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Outline
 Importance of normalization

 cDNA arrays
 M v A plots
 Global
 Intensity dependent
 Within-print-tip-group
 Dye-swap experiment

 Which genes to use?

 Affymetrix arrays
 GeneChip® MAS 4.0
 GeneChip® MAS 5.0
 Li & Wong
 Robust multi-chip normalization



  

Why is Normalization Necessary?
 Multiple factors contribute to the variation in sample processing

 RNA extraction
 Fluidics modules
 Diverse protocols
 Different labeling efficiencies

 Cy3 and Cy5
 Scanner differences
 Chip manufacturing differences
 Image analysis saturation
 Other systematic variability

 These factors can depict differences between replicate 
samples

 Good normalization provides a method of reducing these 
systematic effects, while maintaining the true biological 
variability  



  

cDNA array image files
 Two channel arrays

 Cy5 and Cy3
 Values are reported as ratio of the two channels

 Image file 
 TIFF (16-bit file)
 ~20MB per channel
 ~2,000 x 5,500 pixels per image file
 Array has mean spot area of 43 pixels
 Array has median spot area of 32 pixels
 Standard deviation of spot area is 26 pixels



  

cDNA Signal vs. Background
 Can plot the signal vs. the background for Cy5 for a single 

cDNA array

local 
background

spot 
intensity



  

cDNA within-slide normalization
 The expression of a single array is usually plotted using the log ratio 

of the red dye (Cy5) vs. the green dye (Cy3)
 This provides the degree of concordance between the two dyes
 Deviations from a linear relationship depict systematic differences in 

the intensities

 However, this plot tends to give an unrealistic sense of agreement 
between the two dyes, so this plot has been adapted to give a 
better estimate of the agreement

 The MvA plot has taken this place to better represent the 
agreement between the two dyes
 M = log2R/G where R is red dye and G is green dye
 A = log2sqrt(RG)
 This is essentially a 45 degree rotation of the xy plot



  

Cy5 vs. Cy3 plot and M v A plot



  

cDNA Global normalization1

 Assumption
 Provided a large enough sample size, the mean signal on an array 

does not vary greatly from array to array
 Red and green dyes are related by a constant factor

 R = k * G

 Methodology
log2 R/G -> log2 R/G – c = log2 R/(kG)
commonly, the location parameter, c = log2k is the mean

 The target mean of all ratios of all the genes on the array is set to a 
value for scaling

 Drawbacks
 If the assumption is violated, very large or very small intensities can 

increase or decrease the global mean
 Does not account for spatial or intensity-dependent dye biases



  

cDNA Global normalization (cont.)
 Alternative estimators to the mean

 The median can be used in cases of aberrant gene intensities 
 More robust to outliers

 A trimmed mean can be used in cases of high and low extreme 
intensities
 The top n% and bottom n% are excluded from the calculation of the 

array mean



  

cDNA intensity dependent 
normalization1

 Assumption
 Dye bias is dependent upon spot intensity

 Methodology
log2 R/G -> log2 R/G – c(A) = log2 R/(k(A)G)

where c(A) is the *lowess fit to the M v A plot
 Lowess smoothing is a robust local linear fit, which uses a 

specified window size to fit a curve of the data
 Use the residual values to this smoothing for normalized log-ratio 

values

 Drawbacks
 Span smoothing parameter (f) may deviate for each array
 Extreme values can alter the smoothing, making a poor fit

*example illustrating concept of lowess smoothing on next slide



  

Lowess smoothing example



  

cDNA print-tip groups



  

cDNA within-print-tip-group 
normalization1

 Assumption
 Differences between arrays can be explained by differences in 

printing setups
 Arrayer print-tip format (2x2 or 4x4)
 Openings or lengths of print tips

 Methodology
log2 R/G -> log2 R/G – ci(A) = log2 R/(k(A)G)

where c(A) is the lowess fit to the M v A plot for the ith grid only 
(for i=1..I for the number of print tips) 

 Use the residual values to this smoothing for normalized log-ratio 
values

 Drawbacks
 Over normalization for a particular array



  

cDNA within-print-tip-group 
normalization (scale parameter) 1

 The location normalization may correct the location of the distribution, but the 
scale may differ
 Need to apply scale normalization for within-print-tip group

 Assumption
 All log-ratios from the ith print-tip group are normally distributed with mean = 0 and 

variance = ai 
2
 σ2

 Where σ2 is the variance and ai
2 is the scale factor for the ith print-tip group

 A relatively small number of genes will vary between the 2 mRNA samples
 The spread of the distribution for the log-ratios should be similar for all print-tip 

groups

 Methodology
ai follows the constraint ∑ log ai

2 = 0 
Then, ai is estimated by the MLE:

ai = MADi / sqrt(π MADi)

MADi = medianj {|Mij – medianj (Mij)|}
where Mij is the jth log-ratio in the ith print-tip group



  

Print-tip normalization (pre and post) 1



  

Dye-Swap normalization1

 Two hybridizations for two mRNA samples, where the dye assignment is 
flipped in the second hyb.

 Assumption
 The normalization functions are the same for the 2 slides
 Since the assignments are reversed, the normalized log-ratios should 

be the same and opposite direction on the 2 slides
 Assumes that the scale parameter is the same for the 2 slides

 Methodology
 Slide #1: M = log2 (R/G) - L
 Slide #2: M’ = log2 (R’/G’) – L’
 M – M’=[(log2 (R/G)-L) – (log2 (R’/G’)-L)]/2
 = [log2 (RG’/GR’)] / 2
 c ~ 0.5 * [log2 (R/G) + log2 (R’/G’)]

where c=c(A) is estimated by the lowess fit to the plot of 0.5*(RG’/GR’) 
vs. 0.5*(A+A’) 
(A is average of M and M’)



  

Which genes to use?

 All genes
 Housekeeping genes
 Control genes



  

All gene approach
 All genes on the array

 This assumes that only a fraction of the genes on the array 
are differentially expressed

 The remaining genes are thought to have constant 
expression

 These remaining genes constitute the majority of the 
expression values and shouldn’t vary much from array to 
array, so they can be used for normalization

 Assumes
 The fraction of differentially expressed genes is small from 

array to array
 There is a symmetry between up-regulated and down-

regulated genes



  

Housekeeping gene approach

 Constantly expressed genes
 Use of a small subset of characterized genes that are 

thought to be expressed in all tissues and samples
 Beta-actin and GADPH are among some of these genes

 Assumes
 This assumes that the genes chosen as housekeeping 

genes are both highly expressed and somewhat invariant 
across multiple samples

 These genes can be over-expressed and sometimes 
saturated in intensity 



  

Control gene approach

 Control genes
 Either spiked controls or titration of specific genes to another 

organism assayed at various concentrations
 Can calculate a standard curve from the concentration 

series and use to normalize all other values on the array

 Assumes
 Genomic DNA is used because it is supposed to exhibit 

constant expression across various conditions
 Weak signal in higher organisms with high intron/exon ratio 

(e.g. mouse, human) making it technically challenging



  

cDNA Global Normalization Data1

Different lowess smoothing lines for the 16 within-print-tip-groups illustrate 
the dependence on spot intensity



  

cDNA Dye-Swap Data (pre-
normalized) 1

Blue line is lowess smoothing for one slide and the black line is the other

Both lines are similar, suggesting similar dye bias



  

cDNA Dye-Swap post-normalized1



  

Within-slide normalization 
density comparisons1



  

Affymetrix array image files
 Three files for each array

 DAT file: image file with ~10e7 pixels (~50MB file)
 CEL file: cell intensity file
 CHP file: normalized expression data file
 Process: DAT -> CEL -> CHP

 Data
 Difference is computed between the perfect match (PM) 

and mismatch (MM) for each probe
 Usually about 16 to 20 probe pairs for each gene



  

GeneChip® MAS 4.0 
normalization3

 Average difference calculation

where A is a set of pairs that fall within 3 SDs of the 
average difference between PM and MM

and j is the jth probe for gene I

 If MM is larger than PM, negative values will 
result
 Background is larger than signal



  

GeneChip® MAS 5.0 
normalization3

 Average difference with biweight calculation

If PM > MM, then MM* = MM

If PM < MM, then MM* = PM – correction value

Correction value: robust mean of probe set using Tukey Biweight 
calculation

Tukey Biweight: The mean/median is first calculated, then the distance between 
each point and the mean/median is calculated.  These distances determine 
how each value is weighted in the contribution to the average



  

GeneChip® MAS 5.0 
normalization3

information taken from the Affymetrix manual



  

Li & Wong normalization3

 A model is fit for each probe set

Θ: expression index in chip i
Φ: scaling factor characterizing probe pair j
ε: random normal error term
Estimates for the parameters are calculated by least 

squares iteratively fitting Θ and Φ, while treating the 
other set as known



  

Robust Multi-chip Analysis (RMA) 
normalization3

 Use a chip background estimate and subtract from the PM probes
 subtracting the MM from the PM adds more noise to the signal
 Intensity-dependent normalization

background intensity can be the mode value of the log 2 (MM) 
distribution for a given chip (kernel density estimate)

if PM <= background intensity, use ½ the minimum of log2 (PM, 
background intensity) for PM > background intensity over all chips and 
probes 

normalized values are log transformed because probe effects are 
additive on a log scale

 Estimate RMA = ai for chip i using Tukey’s median polish procedure
 Iterative fitting, removing row and column medians, accumulating terms, 

until the process converges



  

Sensitivity of PM only  versus (PM-MM)4



  

Normalization comparison criteria

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html



  

Normalization comparison criteria

http://affycomp.biostat.jhsph.edu/AFFY/TABLES/0.html
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R Code
# cDNA array plots

library(marrayInput)

library(marrayNorm)

library(marrayPlots)

library(sma)

# signal vs. noise plot for a single cDNA array 

data(MouseArray) # get mouse array data

plot.svb(mouse.data, "red",image.id=1,col='red',main='Singal vs. Noise for Cy5 channel on array #1')

# Examples use swirl dataset 

data(swirl)

# look at image file from swirl data

maImage(swirl)

# look at boxplot from swirl data by print-tip

maBoxplot(swirl[,3]) 

# one form of an MvA plot

library(sma)

# mouse array

data(MouseArray)

plot.mva(mouse.data, mouse.setup, norm="l", 2, extra.type="pci",plot.type="n") 

# Pre-normalization MvA-plot for the Swirl 93 array, with the lowess fits for 

# individual print-tip-groups. 

# - Default arguments

maPlot(swirl[,1],main='Print-tip Loess pre-normalization')

# Post-normalization using print-tip loess

mnorm<-maNorm(swirl[,1], norm="p", span=0.45)

maPlot(mnorm,main='Print-tip Loess post-normalization')



  

R Code
# import eisen data

dat <- read.table("eisen.txt",header=T)

dimnames(dat)[[1]] <- as.character(dat[,1])

dat <- dat[,-1]

dat <- as.data.frame(dat)

# scatter plot

cars.lm <- lm(dist~speed,data=cars)

plot(cars$speed,cars$dist,xlab=“speed”,ylab=“dist”,main=“regression(cars)”)

abline(as.numeric(cars.lm$coefficients[1]),as.numeric(cars.lm$coefficients[2]),col=‘red’,lwd=2)

# lowess smoothing plot

data(cars)

plot(cars, main = "lowess(cars)“)

lines(lowess(cars), col = 2,lwd=2)

lines(lowess(cars, f=.2), col = 3,lwd=2)

legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

# load affy library

library(affy)

 # get data

data(affybatch.example)

# plot data both before and after loess normalization using PM data

x <- pm(affybatch.example)

mva.pairs(x)

x <- normalize.loess(x,subset=1:nrow(x))

mva.pairs(x)



  

R Code

# affy normalization parameters for expresso function

> bgcorrect.methods

[1] "mas"  "none" "rma"  "rma2"

> normalize.AffyBatch.methods

[1] "constant" "contrasts" "invariantset" "loess"

[5] "qspline" "quantiles" "quantiles.robust"

> pmcorrect.methods

[1] "mas" "pmonly" "subtractmm"

> express.summary.stat.methods

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

eset <- expresso(affybatch.example,bgcorrect.method="rma",

normalize.method="quantiles",

pmcorrect.method="pmonly",

summary.method="medianpolish")

# look at data frame of RMA values

attributes(eset)$exprs

# first scatter plot of R vs. G and un-normalized MvA plot with Mouse cDNA data

> plot(log(mouse.data$G),log(mouse.data$R),xlab='Cy3',ylab='Cy5',main='logR vs. logG')

> plot.mva(mouse.data, mouse.setup, norm=“n”, 2, extra.type="p",plot.type=“r”,main=“MvA plot of R/G”) 
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