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Outline
 Importance of normalization

 cDNA arrays
 M v A plots
 Global
 Intensity dependent
 Within-print-tip-group
 Dye-swap experiment

 Which genes to use?

 Affymetrix arrays
 GeneChip® MAS 4.0
 GeneChip® MAS 5.0
 Li & Wong
 Robust multi-chip normalization



  

Why is Normalization Necessary?
 Multiple factors contribute to the variation in sample processing

 RNA extraction
 Fluidics modules
 Diverse protocols
 Different labeling efficiencies

 Cy3 and Cy5
 Scanner differences
 Chip manufacturing differences
 Image analysis saturation
 Other systematic variability

 These factors can depict differences between replicate 
samples

 Good normalization provides a method of reducing these 
systematic effects, while maintaining the true biological 
variability  



  

cDNA array image files
 Two channel arrays

 Cy5 and Cy3
 Values are reported as ratio of the two channels

 Image file 
 TIFF (16-bit file)
 ~20MB per channel
 ~2,000 x 5,500 pixels per image file
 Array has mean spot area of 43 pixels
 Array has median spot area of 32 pixels
 Standard deviation of spot area is 26 pixels



  

cDNA Signal vs. Background
 Can plot the signal vs. the background for Cy5 for a single 

cDNA array

local 
background

spot 
intensity



  

cDNA within-slide normalization
 The expression of a single array is usually plotted using the log ratio 

of the red dye (Cy5) vs. the green dye (Cy3)
 This provides the degree of concordance between the two dyes
 Deviations from a linear relationship depict systematic differences in 

the intensities

 However, this plot tends to give an unrealistic sense of agreement 
between the two dyes, so this plot has been adapted to give a 
better estimate of the agreement

 The MvA plot has taken this place to better represent the 
agreement between the two dyes
 M = log2R/G where R is red dye and G is green dye
 A = log2sqrt(RG)
 This is essentially a 45 degree rotation of the xy plot



  

Cy5 vs. Cy3 plot and M v A plot



  

cDNA Global normalization1

 Assumption
 Provided a large enough sample size, the mean signal on an array 

does not vary greatly from array to array
 Red and green dyes are related by a constant factor

 R = k * G

 Methodology
log2 R/G -> log2 R/G – c = log2 R/(kG)
commonly, the location parameter, c = log2k is the mean

 The target mean of all ratios of all the genes on the array is set to a 
value for scaling

 Drawbacks
 If the assumption is violated, very large or very small intensities can 

increase or decrease the global mean
 Does not account for spatial or intensity-dependent dye biases



  

cDNA Global normalization (cont.)
 Alternative estimators to the mean

 The median can be used in cases of aberrant gene intensities 
 More robust to outliers

 A trimmed mean can be used in cases of high and low extreme 
intensities
 The top n% and bottom n% are excluded from the calculation of the 

array mean



  

cDNA intensity dependent 
normalization1

 Assumption
 Dye bias is dependent upon spot intensity

 Methodology
log2 R/G -> log2 R/G – c(A) = log2 R/(k(A)G)

where c(A) is the *lowess fit to the M v A plot
 Lowess smoothing is a robust local linear fit, which uses a 

specified window size to fit a curve of the data
 Use the residual values to this smoothing for normalized log-ratio 

values

 Drawbacks
 Span smoothing parameter (f) may deviate for each array
 Extreme values can alter the smoothing, making a poor fit

*example illustrating concept of lowess smoothing on next slide



  

Lowess smoothing example



  

cDNA print-tip groups



  

cDNA within-print-tip-group 
normalization1

 Assumption
 Differences between arrays can be explained by differences in 

printing setups
 Arrayer print-tip format (2x2 or 4x4)
 Openings or lengths of print tips

 Methodology
log2 R/G -> log2 R/G – ci(A) = log2 R/(k(A)G)

where c(A) is the lowess fit to the M v A plot for the ith grid only 
(for i=1..I for the number of print tips) 

 Use the residual values to this smoothing for normalized log-ratio 
values

 Drawbacks
 Over normalization for a particular array



  

cDNA within-print-tip-group 
normalization (scale parameter) 1

 The location normalization may correct the location of the distribution, but the 
scale may differ
 Need to apply scale normalization for within-print-tip group

 Assumption
 All log-ratios from the ith print-tip group are normally distributed with mean = 0 and 

variance = ai 
2
 σ2

 Where σ2 is the variance and ai
2 is the scale factor for the ith print-tip group

 A relatively small number of genes will vary between the 2 mRNA samples
 The spread of the distribution for the log-ratios should be similar for all print-tip 

groups

 Methodology
ai follows the constraint ∑ log ai

2 = 0 
Then, ai is estimated by the MLE:

ai = MADi / sqrt(π MADi)

MADi = medianj {|Mij – medianj (Mij)|}
where Mij is the jth log-ratio in the ith print-tip group



  

Print-tip normalization (pre and post) 1



  

Dye-Swap normalization1

 Two hybridizations for two mRNA samples, where the dye assignment is 
flipped in the second hyb.

 Assumption
 The normalization functions are the same for the 2 slides
 Since the assignments are reversed, the normalized log-ratios should 

be the same and opposite direction on the 2 slides
 Assumes that the scale parameter is the same for the 2 slides

 Methodology
 Slide #1: M = log2 (R/G) - L
 Slide #2: M’ = log2 (R’/G’) – L’
 M – M’=[(log2 (R/G)-L) – (log2 (R’/G’)-L)]/2
 = [log2 (RG’/GR’)] / 2
 c ~ 0.5 * [log2 (R/G) + log2 (R’/G’)]

where c=c(A) is estimated by the lowess fit to the plot of 0.5*(RG’/GR’) 
vs. 0.5*(A+A’) 
(A is average of M and M’)



  

Which genes to use?

 All genes
 Housekeeping genes
 Control genes



  

All gene approach
 All genes on the array

 This assumes that only a fraction of the genes on the array 
are differentially expressed

 The remaining genes are thought to have constant 
expression

 These remaining genes constitute the majority of the 
expression values and shouldn’t vary much from array to 
array, so they can be used for normalization

 Assumes
 The fraction of differentially expressed genes is small from 

array to array
 There is a symmetry between up-regulated and down-

regulated genes



  

Housekeeping gene approach

 Constantly expressed genes
 Use of a small subset of characterized genes that are 

thought to be expressed in all tissues and samples
 Beta-actin and GADPH are among some of these genes

 Assumes
 This assumes that the genes chosen as housekeeping 

genes are both highly expressed and somewhat invariant 
across multiple samples

 These genes can be over-expressed and sometimes 
saturated in intensity 



  

Control gene approach

 Control genes
 Either spiked controls or titration of specific genes to another 

organism assayed at various concentrations
 Can calculate a standard curve from the concentration 

series and use to normalize all other values on the array

 Assumes
 Genomic DNA is used because it is supposed to exhibit 

constant expression across various conditions
 Weak signal in higher organisms with high intron/exon ratio 

(e.g. mouse, human) making it technically challenging



  

cDNA Global Normalization Data1

Different lowess smoothing lines for the 16 within-print-tip-groups illustrate 
the dependence on spot intensity



  

cDNA Dye-Swap Data (pre-
normalized) 1

Blue line is lowess smoothing for one slide and the black line is the other

Both lines are similar, suggesting similar dye bias



  

cDNA Dye-Swap post-normalized1



  

Within-slide normalization 
density comparisons1



  

Affymetrix array image files
 Three files for each array

 DAT file: image file with ~10e7 pixels (~50MB file)
 CEL file: cell intensity file
 CHP file: normalized expression data file
 Process: DAT -> CEL -> CHP

 Data
 Difference is computed between the perfect match (PM) 

and mismatch (MM) for each probe
 Usually about 16 to 20 probe pairs for each gene



  

GeneChip® MAS 4.0 
normalization3

 Average difference calculation

where A is a set of pairs that fall within 3 SDs of the 
average difference between PM and MM

and j is the jth probe for gene I

 If MM is larger than PM, negative values will 
result
 Background is larger than signal



  

GeneChip® MAS 5.0 
normalization3

 Average difference with biweight calculation

If PM > MM, then MM* = MM

If PM < MM, then MM* = PM – correction value

Correction value: robust mean of probe set using Tukey Biweight 
calculation

Tukey Biweight: The mean/median is first calculated, then the distance between 
each point and the mean/median is calculated.  These distances determine 
how each value is weighted in the contribution to the average



  

GeneChip® MAS 5.0 
normalization3

information taken from the Affymetrix manual



  

Li & Wong normalization3

 A model is fit for each probe set

Θ: expression index in chip i
Φ: scaling factor characterizing probe pair j
ε: random normal error term
Estimates for the parameters are calculated by least 

squares iteratively fitting Θ and Φ, while treating the 
other set as known



  

Robust Multi-chip Analysis (RMA) 
normalization3

 Use a chip background estimate and subtract from the PM probes
 subtracting the MM from the PM adds more noise to the signal
 Intensity-dependent normalization

background intensity can be the mode value of the log 2 (MM) 
distribution for a given chip (kernel density estimate)

if PM <= background intensity, use ½ the minimum of log2 (PM, 
background intensity) for PM > background intensity over all chips and 
probes 

normalized values are log transformed because probe effects are 
additive on a log scale

 Estimate RMA = ai for chip i using Tukey’s median polish procedure
 Iterative fitting, removing row and column medians, accumulating terms, 

until the process converges



  

Sensitivity of PM only  versus (PM-MM)4



  

Normalization comparison criteria

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html



  

Normalization comparison criteria

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html
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R Code
# cDNA array plots

library(marrayInput)

library(marrayNorm)

library(marrayPlots)

library(sma)

# signal vs. noise plot for a single cDNA array 

data(MouseArray) # get mouse array data

plot.svb(mouse.data, "red",image.id=1,col='red',main='Singal vs. Noise for Cy5 channel on array #1')

# Examples use swirl dataset 

data(swirl)

# look at image file from swirl data

maImage(swirl)

# look at boxplot from swirl data by print-tip

maBoxplot(swirl[,3]) 

# one form of an MvA plot

library(sma)

# mouse array

data(MouseArray)

plot.mva(mouse.data, mouse.setup, norm="l", 2, extra.type="pci",plot.type="n") 

# Pre-normalization MvA-plot for the Swirl 93 array, with the lowess fits for 

# individual print-tip-groups. 

# - Default arguments

maPlot(swirl[,1],main='Print-tip Loess pre-normalization')

# Post-normalization using print-tip loess

mnorm<-maNorm(swirl[,1], norm="p", span=0.45)

maPlot(mnorm,main='Print-tip Loess post-normalization')



  

R Code
# import eisen data

dat <- read.table("eisen.txt",header=T)

dimnames(dat)[[1]] <- as.character(dat[,1])

dat <- dat[,-1]

dat <- as.data.frame(dat)

# scatter plot

cars.lm <- lm(dist~speed,data=cars)

plot(cars$speed,cars$dist,xlab=“speed”,ylab=“dist”,main=“regression(cars)”)

abline(as.numeric(cars.lm$coefficients[1]),as.numeric(cars.lm$coefficients[2]),col=‘red’,lwd=2)

# lowess smoothing plot

data(cars)

plot(cars, main = "lowess(cars)“)

lines(lowess(cars), col = 2,lwd=2)

lines(lowess(cars, f=.2), col = 3,lwd=2)

legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

# load affy library

library(affy)

 # get data

data(affybatch.example)

# plot data both before and after loess normalization using PM data

x <- pm(affybatch.example)

mva.pairs(x)

x <- normalize.loess(x,subset=1:nrow(x))

mva.pairs(x)



  

R Code

# affy normalization parameters for expresso function

> bgcorrect.methods

[1] "mas"  "none" "rma"  "rma2"

> normalize.AffyBatch.methods

[1] "constant" "contrasts" "invariantset" "loess"

[5] "qspline" "quantiles" "quantiles.robust"

> pmcorrect.methods

[1] "mas" "pmonly" "subtractmm"

> express.summary.stat.methods

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

eset <- expresso(affybatch.example,bgcorrect.method="rma",

normalize.method="quantiles",

pmcorrect.method="pmonly",

summary.method="medianpolish")

# look at data frame of RMA values

attributes(eset)$exprs

# first scatter plot of R vs. G and un-normalized MvA plot with Mouse cDNA data

> plot(log(mouse.data$G),log(mouse.data$R),xlab='Cy3',ylab='Cy5',main='logR vs. logG')

> plot.mva(mouse.data, mouse.setup, norm=“n”, 2, extra.type="p",plot.type=“r”,main=“MvA plot of R/G”) 
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