
  

Lecture #4

Power and sample size
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Replicates

 Reliability of statistical inference requires 
replicate data
 Hypothesis testing
 Feature selection
 Classification

 Variance estimates are highly dependent on an 
adequate sampling

 Microarrays can be fairly costly, so the 
minimum number of arrays is optimal for 
experiment and analysis



  

Statistical Terms
 Hypothesis tests

 H0: the means of two samples are the same (null)
 H1: the means of two samples are not the same (alternative)

Rejecting or disproving the null hypothesis – and thus concluding that there are grounds 
for believing that there is a relationship between two phenomena or that a potential 
treatment has a measurable effect – is a central task in the modern practice of science

 Type I error (false positive – alpha value)
 Probability of accepting the alternative hypothesis, when the means are the same

 Type II error (false negative – beta value)
 Probability of accepting the null hypothesis, when the means are different



  

Statistical Terms (cont.)
 Confidence level

 Probability of accepting the null hypothesis, when the means are the same
 1-α (where α is the size of the test)
 is used to indicate the reliability of an estimate

 Power
 Probability of accepting the alternative hypothesis, when the means are different 

(1-β)

 Sample size determination is made, such that confidence and 
power can reach predefined values 
 e.g. 95% confidence; 80% power 



  

Calculations (two sample case)1

 Power can help estimate the minimum 
sample size necessary to test for the 
effect size

 The t-statistic for the hypothesis test:

 The H0 distribution for all classes 
having the same mean is defined as:

 The H1 distribution for all classes 
having different means is defined as:

 The effect size is the critical difference 
between populations that is set in 
advance:



  

Flow diagram1



  

Calculations (cont.)1

 Confidence and power are calculated 
using the distributions of the null and 
alternative hypotheses1

 An initial sample size is assumed, 
along with a given effect size1

 A critical value is identified to ensure a 
pre-selected confidence level (95% in 
this example) from the null distribution 
(blue) 1

 The power is then calculated by 
integrating the alternative distribution 
(green) from the critical value to 
positive infinity1

 If the power falls below the predefined 
value (1-β), the sample size is 
increased until the power reaches this 
threshold1



  

Calculations (cont.)1

 Power curve

 Sample size in the plot 
represent the total 
number of samples (both 
classes)

 Assumes that the 
standard deviation matrix 
is the same for each 
class1



  

Sample size calculation
 Sample size is a function of multiple factors

 Effect size
 Desired power (1-type II error probability)
 Confidence level (type I error probability)
 Variability (CVs)

 There is difficulty in representing variability in microarray data because it tends to vary 
across genes
 Effect size is expected difference between classes (e.g. fold change)
 Power is a pre-determined threshold (e.g. 95%)
 Confidence level is 1-α (e.g. 99% for a size=.01 test)

 To get a single statistic for n genes, we must assume a single estimator (constant 
variance) across a microarray
 This is unrealistic for each gene to have similar variability

 For calculating the power in at least h genes that are thought be regulated between 
classes, the binomial probabilities must be summed
 (1-β) = ∑ x!/(h!(x-h)!)(1-B)hB(x-h) 

where h=# regulated genes detected
           x=# of actually regulated genes

       B= type II error



  

Sample size calculation – two 
sample, two-sided test

given: zα= critical value at specific size of test

  k = n2/n1 projected ratio of 2 sample sizes

  σ1
2 & σ2

2 = sample variances

  μ1 & μ2 = sample means

Power (1-β) = Ǿ [ -z1-σ/2 + (√n1|μ1 – μ2|) / (√σ1
2 + σ2

2/k) ]

n1 = { (σ1
2 + σ2

2/k)(z1-σ/2 + z1- β)2 } / |μ1 – μ2|2 

n2 = { (kσ1
2 + σ2

2)(z1-σ/2 + z1- β)2 } / |μ1 – μ2|2

assuming near equal sample sizes

n = { (σ1
2 + σ2

2)(z1-σ/2 + z1- β)2 } / |μ1 – μ2|2 



  

Example

 Multiple gene power calculations are beyond 
the scope of this course
 We can calculate sample sizes and power based on 

single gene statistics

 Utilizing only a few selected genes, we can get 
an idea of how many replicates would be 
required to detect a specified mean difference 
between classes



  

Example with colon data 
gene #8,000 boxplots
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Gene #8000

 Welch Two Sample t-test

data:  x and y 
t = 2.226, df = 32.726, p-value = 
0.03302
alternative hypothesis: true difference 
in means is not equal to 0 
95 percent confidence interval:
 0.03484702 0.77814245 
sample estimates:
  mean of x   mean of y 
 0.06089474 -0.34560000 



  

Sample size

 The t-test finds a significant result (p=0.03) at a difference of ~0.41 
between the means

 To detect a 3 fold difference (log scale) for gene #8,000 with 80% power 
and confidence=95%

 Data is z-score normalized, so detectable fold change is difficult to infer

 Two-sample t test power calculation 

              n = 7
          delta = 1.099
             sd = 0.680
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

 NOTE: n is number in *each* group 



  

Power curves3

 Assuming constant variance across all genes (false 
assumption) at ~ 1.44, the replicate numbers can be 
represented by the calculated power at the specified fold 
change detections



  

False Discovery Rate as opposed to 
power and confidence for sample size 
determination

 The p-value is associated with specificity of a test
 p-value<0.05 means that specificity = 0.95

 Multiple testing procedures can be too 
conservative
 Will discuss this concept in later lectures

 False discovery rate (FDR) is proposed as an 
alternative to simple p-values
 FDR is expected proportion of FPs among declared 

significant results
 e.g: if 100 genes are declared differentially expressed, 

and set the FDR to 0.10, 10 of these genes will be FPs 



  

Properties of the FDR

 The FDR relies on:
 The proportion of truly differentially expressed 

genes
 Distribution of the true differences
 Variability
 Sample size (only factor under the 

experimentalists control)



  

10,000 gene example5

 
Test result: non 

differentially regulated
Test result: differentially 

expressed Total

True: non 
differentially 
expressed A = 9025 B = 475 9500

True: 
differentially 
expressed C = 100 D = 400 500

Total 9125 875 10,000

 FP rate (1-specificity) = B/(A+B) = 5%
 Sensitivity = D/(C+D) = 80%
 FDR = B/(B+D) = 54%
 FNR = C/(C+D) = 20%

 Over half of genes that hypothesis test says are differentially expressed, are not 

 Using significance test, 80% power and 95% confidence gives a high FDR
 Can reduce FPs by reducing p-value threshold



  

FDR curves for non-differentially 
expressed genes5

 Each curve is labeled by the percentage of truly non-differentially expressed genes
 In experiments with small n, where the percentage of non-differentially expressed genes is 

expected to be high, FDR can be high, even when using large t-statistic critical values
 e.g. if the proportion of non-differentially expressed genes = 0.90, this provides a 60% FDR, with a 

sample size of 5
 When n is increased to 30 (per group), FDR improves

 e.g. at a t-statistic critical value of 3 (p-value=0.004), there is <10% FDR, if 0.90 of genes are non-
differentially expressed; sensitivity ~ 0.80

At 5% level t-
statistic=2.31

Classical 
significance 
level

sens. or 
power



  

 Assume
 Genes with top 1% highest absolute t-statistics are truly differentially expressed
 Proportion of non-differentially expressed genes = 0.99

 FDR > 80% for n=5 (per group)
 As n is increased, FDR increases

FDR curves for differentially 
expressed genes5



  

 Each curve is labeled with a fixed percentage of truly differentially expressed genes
 If the number of differentially expressed genes is known to be around a certain amount 

for an array, increasing the probes will only increase the proportion of non-differentially 
expressed genes
 This will result in larger FDRs 

FDR curves vs. n for non-differentially 
expressed genes (p0)5



  

Increase log-fold changes for truly 
differentially expressed genes5

 With increased fold changes FDR is reduced

log-fold changes at -1 and +1 log-fold changes at -2 and +2
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R Code

# import eisen data

dat <- read.table("eisen.txt",header=T)

dimnames(dat)[[1]] <- as.character(dat[,1])

dat <- dat[,-1]

dat <- as.data.frame(dat)

# import annotation file

ann <- read.table("eisenClasses.txt",header=T)

# subset dat by samples of interest

cl <- as.character(ann[,2])

dat <- dat[,cl]

# two classes of DLBCL

gc <- cl[1:19]

act <- cl[20:39]

# split up classes and look at both samples for gene #8000

x <- as.numeric(dat[8000,gc])

y <- as.numeric(dat[8000,act])

# remove “NAs”

x <- x[!is.na(x)]; y <- y[!is.na(y)]

# plot both samples

xy.list <- list(x,y)

boxplot(xy.list,col='purple',main='Gene #8000')



  

R Code

# calculate two-sample Welch’s t-test (unequal variances) between normal and tumor for gene #8000

xy.ttest <- t.test(x, y, alternative ="two.sided",paired = FALSE, var.equal = FALSE,conf.level = 0.95)

# determine sd of each group and choose max

x.sd <- sd(x)

y.sd <- sd(y)

# calculate number of replicates to detect 3 fold change (1.1 on log scale) at 80% power

power.t.test(delta=log(3),sd=y.sd,power=.8)



  

Backup slides



  

Replicate concordance

 An alternative method of viewing the effect of 
replicate experiments is to estimate the concordance 
of various parameters in each replicate individually
 Probability of detecting a gene

 This method can give you insight into the similarity 
between each replicate independently

 Then, observe how this changes when the replicates 
are pooled



  

Statistical Model2

 We assume a model for the detection of a 
particular gene g (g=1…,G) in replicate j 
(j=1…,J), subject to the following 
considerations2:
 Expression of a gene is taken as the log ratio Ygj

 Ygj has two distinct distributions:
 Gene g is not in the sample tissue, distributed as 

N(µUjσ2
Uj), where U refers to being unexpressed

Probability density function is Ygj | E.barg,given by fUj(y)

 Gene g is in the sample tissue, distributed as N(µEjσ2
Ej), 

where E refers to being expressed
Probability density function is Ygj | Eg,given by fEj(y)

 Prior probability of observing a gene is Pr{Eg}=p



  

Statistical Model (cont.)2

 The log-ratio, Ygj for replicate j will be distributed 

according to the following mixture model 
fj(y) = pfEj(y) + (1-p)fUj(y)

 Manipulating the equation above gives the 
posterior probabilities for whether gene g is 
expressed, based on the expression value Ygj = y

Pr{Eg | Ygj = y} = pfEj(y) / fj(y)



  

Model Parameters2

 Using the following parameters, we can estimate the 
posterior probabilities from the two previous equations
 p = prior prob. of observing a gene (controlled experiment showed 

32/288 (0.111) as expressed)
 µUj & σ2

Uj = mean and variance for gene g being unexpressed
 µEj & σ2

Ej = mean and variance for gene g being expressed
 We would expect a large difference between the 2 mean parameters 

(µEj> µUj)

 First solve the MLE (maximum likelihood estimates) of 
the parameters above in each of the 3 replicates alone 
and see how similar they are
 MLE is a method of determining the values of n unknown variables, 

such that the function is maximized
 We solve for these parameters in the first equation and compare how 

they differ between replicates



  

Equation #1 Model Parameters2

 Replicate #2 is fairly different for 3 parameters

 The approximations of p in j=1 and 3 are too large, as compared to the controlled study 
(0.111)

 These 3 replicates show the differences in replicate mean and variance between 
identical samples



  

Equation #2 Posterior Probabilities2

 The posterior probability that a gene is expressed is at a threshold of 0.5
 Eg | Yg > 0.5 (gene is expressed);
 Eg | Yg < 0.5 (gene is not expressed);

 Gene #17 has very different estimate of posterior probability (prob. of being expressed) in replicate 3, as 
compared to 1 and 2.



  

Single Replicate vs. Combined

 The differences in both model parameters and 
posterior probabilities (prob. that the gene is 
expressed) are significant when looking at 
individual replicates

 How can these estimates be improved when 
utilizing combined replicate data?
 Model parameters
 Misclassification percentages (stratified by 

replicate combinations)



  

Combined Data Model Parameters2

 Prior probability is more consistent with controlled study results 
 0.118 vs. 0.111

 Difference between means is large
 1.524 >> -0.204



  

Combined Data Misclassification Rates2

 Misclassification rates are highest in individual replicates 1 and 
3

 All three replicates provide the lowest misclassification rate
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