

Lecture #2

The R language and environment

Outline
 What is R?
 Basic syntax rules
 Math operators
 Vectors, Matrices, and Data frames
 Logical operators
 Casting data types
 Read/Write
 Iteration
 Packages
 Libraries/Functions
 Plotting commands
 Par command
 Data sets in R

What is R?
 R is both a language and environment for statistical and

computational analysis

 Where does the name come from?
 Authors: Robert Gentleman and Ross Ihaka and S language play-on

words

 The language is similar to that of Splus, which gets its roots from S
 Developed by Bell Labs

 R was developed as a collaborative project from multiple
contributors (CRAN)
 You can readily download and contribute “packages” to R

 R software is available free, however there is no support
 Splus (on the other hand) is not free, so support is provided

Basic syntax rules
 Procedures in R are implemented as functions

 “()” syntax
 i.e. c(4,5,6) means to concatenate the three numbers into a vector

 R processes are best handled as objects
 If you run any function, assign it to a variable (object) so you can manipulate the

attributes in the object

 Numerical objects are interpreted best in formats of matrices, vectors, data
frames, or lists
 Statistical language vs. computer language

 !To get help with any function in R, use the help function!
 help(mean)
 ?mean

 To quit out of R, use the quit function
 q()

 Variable assignment is “=“ or “<-”

Basic syntax rules (cont.)
 Annotation syntax is “#” (R will not read comments that start with this symbol)

 To view the objects in the database
 ls()

 Remove an object in the database
 rm()

 Concatenate/combine multiple numbers/objects together
 c()

 Underscores (“_”) are not handled well in variable names
 The underscore is synonymous with the “=“ and “<-” assignment operators
 Try to avoid underscores in scripts

 Calculate a mean and variance
 mean()
 var()

 View current memory size and set memory limits
 memory.size(T)
 memory.limit

Mathematical Calculations

 General math operators
 > 5 + 5
 > 10 – 2
 > 10 * 10
 > 25 / 5
 > 3 ^ 2
 > exp(2)
 > log(10)
 > logb(10,2)

Vectors

 Vector syntax
 Create a vector

 > x <- c(2,4,6,3,4,6)
 > y <- c(5,6,7,8,8,0)

 Specify certain elements of the vector
 > x[1:3]

[1] 2 4 6
 Remove an element from the vector

 > x[-2]
[1] 2 6 3 4 6

 Bind 2 vectors together (must be same length)
 > x.y.bound <- cbind(x,y) # cbind means column bind

Misc. vector operations

 Intersect elements of 2 vectors
 > intersect(x,y)

[1] 6
 Diff 2 vectors

 > setdiff(x,y) # what is in x that is not in y?
[1] 2 4 3

 Find length of x vector
 > length(x)

[1] 6

Matrices
 Matrix syntax

 Create a matrix
 > x.matrix <- matrix(data=x,nrow=3,ncol=2)
 > x.matrix

 [,1] [,2]
[1,] 2 3
[2,] 4 4
[3,] 6 6

 Look at matrix dimensions
 > dim(x.matrix)

[1] 3 2
 Specify elements in the matrix

 > x.matrix[1:2,2] # rows 1 and 2 of column 2
[1] 3 4

 > x.matrix[1,] # rows 1, all columns
[1] 2 3

 Transpose the matrix
 > x.matrix.t <- t(x.matrix)
 > x.matrix.t

 [,1] [,2] [,3]
[1,] 2 4 6
[2,] 3 4 6

Data frames
 Similar syntax to matrices, but have row and column names

 Create a data frame
 > x.df <- data.frame(x,y)
 > x.df

 x y
1 2 5
2 4 6
3 6 7
4 3 8
5 4 8
6 6 0 # has row names (1-6) and column names (x and y)

 Look at row names
 > dimnames(x.df)[[1]]

[1] "1" "2" "3" "4" "5" "6"
 Look at column names

 > dimnames(x.df)[[2]]
[1] “x” “y”

Logical Operators

 R works very well with boolean logic
 Look for values greater than 4 in x.matrix

 > x.matrix.g4 <- x.matrix>4
 > x.matrix.g4

[,1] [,2]
[1,] FALSE FALSE
[2,] FALSE FALSE
[3,] TRUE TRUE

 Print only those values out
 > x.matrix[x.matrix.g4]

[1] 6 6

Casting
 Casting is basically changing the data-type from one type to another

 i.e. data is in matrix format and you wish to convert it to a vector:
 use the “as.” syntax followed by the desired data-type

 > x.vector <- as.vector(x.matrix) # change to vector
 > x.vector

[1] 2 4 6 3 4 6
 > x.df <- as.data.frame(x.matrix) # change to dataframe
 > x.df

 V1 V2
1 2 3
2 4 4
3 6 6

 > x.char <- as.character(x.vector) # change to character
 > x.char

[1] "2" "4" "6" "3" "4" "6"

 Can also check type of data object with “mode” and “class” functions

Read in/Write out

 Multiple ways to read a data file in
 > read.table(file=“C:\\Class\\data.txt”,header=T)

 must use “\\” instead of “\” for path

 > scan(file=“C:\\Class\\data.txt”)
 must use “\\” instead of “\” for path
 best for vectors or lists (not best for 2D data)

 Writing data out to a file
 > write.table(x.matrix,file=“dataFile.txt”,sep=“\t”)
 > write(x.matrix,file=“dataFile.txt”,ncolumns=2)

Iteration & If Statements
 Loops are not optimized in R

 They are possible, but not memory favorable

 Loop syntax
 > for(i in 1:6) {} # for loop
 > while(i < 7) {} # while loop

 apply statements
 Inherent looping mechanism
 Much more memory efficient
 > apply(x.matrix,1,mean)

 Will calculate a mean on each row in x.matrix
 > apply(x.matrix,2,mean)

 Will calculate a mean on each column in x.matrix

 if statements are fairly well implemented
 if(x[1]>5) {x[1]=6} # simple if command
 ifelse(x[1]>5,x[1]=6,x[1]=9) # combine if and else into one statement

Packages
 Binary files that build library access structure

 Allow specific functions to be accessible
 If you know the package name, you can simply type: install.packages("tree")

 “tree” is the example package in this case

Can install packages from CRAN or
Bioconductor

Can install packages from local drive
(if saved zip file is on local drive)

Libraries & Functions
 Once package has been installed, library can be accessed

 Libraries include many functions
 > library(base) # implements base library
 Allows access to functions inside the library

 Data sets internal to R can also be accessed and utilized
 > data(iris) # allows access to famous iris flower data set
 MORE EXPANATION ON THIS FURTHER IN LECTURE

 Functions
 Handled well in R
 Similar to a subroutine in other languages (packaged operation that is called)

 > square <- function(x=num1,y=num2) {
r1 <- x^2
r2 <- y^2
output <- c(r1,r2)
return(output)

 }
 > square(x=4,y=2) # call square function

[1] 16 4

Packages & Libraries

 You can view the complete list of installed packages
 > .packages(all = TRUE)

 Also view the list of current attached packages
 > (.packages())

 Can set the path for R to look for the libraries
 > .libPaths("C:/PROGRA~1/R/RW2000~1/library")

 Remove package from session
 > detach(“package:stats”)

 View package contents (e.g. functions, author, date,
version, description, etc.)
 > library(help=odesolve)

Plotting commands

 There are many optional commands available in R for
plotting data
 Only a few of the main commands are necessary

 Scatter plot
 > plot(x,y) # x and y must be same length and numeric
 Labels

 xlab=‘x vector’# x-axis label
 ylab=‘y vector’# y-axis label
 main=‘Scatter plot’ # title for plot

 Points, size, and colors
 pch=‘*’# symbol to plot
 cex=1.5 # size of symbol
 col=‘red’ # color of points

Plotting commands (steps)

 Plotting function can be given in subsequent commands for
modifications to the graph

 Scatter plot options
 Plot without points/lines

 type=‘n’ # no points or lines are not drawn
 type=‘b’ # lines and points drawn together
 type=‘p’ # only points are draw
 type=‘l’ # only lines are drawn

 Points only
 points(x,y,col=‘blue’)

 Lines only
 lines(x,y,col=‘yellow’)
 lwd(2) # line width
 lty(3) # line pattern

Plot example
> x <- c(1,4,5,6,8,9)
> y <- c(20,44,66,89,90,101)
> plot(x,y,type='n',xlab='x vector',ylab='y vector',main='Scatter plot example')
> points(x,y,col='red',pch='*',cex=3)
> lines(x,y,col='red',lwd=2,lty=2)

Plotting commands (options)

 Data can be plot using grouping variable commands
> library(nlme)

> data(PBG)

> attach(PBG)

> plot(deltaBP dose)

> plot(deltaBP dose, col=as.integer(Rabbit))

> interaction.plot(dose, Rabbit, deltaBP)

0
5

1
0

1
5

2
0

2
5

3
0

3
5

dose

m
e

a
n

 o
f

d
e

lta
B

P

6.25 12.5 25 50 100 200

 Rabbit

1
2
4
3
5

0 10 20 30

0
5
0

1
0

0
1
5

0
2
0

0

deltaBP

d
o

se

Par commands

 Page formatting to add more than 1 plot per page
 > par(mfrow=c(2,3)) # 6 total plots (2 rows & 3 columns)

 Page formatting to add margin sizes
 > par(oma=c(2,4,2,4)) #order is bottom, left, top, right

 Multiple other page format options
 See help section for “par”

Data sets in R
Using packages in Bioconductor, multiple microarray data sets are available

library(Biobase);
library(annotate);
library(golubEsets);
library(multtest);

Golub et al. AML/ALL Affy data set (training set and test set are separate)
data(golubTrain);
data(golubTest)
dat.train <- exprs(golubTrain) (7129 genes x 38 samples)
data(golubTest)
dat.test <- exprs(golubTest) (7129 genes x 34 samples)
clas <- pData(phenoData(golubTrain)) (class labels for training set samples)

or
data(golub)
smallgd<-golub (7129 genes x 38 samples)
classlabel<-golub.cl # class labels for training set samples

Alon et al. colon cancer Affy data set
library(colonCA)
data(colonCA)
dat <- exprs(colonCA) (2000 genes x 62 samples)
classlabel <- colonCA$class # class labels for samples

Some unidentified Affy data set
data(geneData)
dat <- geneData (500 genes x 26 samples)

Getting data sets from CRAN
Bioconductor (http://www.bioconductor.org/)
Under <Software>

<Experimental Data>
yeastCC: Spellman et al. yeast cell cycle data - cDNA data
golubEsets: Golub et al. AML/ALL data - Affymetrix data
colonCA: Alon et al. Colon Cancer data – Affymetrix data

http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/data/experimental/html/golubEsets.html
http://www.bioconductor.org/data/experimental/html/colonCA.html

Getting data sets from CRAN
(cont.)
Once the zip file has been downloaded to a local directory, go
into R and use package instructions to install zip file from local
directory

Then,

access data from data object as follows:

load package from local drive
> library(Biobase)
> library(annotate)
> library(colonCA)
> data(colonCA)
> dat <- exprs(colonCA) # expression data
> ann.dat <- colonCA$class # annotations for samples

References
 R Primer

 http://www.r-project.org/
<Documentation>

<Manuals>

 <An Introduction to R> or

 <The R Reference Index>

 Introductory Statistics with R, Peter Dalgaard

http://www.r-project.org/

	Lecture #2
	Outline
	What is R?
	Basic syntax rules
	Basic syntax rules (cont.)
	Mathematical Calculations
	Vectors
	Misc. vector operations
	Matrices
	Data frames
	Logical Operators
	Casting
	Read in/Write out
	Iteration & If Statements
	Packages
	Libraries & Functions
	Packages & Libraries
	Plotting commands
	Plotting commands (steps)
	Plot example
	Plotting commands (options)
	Par commands
	Data sets in R
	Getting data sets from CRAN
	Getting data sets from CRAN (cont.)
	References

