

Lecture #2

The R language and environment

Outline
 What is R?
 Basic syntax rules
 Math operators
 Vectors, Matrices, and Data frames
 Logical operators
 Casting data types
 Read/Write
 Iteration
 Packages
 Libraries/Functions
 Plotting commands
 Par command
 Data sets in R

What is R?
 R is both a language and environment for statistical and

computational analysis

 Where does the name come from?
 Authors: Robert Gentleman and Ross Ihaka and S language play-on

words

 The language is similar to that of Splus, which gets its roots from S
 Developed by Bell Labs

 R was developed as a collaborative project from multiple
contributors (CRAN)
 You can readily download and contribute “packages” to R

 R software is available free, however there is no support
 Splus (on the other hand) is not free, so support is provided

Basic syntax rules
 Procedures in R are implemented as functions

 “()” syntax
 i.e. c(4,5,6) means to concatenate the three numbers into a vector

 R processes are best handled as objects
 If you run any function, assign it to a variable (object) so you can manipulate the

attributes in the object

 Numerical objects are interpreted best in formats of matrices, vectors, data
frames, or lists
 Statistical language vs. computer language

 !To get help with any function in R, use the help function!
 help(mean)
 ?mean

 To quit out of R, use the quit function
 q()

 Variable assignment is “=“ or “<-”

Basic syntax rules (cont.)
 Annotation syntax is “#” (R will not read comments that start with this symbol)

 To view the objects in the database
 ls()

 Remove an object in the database
 rm()

 Concatenate/combine multiple numbers/objects together
 c()

 Underscores (“_”) are not handled well in variable names
 The underscore is synonymous with the “=“ and “<-” assignment operators
 Try to avoid underscores in scripts

 Calculate a mean and variance
 mean()
 var()

 View current memory size and set memory limits
 memory.size(T)
 memory.limit

Mathematical Calculations

 General math operators
 > 5 + 5
 > 10 – 2
 > 10 * 10
 > 25 / 5
 > 3 ^ 2
 > exp(2)
 > log(10)
 > logb(10,2)

Vectors

 Vector syntax
 Create a vector

 > x <- c(2,4,6,3,4,6)
 > y <- c(5,6,7,8,8,0)

 Specify certain elements of the vector
 > x[1:3]

[1] 2 4 6
 Remove an element from the vector

 > x[-2]
[1] 2 6 3 4 6

 Bind 2 vectors together (must be same length)
 > x.y.bound <- cbind(x,y) # cbind means column bind

Misc. vector operations

 Intersect elements of 2 vectors
 > intersect(x,y)

[1] 6
 Diff 2 vectors

 > setdiff(x,y) # what is in x that is not in y?
[1] 2 4 3

 Find length of x vector
 > length(x)

[1] 6

Matrices
 Matrix syntax

 Create a matrix
 > x.matrix <- matrix(data=x,nrow=3,ncol=2)
 > x.matrix

 [,1] [,2]
[1,] 2 3
[2,] 4 4
[3,] 6 6

 Look at matrix dimensions
 > dim(x.matrix)

[1] 3 2
 Specify elements in the matrix

 > x.matrix[1:2,2] # rows 1 and 2 of column 2
[1] 3 4

 > x.matrix[1,] # rows 1, all columns
[1] 2 3

 Transpose the matrix
 > x.matrix.t <- t(x.matrix)
 > x.matrix.t

 [,1] [,2] [,3]
[1,] 2 4 6
[2,] 3 4 6

Data frames
 Similar syntax to matrices, but have row and column names

 Create a data frame
 > x.df <- data.frame(x,y)
 > x.df

 x y
1 2 5
2 4 6
3 6 7
4 3 8
5 4 8
6 6 0 # has row names (1-6) and column names (x and y)

 Look at row names
 > dimnames(x.df)[[1]]

[1] "1" "2" "3" "4" "5" "6"
 Look at column names

 > dimnames(x.df)[[2]]
[1] “x” “y”

Logical Operators

 R works very well with boolean logic
 Look for values greater than 4 in x.matrix

 > x.matrix.g4 <- x.matrix>4
 > x.matrix.g4

[,1] [,2]
[1,] FALSE FALSE
[2,] FALSE FALSE
[3,] TRUE TRUE

 Print only those values out
 > x.matrix[x.matrix.g4]

[1] 6 6

Casting
 Casting is basically changing the data-type from one type to another

 i.e. data is in matrix format and you wish to convert it to a vector:
 use the “as.” syntax followed by the desired data-type

 > x.vector <- as.vector(x.matrix) # change to vector
 > x.vector

[1] 2 4 6 3 4 6
 > x.df <- as.data.frame(x.matrix) # change to dataframe
 > x.df

 V1 V2
1 2 3
2 4 4
3 6 6

 > x.char <- as.character(x.vector) # change to character
 > x.char

[1] "2" "4" "6" "3" "4" "6"

 Can also check type of data object with “mode” and “class” functions

Read in/Write out

 Multiple ways to read a data file in
 > read.table(file=“C:\\Class\\data.txt”,header=T)

 must use “\\” instead of “\” for path

 > scan(file=“C:\\Class\\data.txt”)
 must use “\\” instead of “\” for path
 best for vectors or lists (not best for 2D data)

 Writing data out to a file
 > write.table(x.matrix,file=“dataFile.txt”,sep=“\t”)
 > write(x.matrix,file=“dataFile.txt”,ncolumns=2)

Iteration & If Statements
 Loops are not optimized in R

 They are possible, but not memory favorable

 Loop syntax
 > for(i in 1:6) {} # for loop
 > while(i < 7) {} # while loop

 apply statements
 Inherent looping mechanism
 Much more memory efficient
 > apply(x.matrix,1,mean)

 Will calculate a mean on each row in x.matrix
 > apply(x.matrix,2,mean)

 Will calculate a mean on each column in x.matrix

 if statements are fairly well implemented
 if(x[1]>5) {x[1]=6} # simple if command
 ifelse(x[1]>5,x[1]=6,x[1]=9) # combine if and else into one statement

Packages
 Binary files that build library access structure

 Allow specific functions to be accessible
 If you know the package name, you can simply type: install.packages("tree")

 “tree” is the example package in this case

Can install packages from CRAN or
Bioconductor

Can install packages from local drive
(if saved zip file is on local drive)

Libraries & Functions
 Once package has been installed, library can be accessed

 Libraries include many functions
 > library(base) # implements base library
 Allows access to functions inside the library

 Data sets internal to R can also be accessed and utilized
 > data(iris) # allows access to famous iris flower data set
 MORE EXPANATION ON THIS FURTHER IN LECTURE

 Functions
 Handled well in R
 Similar to a subroutine in other languages (packaged operation that is called)

 > square <- function(x=num1,y=num2) {
r1 <- x^2
r2 <- y^2
output <- c(r1,r2)
return(output)

 }
 > square(x=4,y=2) # call square function

[1] 16 4

Packages & Libraries

 You can view the complete list of installed packages
 > .packages(all = TRUE)

 Also view the list of current attached packages
 > (.packages())

 Can set the path for R to look for the libraries
 > .libPaths("C:/PROGRA~1/R/RW2000~1/library")

 Remove package from session
 > detach(“package:stats”)

 View package contents (e.g. functions, author, date,
version, description, etc.)
 > library(help=odesolve)

Plotting commands

 There are many optional commands available in R for
plotting data
 Only a few of the main commands are necessary

 Scatter plot
 > plot(x,y) # x and y must be same length and numeric
 Labels

 xlab=‘x vector’# x-axis label
 ylab=‘y vector’# y-axis label
 main=‘Scatter plot’ # title for plot

 Points, size, and colors
 pch=‘*’# symbol to plot
 cex=1.5 # size of symbol
 col=‘red’ # color of points

Plotting commands (steps)

 Plotting function can be given in subsequent commands for
modifications to the graph

 Scatter plot options
 Plot without points/lines

 type=‘n’ # no points or lines are not drawn
 type=‘b’ # lines and points drawn together
 type=‘p’ # only points are draw
 type=‘l’ # only lines are drawn

 Points only
 points(x,y,col=‘blue’)

 Lines only
 lines(x,y,col=‘yellow’)
 lwd(2) # line width
 lty(3) # line pattern

Plot example
> x <- c(1,4,5,6,8,9)
> y <- c(20,44,66,89,90,101)
> plot(x,y,type='n',xlab='x vector',ylab='y vector',main='Scatter plot example')
> points(x,y,col='red',pch='*',cex=3)
> lines(x,y,col='red',lwd=2,lty=2)

Plotting commands (options)

 Data can be plot using grouping variable commands
> library(nlme)

> data(PBG)

> attach(PBG)

> plot(deltaBP dose)

> plot(deltaBP dose, col=as.integer(Rabbit))

> interaction.plot(dose, Rabbit, deltaBP)

0
5

1
0

1
5

2
0

2
5

3
0

3
5

dose

m
e

a
n

 o
f

d
e

lta
B

P

6.25 12.5 25 50 100 200

 Rabbit

1
2
4
3
5

0 10 20 30

0
5
0

1
0

0
1
5

0
2
0

0

deltaBP

d
o

se

Par commands

 Page formatting to add more than 1 plot per page
 > par(mfrow=c(2,3)) # 6 total plots (2 rows & 3 columns)

 Page formatting to add margin sizes
 > par(oma=c(2,4,2,4)) #order is bottom, left, top, right

 Multiple other page format options
 See help section for “par”

Data sets in R
Using packages in Bioconductor, multiple microarray data sets are available

library(Biobase);
library(annotate);
library(golubEsets);
library(multtest);

Golub et al. AML/ALL Affy data set (training set and test set are separate)
data(golubTrain);
data(golubTest)
dat.train <- exprs(golubTrain) (7129 genes x 38 samples)
data(golubTest)
dat.test <- exprs(golubTest) (7129 genes x 34 samples)
clas <- pData(phenoData(golubTrain)) (class labels for training set samples)

or
data(golub)
smallgd<-golub (7129 genes x 38 samples)
classlabel<-golub.cl # class labels for training set samples

Alon et al. colon cancer Affy data set
library(colonCA)
data(colonCA)
dat <- exprs(colonCA) (2000 genes x 62 samples)
classlabel <- colonCA$class # class labels for samples

Some unidentified Affy data set
data(geneData)
dat <- geneData (500 genes x 26 samples)

Getting data sets from CRAN
Bioconductor (http://www.bioconductor.org/)
Under <Software>

<Experimental Data>
yeastCC: Spellman et al. yeast cell cycle data - cDNA data
golubEsets: Golub et al. AML/ALL data - Affymetrix data
colonCA: Alon et al. Colon Cancer data – Affymetrix data

http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.bioconductor.org/data/experimental/html/golubEsets.html
http://www.bioconductor.org/data/experimental/html/colonCA.html

Getting data sets from CRAN
(cont.)
Once the zip file has been downloaded to a local directory, go
into R and use package instructions to install zip file from local
directory

Then,

access data from data object as follows:

load package from local drive
> library(Biobase)
> library(annotate)
> library(colonCA)
> data(colonCA)
> dat <- exprs(colonCA) # expression data
> ann.dat <- colonCA$class # annotations for samples

References
 R Primer

 http://www.r-project.org/
<Documentation>

<Manuals>

 <An Introduction to R> or

 <The R Reference Index>

 Introductory Statistics with R, Peter Dalgaard

http://www.r-project.org/

	Lecture #2
	Outline
	What is R?
	Basic syntax rules
	Basic syntax rules (cont.)
	Mathematical Calculations
	Vectors
	Misc. vector operations
	Matrices
	Data frames
	Logical Operators
	Casting
	Read in/Write out
	Iteration & If Statements
	Packages
	Libraries & Functions
	Packages & Libraries
	Plotting commands
	Plotting commands (steps)
	Plot example
	Plotting commands (options)
	Par commands
	Data sets in R
	Getting data sets from CRAN
	Getting data sets from CRAN (cont.)
	References

