Lecture #5

Normalization and
Bioconductor




Outline

® |mportance of normalization

o cDNA arrays

M v A plots

Global

Intensity dependent
Within-print-tip-group
Dye-swap experiment

® Which genes to use?

® Affymetrix arrays

GeneChip® MAS 4.0

® GeneChip? MAS 5.0

* Li&Wong

¢ Robust multi-chip normalization




Why is Normalization Necessary?

® Multiple factors contribute to the variation in sample processing
RNA extraction
Fluidics modules
Diverse protocols
Different labeling efficiencies
and Cy5
Scanner differences
Chip manufacturing differences
Image analysis saturation
Other systematic variability

® These factors can depict differences between replicate
samples

® Good normalization provides a method of reducing these
systematic effects, while maintaining the true biological
variability



cDNA array image files

Two channel arrays
¢ Cy5and
® Values are reported as ratio of the two channels

Image file

TIFF (16-bit file)

~20MB per channel

~2,000 x 5,500 pixels per image file

Array has mean spot area of 43 pixels
Array has median spot area of 32 pixels
Standard deviation of spot area is 26 pixels



cDNA Signal vs. Background

® Can plot the signal vs. the background for Cy5 for a single
cDNA array
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cDNA within-slide normalization

® The expression of a single array is usually plotted using the log ratio
of the red dye (Cy5) vs. the green dye (

This provides the degree of concordance between the two dyes

Deviations from a linear relationship depict systematic differences in
the intensities

® However, this plot tends to give an unrealistic sense of agreement
between the two dyes, so this plot has been adapted to give a
better estimate of the agreement

® The MvA plot has taken this place to better represent the
agreement between the two dyes

M = log,R/G where R is red dye and G is green dye
A =log,sqrt(RG)
This is essentially a 45 degree rotation of the xy plot



Cy5 vs. Cy3 plot and M v A plot

IogR vs. logG MvA plot of RIG

Cy5




cDNA Global normalization’

® Assumption

Provided a large enough sample size, the mean signal on an array
does not vary greatly from array to array

Red and green dyes are related by a constant factor
R=k*G

® Methodology
log, R/G ->log, R/G — ¢ = log, R/(kG)
commonly, the location parameter, c = logk is the mean

The target mean of all ratios of all the genes on the array is set to a
value for scaling

® Drawbacks

If the assumption is violated, very large or very small intensities can
increase or decrease the global mean

Does not account for spatial or intensity-dependent dye biases



cDNA Global normalization (cont.)

® Alternative estimators to the mean
® The median can be used in cases of aberrant gene intensities
More robust to outliers

® A trimmed mean can be used in cases of high and low extreme
intensities

The top n% and bottom n% are excluded from the calculation of the
array mean



cDNA intensity dependent
normalization’

® Assumption
Dye bias is dependent upon spot intensity

® Methodology
log, R/G ->log, R/G — ¢(A) =log, R/(k(A)G)
where c(A) is the *lowess fit to the M v A plot

Lowess smoothing is a robust local linear fit, which uses a
specified window size to fit a curve of the data

Use the residual values to this smoothing for normalized log-ratio
values

® Drawbacks
Span smoothing parameter (f) may deviate for each array
Extreme values can alter the smoothing, making a poor fit

*example illustrating concept of lowess smoothing on next slide



Lowess smoothing example
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cDNA print-tip groups

4x4 design

24x25 spots per
each print-tip group

Total array has
9,600 spots




cDNA within-print-tip-group
normalization’

® Assumption

¢ Differences between arrays can be explained by differences in
printing setups
Arrayer print-tip format (2x2 or 4x4)
Openings or lengths of print tips

® Methodology
log, R/G ->log, R/G — ¢(A) =log, R/(k(A)G)
where c(A) is the lowess fit to the M v A plot for the ith grid only
(for i=1..I for the number of print tips)

¢ Use the residual values to this smoothing for normalized log-ratio
values

® Drawbacks
® Over normalization for a particular array



cDNA within-print-tip-group
normalization (scale parameter) '

The location normalization may correct the location of the distribution, but the

scale may differ

Need to apply scale normalization for within-print-tip group

Assumption

All log-ratios from the ith print-tip group are normally distributed with mean = 0 and
variance = al’o?

Where ¢! is the variance and a? is the scale factor for the ith print-tip group
A relatively small number of genes will vary between the 2 mRNA samples

The spread of the distribution for the log-ratios should be similar for all print-tip
groups

Methodology

a follows the constraint } log a} = 0
Then, a is estimated by the MLE:

a = MAD/ sqrt(TT MAD)
MADi = median, {|M, — median, (M,)[}
where M;is the jth log-ratio in the ith print-tip group



Print-tip normalization (pre and post)

Printtip Loess pre-normalization Printtip Loess post-normalization
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Dye-Swap normalization’

® Two hybridizations for two mRNA samples, where the dye assignment is
flipped in the second hyb.

® Assumption
The normalization functions are the same for the 2 slides

Since the assignments are reversed, the normalized log-ratios should
be the same and opposite direction on the 2 slides

Assumes that the scale parameter is the same for the 2 slides

® Methodology
Slide #1: M =log, (R/G) - L
Slide #2: M’ =log, (R/G’) - L’
M — M’=[(log, (R/G)-L) — (log, (R7G’)-L))/2
= [log, (RG/GR')]/ 2
¢ ~0.5*[log, (R/G) + log, (R/G)]

where c=c(A) is estimated by the lowess fit to the plot of 0.5*(RG/GR’)
vs. 0.5*(A+A’)

(A is average of M and M’)



Which genes to use?

® All genes
® Housekeeping genes
® Control genes




All gene approach

® All genes on the array

This assumes that only a fraction of the genes on the array
are differentially expressed

The remaining genes are thought to have constant
expression

These remaining genes constitute the majority of the
expression values and shouldn’t vary much from array to
array, so they can be used for normalization

® Assumes

The fraction of differentially expressed genes is small from
array to array

There is a symmetry between up-regulated and down-
regulated genes



Housekeeping gene approach

® Constantly expressed genes

Use of a small subset of characterized genes that are
thought to be expressed in all tissues and samples

Beta-actin and GADPH are among some of these genes

® Assumes

This assumes that the genes chosen as housekeeping
genes are both highly expressed and somewhat invariant
across multiple samples

These genes can be over-expressed and sometimes
saturated in intensity



Control gene approach

® Control genes

Either spiked controls or titration of specific genes to another
organism assayed at various concentrations

Can calculate a standard curve from the concentration
series and use to normalize all other values on the array

® Assumes

Genomic DNA is used because it is supposed to exhibit
constant expression across various conditions

Weak signal in higher organisms with high intron/exon ratio
(e.g. mouse, human) making it technically challenging



cDNA Global Normalization Data

Different lowess smoothing lines for the 16 within-print-tip-groups illustrate
the dependence on spot intensity



cDNA Dye-Swap Data (pre-

normalized) *
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Blue line is lowess smoothing for one slide and the black line is the other

Both lines are similar, suggesting similar dye bias



cDNA Dye -Swap post-normalized’
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Within-slide normalization
density comparisons’
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Affymetrix array image files

® Three files for each array
DAT file: image file with ~10e7 pixels (~50MB file)
CEL file: cell intensity file
CHP file: normalized expression data file
Process: DAT -> CEL -> CHP

® Data

Difference is computed between the perfect match (PM)
and mismatch (MM) for each probe

Usually about 16 to 20 probe pairs for each gene



GeneChip® MAS 4.0
normalization?

® Average difference calculation
|
A

where A is a set of pairs that fall within 3 SDs of the
average difference between PM and MM

and j is the jth probe for gene /

AVDIff =— > (PM ;- MM )

JjEA

® |f MM is larger than PM, negative values will
result
Backaround is larager than sianal



GeneChip® MAS 5.0 i
normalization? :

® Average difference with biweight calculation

signal = Tukey Biweight{log(PM , — MM j )}

If PM > MM, then MM* = MM
If PM < MM, then MM* = PM — correction value

Correction value: robust mean of probe set using Tukey Biweight
calculation

Tukey Biweight: The mean/median is first calculated, then the distance between
each point and the mean/median is calculated. These distances determine
how each value is weighted in the contribution to the average



GeneChip® MAS 5.0
normalization?
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Probe Pairs

he grey bars illustrate the Perfact Match (PM) intensities and black bars the Mismatch (MM) intensities
cross a 16-probe pair probe set. The white bars, Idealized Mismatch (IM), are the intensities of the
lismatch based on the Signal rules. In this example, most of the Perfect Match intensities are higher
1an the Mismatch intensities and therefore Mismatch values can be used directly (e.g., probe pair 9).
Ihen the Mismatch is larger than the Perfect Match (e.q., probe pairs 2, 4, and 13) the IM value is

sed instead of the Mismatch.

information taken from the Affymetrix manual




Li & Wong normalization?®

® A model is fit for each probe set

PM,~MM, =8¢ +e,, €, < N(0,0°)

©: expression index in chip i
®: scaling factor characterizing probe pair j
€. random normal error term

Estimates for the parameters are calculated by least
squares iteratively fitting © and ®, while treating the
other set as known



Robust Multi-chip Analysis (RMA)
normalization?

® Use a chip background estimate and subtract from the PM probes
¢ subtracting the MM from the PM adds more noise to the signal
® Intensity-dependent normalization

log,(PM,—BG)=a,+b, +¢,

background intensity can be the mode value of the log,(MM)
distribution for a given chip (kernel density estimate)

if PM <= background intensity, use %2 the minimum of log,(PM,

background intensity) for PM > background intensity over all chips and
probes

normalized values are log transformed because probe effects are
additive on a log scale

¢ Estimate RMA = afor chip i using Tukey’s median polish procedure
Iterative fitting, removing row and column medians, accumulating terms,

R A B N



Sensitivity of PM only versus (PM-MM)*
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Known concentrations of human transcripts were spiked at various concentrations into tissue samples
where the transcripts were originally absent. Labeled samples were then hybridized to Affymetrix U95
microarrays. Hybridization intensities for each of the transcripts were calculated using both the PM and

MM probes (solid lines) or the PM probes alone (dashed line) and then plotted against the RNA
conceniration. (Source = Affymetrix 2001d)

Figure 3. Comparison of the Assay Sensitivity using PM Probes Only or PM-MM Probe Pairs.




Normalization comparison criteria

The score components, along with the corresponding assessment score number, are as follows:

g b

-

[1] Median 8D - median SD across replicates in the dilution data

[2] B2 - average R-squared over all pairs of replicates

[3] £.25v28 cory - correlation between expression of arvays hybridized to 1.25 micrograms and 20 micrograms of RIVA
[6] Madian slape - median slope obtained from regressing expression values on RINA concentrations in the dilution study
[7] Sigred detact slape - slope obtained from regressing expression values on nominal concentrations in the spike-in data
[8] Sigred detact B2 - R-squared obtained from regressing expression values on normminal concentrations in the spike-in data
[12] ATUC {FP=188) - area under the ROC cwrve up to 100 false positives

[L3] AFP, call if fe=2 - average false positives if we use fold-change = 2 as a cut-off

[L4] ATP, call if fe=2 - average true positives if we use fold-change = 2 as a cut-off

[15] F2R - interquartile range of log ratios among genes not differentially expressed

[16] Qbs-intendad-fc slape - slope obtamned from regressing observed log-fold-changes agamst nominal log-fold-changes

concentrations less than or equal to 2.
[21] FC=2, AUC (FP=188) - area under the ROC curve up to 100 false positives when comparing arrays with nomnal fold changes of 2.

are 2

are 2

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html

[L7] Qds-{law)ini-fc slope - slope obtamed from regressing observed log-fold-changes against nominal log-fold-changes for genes with nommal

[22] FC=2, AFP, call if fe=2 - average false positives if we use fold-change > 2 as a cut-off when comparing arrays where nommal fold-changes

[23] FC=2, ATP, call if fc=2 - average true positives if we use fold-change = 2 as a cut-off when comparing mrays where nominal fold-changes




NOTrTManzZatiorn comparison criteria

N Method / Submitter 1 2 3 4 5 6 7 4 9 10 11 12 13 14 15

0 fperfection) Q00 || 1.ad (100 || 1.od |[ 100 || 100 || 100 000 || 16.00 || 000 || 1.00 || 1.00 || .00 000 || 16.00
1 MAS 5.6 rafa 029 089 073\ 085( 01| 086 036| 310899 | 1282) 266 | 0.69) 065 | 0073072128 371
2 RMA ! vafa 009 (| 099 084\ 087( 063 080 082 1384) 1198| 031 06l) 036 054 1.00 171
3 dChip { rafa 009 | 099 081\ 0F7| 053) 0&5( 087 3691 ( 11.43) 045 052) 032 017 2884 125

4 ([ZAMINEG/magnusastrand || 007 || 099 084 )| 0F2) 057\ 0F7| 084 244 11.70) 024 057 032| 061 0.57 114

5 gie.p3 | cope 011 (| 098 056\ 008 042) 050 082 20030 Q58| 038 043 0.14| 024 1535 139
6 vsit_scal {whuber 008 | 099 ( 09| L&## || 0F7 | D81 ) 085 AAF | 1223 | 023 || OF5( D2E| 0A6 043 389
7 vsu S whuber 006 | 099 09| DAF| 051 D81 085 040 1083 | 015 050( D1%|| O&6 021 111

8 ([ BEMAVSN/ thomas.cappola 009 (| 099 084\ 080 ( 061 081 083 1787 1179 025| 060) 032 059 0.50 161

9 RMA NEG ! holstad 004 100) 081 056( 048 021 085 013 1045) 042 047) 015 | 068 .11 104
10 GSVDmin / hruzan 005 (| 098 087 039 050| 023 081 487 | 11.09) 021 049) D24 056 243 100
11 PLIER ! Earl Hubbell 013\ 009 001 0&4f 071 081 002| 39677| 1285) 403 0.72) 065\ 002| 52006 357
12 GS¥Dmod [ hzuzan 005 100 0987 055( 051) 085 084 079 ( 1119 04%|| 050) D24 | 040 0.54 111

13 (| PLIERt16( Earl Hubhell 00| 099 08| OD&4| 065 (&2 || 081 43| 1234 034|[ 065 ([ D44 || 046 507 204

14 GCRMA fzwu 009 (| 099 082\ 072|407 | 024 082 TE2| 1297 ) 035\ 092 D66 054 707 529
15 ChipMan [ plauren 031 (| 0990 084\ 126( 08%| 022 067| 18390 | F&63 || 067 || 07| 044 020| 13086 B0
16 ProbePro [ shilmer 016 (| 0F0) 052\ 0&4| L&5| 047 ([ 017 | 208707 | 1253|1570 1.33) 193 | 007 | 2046.46 493
17 MMET | shibing deng G62 || Lew ([ 082 052 045 020) 686 12 || 1041 || 622 || 045) 016 || 69 6.1 100
18 P2l i 005 099 0987 053 0d4) 087 ( 084 139 1067 || 015) 045) 012 | 064 062 100
19 RMHA [ szetn 009 (| 099 #98 || 068 | 062) 020 0.82 1586 1199| 031| 06L| 036 0354 1.00 171
20 GL ! mai98fiu 005 (| 099 082\ 056( 045 081 083 0.15| 1042) 014 047) 016 066 0.1r 118

21 MAS5+32 [ Farl Hubbell 007 (| 098 083\ 071 060) 088 072 2056 ( 117é) 051 0.59) 033 018 19.18 168

22 gMOS .1 manilo 03z|| 097| 08t os4| 085 075| 054 135801 | 1275 215|604 || re4 | 010 131007 || S36
0 fperfection) 000 |[ 100|100 || 100 || 1oo ||1oo|[100| ooo| 1600 ||0oo ||loo | 1o ice| coo|isoo
N Method / Submitter L 2 a || 4 5 || 6 7 8 9 o |1 |12 ||| 14 15

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html
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R Code

# cDNA array plots

library (marrayInput)
library (marrayNorm)

library (marrayPlots)
library (sma)
# signal vs. noise plot for a single cDNA array
data (MouseArray) # get mouse array data

plot.svb (mouse.data,

# Examples use swirl dataset
data (swirl)

# look at image file from swirl data

malmage (swirl)

# look at boxplot from swirl data by print-tip
maBoxplot (swirl[,3])

# one form of an MvA plot
library (sma)

# mouse array

data (MouseArray)
plot.mva (mouse.data, mouse.setup, norm="1", 2,
# Pre-normalization MvA-plot for the Swirl 93 array,
# individual print-tip-groups.

# - Default arguments

"red",image.id=1,col="red',main='Singal vs.

Noise for Cy5 channel on array #1')

extra.type="pci",plot.type="n")

with the lowess fits for

maPlot (swirl[,1],main="Print-tip Loess pre-normalization"')

# Post-normalization using print-tip loess

mnorm<-maNorm(swirl[,1], norm="p", span=0.45)

maPlot (mnorm,main='Print-tip Loess post-normalization')



R Code

# import eisen data

dat <- read.table("eisen.txt",header=T)
dimnames (dat) [[1]] <- as.character(dat[,1]
dat <- dat[,-1]

dat <- as.data.frame (dat)

# scatter plot
cars.lm <- lm(dist~speed,data=cars)
plot (cars$speed, cars$dist, xlab="speed”, ylab="dist”,main="“regression (cars)”)

abline (as.numeric (cars.lmScoefficients([1]),as.numeric (cars.lm$coefficients[2]),col="‘red’,lwd=2)

# lowess smoothing plot

data (cars)

plot(cars, main = "lowess (cars)"“)

lines (lowess (cars), col = 2,1lwd=2)

lines (lowess (cars, f=.2), col = 3,1lwd=2)

legend (5, 120, c(paste("f =", c("2/3", ".2"))), lty =1, col = 2:3)

# load affy library
library(affy)

# get data
data (affybatch.example)

# plot data both before and after loess normalization using PM data
x <- pm(affybatch.example)

mva.pairs (x)

x <- normalize.loess (x, subset=1:nrow(x))

mva.pairs (x)



R Code

# affy normalization parameters for expresso function

> bgcorrect.methods

[1] "mas" "none" "rma" "rma2"

> normalize.AffyBatch.methods
[1] "constant"™ "contrasts" "invariantset" "loess"

[5] "gspline" "quantiles" "quantiles.robust"

> pmcorrect.methods

[1] "mas" "pmonly" "subtractmm"

> express.summary.stat.methods
[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

eset <- expresso(affybatch.example,bgcorrect.method="rma",
normalize.method="quantiles",
pmcorrect.method="pmonly"

summary.method="medianpolish")

# look at data frame of RMA values

attributes (eset) $exprs

# first scatter plot of R vs. G and un-normalized MvA plot with Mouse cDNA data
> plot (log(mouse.datas$G),log(mouse.datas$R),xlab="Cy3',ylab="Cy5',main="logR vs. logG'")
> plot.mva (mouse.data, mouse.setup, norm=“n”, 2, extra.type="p",plot.type=“r”,main="MvA plot of R/G”)
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