a function of the sum of ranks in 
one of the groups

For large sample sizes, a normal approximation is used
Z = [W1-n (n+m+1) / 2] / [sqrt(nm (n+m+1)/12)] ~ N(0,1)

Depending on ratio of m/n, can perform better for very different 
sample sizes than parametric test



Experimental design basic terminology

Type of conditions that the experimental units are manipulated 
by are factors

Groups
Doses
Assay time points

The different modes of a factor are the factor levels
male & female
control, mid-level, high-level
0 hrs, 10 hrs, 15 hrs, 25 hrs

Multiple ANOVA models exist (with corrections), which can be 
contingent upon different experimental designs and testing 
parameters

We will only concern ourselves with a fixed effects factors, without 
repeated measures, and near balanced designs



One-factor ANOVA – completely 
randomized design

The completely randomized design consists of 
independent random sampling from several 
populations when each population is identified as the 
population of responses under a particular treatment

Randomly sample a population and assign treatments

What are we testing?
Is there any significant difference between the means of each 
treatment?
yij = µ + βj+ eij

µ is overall mean; βj is jth treatment effect; eij ~ N(0,σ)
HO: β1 = β2 =… βk = 0



One-factor ANOVA – completely 
randomized design 

ANOVA table decomposed

Sum of squares due to differences in the treatment means
Residuals are deviations reflecting inherent variability in the 
experimental material and measuring device
Reject HO if F-ratio > Fα(p-1,n-p)



One-factor ANOVA – example 
Yarn breaks data set (during weaving)
Tension is the factor (3 levels: H, M, L) and breaks is the continuous variable

Df Sum Sq  Mean Sq  F value   Pr(>F)   
tension      2 2034.3  1017.1    7.2061   0.001753 **
Residuals   51 7198.6   141.1 



Two-factor ANOVA – completely 
randomized design

The completely randomized design consists of 
independent random sampling from several 
populations when each population is identified as the 
population of responses under a particular treatment

Randomly sample a population and assign treatments

What are we testing?
What are the effects of factor A, factor B, and the 
simultaneous effect of the combination of factors A and B on 
the response of interest?
yijk = µ + αi + βj+ (αβ )ij + eijk

µ is overall mean; αi is ith treatment effect of factor A ; βj is jth
treatment effect of factor B; (αβ )ij is the interaction term; eijk~ N(0,σ)



Two-factor ANOVA – completely 
randomized design 

ANOVA table decomposed

Test for factor A main effects: reject HO if FA > Fα(a-1,ab(n-1)); HO = α1, 
α2… αa = 0 
Test for factor B main effects: reject HO if FB > Fα(b-1,ab(n-1)); HO = β 1, β
2… βb = 0 



Kruskal-Wallis test for comparing k
treatments

Non-parametric analog to the one-way ANOVA

The k samples are combined and the values are ranked in the 
pooled sample

The average ranks for individual samples are calculated 
(R.bar)

The test statistic is then calculated as:

The test is rejected for KW > x2
K-1



Partial least squares regression 
(PLS)

PLS is a multivariate regression method

Very generally, PLS, like PCA works to maximize the 
variability of a matrix by calculating linear 
combinations of the original variables 

However, PCA maximizes this variability between the 
samples/genes, while PLS relates the data matrix, X
to a response, Y

X is this example is a matrix of genes by samples
Y in this example is the expected continuous response or class 
membership

PLS is a regression approach, where the predictor 
variables are weighted according to their ability to 
predict the response variable



PLS example Spellman et al. yeast data
(cdc15 experiment)

Gene weights are 
computed, based on the 
similarity to the response

Large positive weights 
indicate a strong match, 
while large negative 
weights indicate a strong 
opposite match



PLS example Spellman et al. yeast data
(cdc15 experiment)

Response was specified 
as:

up (1) at first 12 times 
states and down (0) at 
next 12 times states



Gene Shaving Gene Selection

A method for identifying gene subsets with coherent 
expression relevant measurements (samples)

Iterative sampling method to “identify groups of 
genes that optimally separate samples into 
predefined classes”

Randomization correction procedure is implemented 
to protect against determining spurious structure in 
the data



Primary Gene Shaving Methodology

Start with an expression matrix X, (genes x samples), mean center 
each gene

Compute the largest principal component over the genes
Linear combination of genes explaining maximal variance

Calculate the absolute inner-product between the largest principal 
component and all genes

Correlation between largest principal component and gene k

Shave off 10% of the genes with the lowest correlation values

Repeat procedure until 1 gene remains

This nested sequence of genes clusters are then evaluated for the 
optimal cluster size, k using a gap statistic



Primary Gene Shaving Methodology



Gap Estimate

The first step of the shaving method creates a 
series of gene clusters, Sk ranging in size from 90% 
the number of genes to 1

If this method were applied to random data, many 
genes would exhibit patterns similar to actual data

Require a method to calibrate the shaving process 
to differentiate real patterns from spurious patterns



Gap Estimate – cluster quality 
measure

Looking for clusters with high-variance clusters and high coherence 
between members of the clusters

Similar method to ANOVA variance components

Between variance: variance of the mean gene

Within-variance: variability of each gene about the cluster average, also averaged over 
samples



Gap Estimate – cluster quality 
measure

Percent variance explained

Large R2 implies tight cluster of coherent genes
Dk is the R2 measure for the kth member of the sequence

Using a permuted data set, X*b, Dk
*b is the R2 measure for cluster Sk

*b

D.bark
* is the average of Dk

*b over b permuted random matrices
The gap function is defined as:

Select the optimal number of genes from the value of k producing the largest gap



Variance Plots of Real and Random Data



Heat Maps of Top 3 Clusters

8 genes

23 genes

2 genes
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