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Abstract

Soil hydraulic properties are necessary for many studies of water and solute transport but often cannot be measured because
of practical and/or financial constraints. We describe a computer program, ROSETTA, which implements five hierarchical
pedotransfer functions (PTFs) for the estimation of water retention, and the saturated and unsaturated hydraulic conductivity.
The hierarchy in PTFs allows the estimation of van Genuchten water retention parameters and the saturated hydraulic
conductivity using limited (textural classes only) to more extended (texture, bulk density, and one or two water retention
points) input data. ROSETTA is based on neural network analyses combined with the bootstrap method, thus allowing the
program to provide uncertainty estimates of the predicted hydraulic parameters. The general performance of ROSETTA was
characterized with coefficients of determination, and root mean square errors (RMSEs). The RMSE values decreased from
0.078 to 0.044 cm® cm~* for water retention when more predictors were used. The RMSE for the saturated conductivity
similarly decreased from 0.739 to 0.647 (dimensionless log;y units). The RMSE values for unsaturated conductivity ranged
between 0.79 and 1.06, depending on whether measured or estimated retention parameters were used as predictors. Calculated
mean errors showed that the PTFs underestimated water retention and the unsaturated hydraulic conductivity at relatively high
suctions. ROSETTA’s uncertainty estimates can be used as an indication of model reliability when no hydraulic data are available.
The ROSETTA program comes with a graphical user interface that allows user-friendly access to the PTFs, and can be down-
loaded from the US Salinity Laboratory website: http://www.ussl.ars.usda.gov/. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

A broad array of methods currently exists to deter-
mine soil hydraulic properties in the field or in the
laboratory (cf. Klute, 1986; Leij and van Genuchten,
1999). While measurements permit the most exact
determination of soil hydraulic properties, they often
require a substantial investment in both time and
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money. Moreover, many vadose zone studies are
concerned with large areas of land that may exhibit
substantial spatial variability in the soil hydraulic
properties. It is virtually impossible to perform
enough measurements to be meaningful in such
cases, thus indicating a need for inexpensive and
rapid ways to determine soil hydraulic properties.
Many indirect methods for determining soil
hydraulic properties have been developed in the past
(cf. Rawls et al., 1991; van Genuchten and Leij, 1992;
Leij and van Genuchten, 1999). Most of these meth-
ods can be classified as pedotransfer functions (PTFs,
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after Bouma and van Lanen, 1987) because they
translate existing surrogate data (e.g. particle-size
distributions, bulk density and organic matter content)
into soil hydraulic data. All PTFs have a strong degree
of empiricism in that they contain model parameters
that were calibrated on existing soil hydraulic data-
bases. A PTF can be as simple as a lookup table that
gives hydraulic parameters according to textural class
(e.g. Carsel and Parrish, 1988; Wosten et al., 1995) or
include linear or nonlinear regression equations (e.g.
Rawls and Brakensiek, 1985; Minasny et al., 1999).
PTFs with a more physical foundation exist, such as
the pore-size distribution models by Burdine (1953)
and Mualem (1976), which offer a method to calculate
unsaturated hydraulic conductivity from water reten-
tion data. Models by Haverkamp and Parlange (1986)
and Arya and Paris (1981) use the shape similarity
between the particle- and pore-size distributions to
estimate water retention. Tyler and Wheatcraft
(1989) combined the Arya model with fractals mathe-
matics, while Arya et al. (1999a,b) recently extended
the similarity approach to estimate water retention and
unsaturated hydraulic conductivity.

Practical applications of most PTFs are often
hampered by their very specific data requirements.
Some authors established PTFs that provided the
best results for their data set, which sometimes
produced models that require many input variables
(cf. Rawls et al., 1991) or detailed particle-size distri-
butions (Arya and Paris, 1981; Haverkamp and
Parlange, 1986). However, users of PTFs are
frequently confronted with situations where one or
several input variables needed for a PTF are not avail-
able. Another problem is that PTFs provide estima-
tions with a modest level of accuracy. It would
therefore be useful if PTFs could accept input data
with varying degrees of detail and if PTF predictions
could include reliability measures.

Recently, neural network analysis was used to
establish empirical PTFs (Pachepsky et al., 1996;
Schaap and Bouten, 1996; Minasny et al., 1999;
Pachepsky et al., 1999). An advantage of neural
networks, as compared to traditional PTFs, is that
neural networks require no a priori model concept.
The optimal, possibly nonlinear, relations that link
input data (particle-size data, bulk density, etc.) to
output data (hydraulic parameters) are obtained and
implemented in an iterative calibration procedure. As

a result, neural network models typically extract the
maximum amount of information from the data.
Schaap et al. (1998) used neural network analyses to
estimate van Genuchten (1980) water retention para-
meters and saturated hydraulic conductivity. To facil-
itate the practical use of the PTFs, they designed a
hierachical structure to allow input of limited and
more extended sets of predictors. The combination
with the bootstrap method (Efron and Tibshirani,
1993) provided the reliability for the PTF estimations
(Schaap and Leij, 1998).

Yet, while neural network-based PTFs may provide
relatively accurate estimates, they contain a large
number of coefficients that do not permit easy inter-
pretation or publication in explicit form. To facilitate
application of the PTFs, we have developed the
computer program ROSETTA that implements some
of the models published by Schaap et al. (1998);
Schaap and Leij (1998) and Schaap and Leij (2000).
The objectives of this paper are (i) to present the
ROSETTA program in terms of hydraulic parameters,
calibration data sets, selection of predictors, and char-
acterization of model performance, and (ii) to discuss
the uncertainty of estimated hydraulic parameters as a
function of suction and texture.

2. Materials and methods

Much of this section has been published before in
Schaap et al. (1998), Schaap and Leij (1998), and
Schaap and Leij (2000). However, we describe the
most important methodology here to provide the
reader a concise documentation about the background
of ROSETTA. This section will also present methodol-
ogy that was not used in previous publications.

2.1. Hydraulic parameters

ROSETTA is able to estimate van Genuchten (1980)
water retention parameters and saturated hydraulic
conductivity (K;), as well as unsaturated hydraulic
conductivity parameters based on Mualem’s (1976)
pore-size model. The retention function is given by

6@ - er

0(h) = 6, + :

[ (ay .

where 6(h) is the measured volumetric water content
(cm3 cmfs) at the suction 4 (cm, taken positive for
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Fig. 1. Textural distribution of the samples for water retention (a), for the subset for saturated hydraulic conductivity (b), for the subset for
unsaturated hydraulic conductivity (c). Fig. 1d depicts the textural classes. S: sand, IS: loamy sand, sL: sandy loam, scL: sandy clay loam, sC:
sandy clay, L: loam, siL: silty loam, Si: silt, sicL: silty clay loam, siC: silty clay, cL: clay loam, C: clay.

increasing suctions). The parameters 6, and 6 are
residual and saturated water contents, respectively,
(cm® cm™?); @ (>0, in cm ") is related to the inverse
of the air entry suction, and n (>1) is a measure of the
pore-size distribution (van Genuchten, 1980).

Combination of Eq. (1) with Mualem’s (1976)
pore-size model yields the following closed-form
expression for unsaturated hydraulic conductivity
(van Genuchten, 1980)

K(Se) = KoSe{1 — [1 = sV iny? )
where the effective saturation, S, is computed as

O

S
¢ os_ ar

(3)
K, is a fitted matching point at saturation (cm day ")

while L (-) is an empirical parameter that is normally
assumed to be 0.5 (Mualem, 1976). Eq. (2) can also be

expressed in terms of /# with the help of Eq. (1). Schaap
and Leij (2000) found that fitted K|, values were often
about one order of magnitude lower than K, while
fitted L were often negative, having an optimal value
of —1. Although these findings suggest an increased
level of empiricism in the Mualem model, they provide
a far better description of unsaturated hydraulic
conductivity data than the common practice of using
Ky = K, and L = 0.5 (see also Hoffmann-Riem et al.,
1999; Kosugi, 1999). However, we should note that the
use of Ky < K leads to an untenable situation near
S. = 1 or h = 0 cm because the hydraulic conductivity
should be equal to K while Eq. (2) provides K. Schaap
and Leij (2000) argue that Eq. (2) with fitted K, should
be applied only at suctions of at least a few centimetre.
The considerations above therefore require seven para-
meters (6, 0,, a, n, K,, K, and L) to describe water
retention, the saturated and unsaturated hydraulic
conductivity.
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2.2. Data set

In order to make the PTFs as widely applicable as
possible, we obtained a large number of soil hydraulic
data and corresponding predictive soil properties from
three databases (Schaap and Leij, 1998). The data set
thus assembled contained 2134 soil samples for water
retention with a total of 20 574 6(h) points. Most of
the samples were derived from soils in temperate to
subtropical climates of North America and Europe.
Saturated hydraulic conductivity values were avail-
able for a subset of 1306 soil samples, while unsatu-
rated hydraulic conductivity was known for 235 soil
samples with a total of 4117 K(h) points. The latter
subset was solely derived from the database
UNSODA (Leij et al., 1996; Nemes et al., 2001)
with the requirement that at least five K (/) data points
were available; samples with chaotic data or with
suction and conductivity ranges less than one order
of magnitude were omitted. Fig. la—c gives the
textural distributions of the datasets for water reten-
tion, K, and unsaturated hydraulic conductivity. Fig.
1d provides the abbreviations of the USDA textural
classes.

The parameters in Eqgs. (1) and (2) were fitted to
water retention and unsaturated hydraulic conductiv-
ity data with the simplex or amoeba algorithm (Nelder
and Mead, 1965; Press et al., 1988). The objective
function for water retention was

Ny,
Ou(p) = D (6; — 6}’ 4)
=1

where 6; and 6; are the measured and estimated water
contents, respectively. N, is the number of measured
water retention points for each sample and p is the
parameter vector (6,,60,,a,n). For the optimization of
unsaturated hydraulic conductivity parameters, we
minimized

Nk
Ox(p) = > [log;(K;) — log;o(K )T )
=1

where K; and K| are the measured and estimated
hydraulic conductivity, respectively, N is the number
of measured K(h) data points and p = (K, L). Loga-
rithmic values of K; were used in Eq. (5) to avoid bias
towards high conductivities in the ‘wet’ range. We
used log-transformed values of «, n, K and K to

account for their approximately lognormal distribu-
tions.

2.3. Model calibration

Because different numbers of samples were avail-
able for water retention, the saturated and unsaturated
hydraulic conductivity, we developed separate PTFs
for each of these characteristics. For the estimation of
the water retention parameters (6,,0,,cc,n) and K, we
followed a hierarchical approach with limited or more
extended sets of predictors (Schaap et al., 1998). The
first model (H1) is a class PTF, consisting of a lookup
table that provides parameter averages for each
USDA textural class. The second model (H2) uses
sand, silt, and clay as input, and in contrast to HI,
provides hydraulic parameters that vary continuously
with texture. The third model (H3) includes bulk
density as a predictor while the fourth model (H4)
also uses water content at 330 cm suction (h=
33 kPa). The last model (H5) includes a water content
at 15 bar suction (2 = 1500 kPa) in addition to the
input variables of the fourth model. The choice of
suctions in models H4 and H5 was determined by
their availability in the NRCS database (Soil Survey
Staff, 1995).

Schaap and Leij (2000) showed that the hierarchi-
cal approach was not possible for unsaturated hydrau-
lic conductivity because K, and L were poorly related
to texture and bulk density. However, the same study
showed that K, and L could be estimated from fitted
water retention parameters (60,60, and n). This PTF
(model C2) thus requires such data to be available. To
accommodate situations where this is not the case, we
investigated how well we can estimate K, and L using
estimated retention parameters obtained from models
HI1 to HS. These models are denoted as C2-H1-C2-
HS5 and allow K, and L to be estimated in a pseudo-
hierarchical manner.

While model HI is a simple table with average
hydraulic parameters for each textural class, all
other models involve a combination of neural
networks and the bootstrap method. The neural
networks for water retention parameters and K were
calibrated using the following objective function

Ny N

Onn(cnn) = Z Z (ni,j - 17;‘,/')2 (6)

i=1 j=1
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where ¢,, represents the coefficient matrices of the
artificial neural network; N is the number of calibra-
tion samples. The number of parameters, N, equals 4
for the water retention models and 1 for K, model,
while n and n' are the fitted and estimated para-
meters, respectively. For the neural network models
for unsaturated conductivity, an objective function
similar to Eq. (5) was used. In this case, conductivities
were computed by evaluating Eq. (2) at the water
contents for which measurements were available
(Schaap and Leij, 2000).

Models H2—-H5 and model C2 were combined
with the bootstrap method (Efron and Tibshirani,
1993) for two reasons. First, it allowed an uncer-
tainty estimate to be assigned to each model
prediction. For example, for a texture of 60%
sand, 30% silt, and 10% clay, model H2 predicts
a saturated hydraulic conductivity of 1.56 log cm -
day” ' plus or minus a standard deviation of
0.11log cm day ' For a coarser texture of 80%
sand, 15% silt and 5% clay, the estimates are
1.99 + 0.079 log cm day ~', making this prediction
more reliable than the previous one. The uncer-
tainty estimates are useful because they quantify
the reliability of model estimates — even when
no independent hydraulic measurements are avail-
able. The second reason for using the bootstrap
method was the possibility to carry out calibration
and testing of the individual neural networks on
complementary subsets of the data. This was
possible because the bootstrap randomly selects
data with replacement causing 1 — [(N — 1)/N]"
samples (about 63%) to be selected into each cali-
bration data set. This selection procedure leaves
out 37% of the data, which can subsequently be
used to test the neural network model. The repeti-
tion of calibration-testing procedure for the alter-
native selections of data ensured a minimal bias
towards noise and artifacts in the data.

PTFs H2-H5 and C2 each consist of 60 (water
retention) or 100 (saturated and unsaturated conduc-
tivity) neural network models. Because they are based
on different alternative data selections, each neural
network inside a PTF provides slightly different esti-
mates. ROSETTA reports the average of the 60 or 100
estimates as the prediction of a PTF. The standard
deviation characterizes the uncertainty of the
prediction.

2.4. Characterization of model performance

While testing on a completely independent data set
is desirable, we chose to test ROSETTA on the calibra-
tion data set because a data set of similar size and
characteristics was not available. Further, Schaap
and Leij (1998) demonstrated that the performance
of a PTF depends on the data sets on which a PTF
is calibrated and tested. Usage of an independent data
set for testing might introduce artifacts specific to that
dataset and make characterization of ROSETTA’S prop-
erties ambiguous. Finally, the bootstrap procedure
ensured robust models that provided similar results
for calibration and validation (see Section 2.3 and
Schaap and Leij, 1998).

Three error measures were used to characterize
ROSETTA. To test the match between predicted and
fitted parameters we computed the coefficient of
determination (R*). The root mean square error
(RMSE) between measured and estimated water
contents, saturated and unsaturated hydraulic conduc-
tivities was computed as

RMSE = 7)

In addition, we computed the mean error (ME) to
quantify systematic errors with

1 ¥
ME =+ > (&= &) ®)
i=1

The symbols ¢ and ¢’ denote measured or esti-
mated 6(h), log K;, or log K(h) values;N is the
number of measurements for which the RMSE
and ME values were calculated. The values for
RMSE and ME will be given with the subscripts
w, s, and u to denote water retention, saturated,
and unsaturated hydraulic conductivity, respec-
tively. Estimated water retention or unsaturated
hydraulic conductivity values were calculated by
evaluating the hydraulic functions at the suctions
of the measurements. Because logarithmic values
were used for K; and K(h), the corresponding
RMSE and ME values are dimensionless; the
units of RMSE, and ME, are in cm®cm . In
this study, we computed the RMSE and ME
values over all available data (i.e. N, = 20574
for retention, Ny = 1306 for K;, and N, = 4117
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R? and RMSE values for the five hierarchical models that predict water retention parameters and saturated hydraulic conductivity. SSC:
percentages sand, silt and clay; BD: bulk density; 633, 6500 Water contents at 330 and 15 000 cm suction. The RMSE,, for the direct fit to water
retention data is also shown

Model Input Water retention Saturated conductivity
R? RMSE, (cm*cm™)  R?logK;, RMSE, (ME,) (-)
0, 0 log « logn
H1 Textural class 0.066  0.143 0.203 0452  0.078 0.427 0.739 (—0.001)
H2 SsC 0.086  0.178 0.238 0.473 0.076 0.461 0.717 (—0.001)
H3 SSCBD 0.094  0.581 0.265 0.495 0.068 0.535 0.666 (0.000)
H4 SSCBD 633 0.121 0.605 0.417 0.599 0.047 0.640 0.586 (—0.004)
H5 SSCBD 6336015000  0.387 0.600  0.577 0.760  0.044 0.647 0.581 (—0.002)
Direct fit to data - - - - 0.012 - -

for K(h)). To investigate how the RMSE and ME
values vary with suction, we also computed these
values for 10 suction classes between 0, 3.2, 10,
32, 100, 320, 1000, 3200, 10 000, 32 000, and
10 000 cm.

We like to note that the RZ, RMSE and ME
values differ from Schaap et al. (1998), Schaap
and Leij (1998) and Schaap and Leij (2000).
Previously, we averaged R> and RMSE values
computed for each of the 60 or 100 neural
networks inside each PTF (see Section 2.3). This
approach was necessary to evaluate the merits of
using different sets of predictors. The program
ROSETTA, however, reports averages and standard
deviations of 60 or 100 sets of estimated hydraulic

0.10 |
0.08
0.06

0.04

RMSE,, (cm3cm3)

0.02

parameters, as generated by the neural networks
inside models H2—-HS5. To better reflect the errors
that result from practical use of Roseta, it is
necessary to compute the R2, RMSE, and ME
statistics based on the averages of the estimated
hydraulic parameters, rather than providing aver-
age error values. To this end, we ran ROSETTA for
the entire data set, without considering indepen-
dent calibration and validation sets. In addition,
we do not reduce the degrees of freedom in the
computation of RMSE and ME. Previously, such a
correction was necessary to compare the RMSE of
PTFs with the RMSE of a direct fit of Eq. (1) or (2)
to the data. However, a correction for the degrees of
freedom is not necessary when the PTFs are applied.

- 10000
L 8000
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[ 4000
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Fig. 2. RMSE,, (lines, left axis) of the direct fit to water retention data (F) and the five hierarchical models (H1-HS5). The number of retention

points for each suction class is also shown (bars, right axis).
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Fig. 3. ME,, of the direct fit to water retention data (F) and the five
hierarchical models (H1-H5). A negative value indicates an under-
estimation of water contents.

3. Results
3.1. Model characteristics

An overview of the performance of the hierarchical
models for estimation of water retention parameters
and K; is given in Table 1. Not surprisingly, the results
show that correlations between fitted and estimated
parameters increase and RMSE values decrease
when more predictors are used (HI-HS). Residual
water content is difficult to estimate with all models,
while saturated water content is difficult to estimate

Table 2

R* and RMSE; values for estimated unsaturated hydraulic conduc-
tivity for the MVG model with K, = K L = 0.5, and for model C2
where K and L were estimated from fitted (C2-Fit) or estimated
(models C2-H1-C2-HS5) retention parameters. The RMSE; for the
direct fit to hydraulic conductivity data is also shown

2

Model R” RMSEg
K, L
MVG (K, =K, L=0.5) - - 1.40
C2-Fit 0.605 0.548 0.79
C2-H1 0.070 0.001 1.06
C2-H2 0.073 0.007 1.02
C2-H3 0.093 0.012 1.05
C2-H4 0.187 0.019 1.01
C2-H5 0.271 0.327 0.90
Direct fit to data - - 0.41

without information about bulk density. The correla-
tion for a increases considerably when one or two
retention points are added to the predictors (H4 and
HS). The n parameter and K generally have the high-
est correlations showing a gradual increase in R from
model H1 to HS.

Fig. 2 shows the RMSE,, of models HI-H5 for 10
suction classes as well as the number of water reten-
tion points in each class (bars). The RMSE,, of the
direct fit of Eq. (1) to the data (F) provides the mini-
mum possible error because no PTF can estimate
water retention better than this fit. Models H1 and
H2 show a very similar pattern in errors across the
entire suction range. This would indicate that there is
not much to be gained by using sand, silt or clay
percentages as predictors (H2) instead of textural
classes (H1). However, model H2 provides continu-
ously varying prections, whereas model H1 exhibits
discrete jumps at texture class boundaries. Model H3
shows a considerable improvement near saturation
and a better performance until 2 = 3200 cm (i.e.
log h = 3.5). Including a water content at 330 cm
(H4) lowers RMSE,, between 10 and 10 000 cm,
whereas addition of a water content at 15 bar provides
a further improvement beyond 100 cm. Because there
were only 28 data points with suctions > 32000 cm
the increase in RMSE,, for this suction range may be
due to statistical effects.

Fig. 3 shows a similar picture for ME,; negative
numbers denote underestimation by the models.
Clearly, the direct fit to the data (F) closely adheres
the line of ME, =0, indicating that Eq. (1)
adequately describes retention data over the entire
suction range. All models underestimate water reten-
tion near saturation (h<3.2cm suction or
log & < 0.5) and overestimate water contents between
3.2 and 10 cm suction; all models underestimate water
retention beyond 32 cm. Models H1-H3 all behave
similarly, while models H4 and H5 make smaller
systematic errors for & > 100 cm suction. The
systematic errors are probably due to the fact that
the neural networks were optimized in terms of Eq.
(6) but evaluated according to Eq. (8). Additionally,
the nonlinearity of Eq. (1) probably causes a non
normal distribution of errors. MEs for K are essen-
tially equal to zero (Table 1).

Results for three methods to estimate unsaturated
hydraulic conductivity appear in Table 2. The first
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Fig. 4. RMSE, (lines, left axis) for the direct fit to conductivity data (F), for model C2 using fitted retention parameters (denoted as C2-Fit),
model C2 using estimated retention parameters from the hierarchical approach (C2-H1-C2-HS5). The MVG model with K, = K and L = 0.5 is
shown as MVG. The number of conductivity points per suction class is also shown (bars, right axis).

method is the traditional Mualem—van Genuchten
(MVG) model (Eq. (2)) with Ky = K, and L = 0.5.
The second method (C2-Fit) is model C2 of Schaap
and Leij (2000) that estimates K, and L from fitted
retention parameters. This model presumes the avail-
ability of fitted retention data. The third method also
uses model C2 but with estimated retention para-
meters derived from models Hl to HS5 as input
(denoted as C2-H1-C2-H5).

The MVG model clearly provides the poorest esti-
mations of K(h) with an average RMSE, of 1.40 (i.e.

-5 C2-H1..H4

0 05 1 15 2 25 3 35 4 45 5
Log h (cm)

Fig. 5. ME, for the direct fit to conductivity data (F), for model C2
using fitted retention parameters (C2-Fit), model C2 using estimated
retention parameters from the hierarchical approach (C2-H1-C2-
HS5). The MVG model with K, = K, and L = 0.5 is shown as MVG.

1.4 order of magnitude). Schaap and Leij (2000)
showed that its estimation was especially poor for
clayey soils (RMSE, = 1.70). model C2-Fit has an
RMSE, that is almost half an order of magnitude
lower (0.79), while it also has a more uniform perfor-
mance over all textural classes (see Table 3 in Schaap
and Leij, 2000). As models C2-H1-C2-HS5 rely on
estimated input data, they do not perform as well as
model C2-Fit; however, they are better than the MVG
model. For example, model C2-H5 has an RMSE,
value that is only slightly higher than that of C2-Fit
(0.90 vs. 0.79). Note, however, that the correlations
for K, and L of models C2-H1-C2-H4 are extremely
poor and only slightly better for model C2-HS.

Fig. 4 shows the RMSE, for 10 suction classes as well
as the number of conductivity measurements in each
class (bars). The direct fit of Eq. (2) to the data (F)
indicates the minimum attainable error for all models
with a flexible K, and L. We note that the direct fit has a
relatively large error near saturation. As expected,
model C2-Fit has the best overall performance. Model
C2-HS5 has a very similar performance between 4 = 10
and 3200 cm (1 < log h < 3.5), while models C2-H1—
C2-H4 have similar performances in the range between
h =10 and 1000 cm. The MVG model has the worst
overall performance, except for near saturation where it
performs better than all other models because its match-
ing point is K and not K. The RMSE, of all models
strongly increases beyond 3200 cm where few data
points are available.
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Fig. 5 shows the ME for the 10 suction groups;
negative values indicate an underestimation of unsa-
turated hydraulic conductivity. The MVG model
overestimates conductivity until # = 3000 cm, after
which it underestimates conductivity. Models C2-Fit
and C2-H1-C2-HS5 are all based on fitted K, and L,
and therefore, they show similar problems of under-
estimating conductivity between 0 and 32 cm. Again,
model C2-Fit has the best performance, followed by
model C2-H5. The MEs are near zero between 32 and
1000 cm, but the error rapidly becomes more negative
beyond 1000 cm. This effect could be due to the
sparse data in this suction range. It is also possible
that the problem is the inaccurate estimation of L,
which controls the slope of the conductivity curve
under dry conditions (Schaap and Leij, 2000).

3.2. Uncertainty estimates

The Rz, RMSE, and ME values can only be esti-
mated when measured hydraulic data are available.
When PTFs are applied, such data are typically at
hand, thus leaving the user uncertain about the relia-
bility of the PTF. Because we used the bootstrap
method for the calibration of the models in ROSETTA,
it is possible to estimate standard deviations of the
predicted parameters. Although the standard deviation
is different from the previously discussed errors, it
allows a unique model and input data-specific assess-
ments of the reliability of the parameter estimates.
Fig. 6a—n provides predictions by models H3 and
C2-H3 for the seven hydraulic parameters and their
standard deviations (o) as a function of texture and a
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Fig. 7. Water retention data for 47 loam samples (totaling 412
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The curve represents the estimation with model H3.

bulk density of 1.3 gcm *. The parameter values
show trends that concur with empirical knowledge.
For example, values for «, n and K, decrease
when textures become finer, while at the same
time 6, becomes larger. The standard deviations
generally show a pattern that reflects the distribu-
tion of data in Fig. la—c. The uncertainty
increases when less data points are available,
such as the silt and clay regions of the textural
triangle. Likewise, uncertainties increase when the
models are used beyond the calibration range of
other predictors in models H1-HS5 (results not
shown). Fig. 8a—n depict a specific example and
should not be used as a general indication of para-
meter values or uncertainty estimates. Results are
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most likely different for other bulk densities and
for the other models in ROSETTA.

4. Discussion

Even with the best predictive models, i.e. H5 for
retention and C2-Fit for unsaturated conductivity, the
correlations between estimated and fitted or measured
hydraulic parameters were modest at best (cf. Tables 1
and 2). The differences between RMSE and ME
values of estimation and direct fits (Figs. 2—5) further
suggest that the models in this study could be
improved upon. However, the direct fits only give
the theoretically minimum attainable errors for PTFs
because Eqs. (1) and (2) were fitted to individual char-
acteristics. Therefore, the fit ignores any effects that
cause variation among hydraulic properties, such as
variability in physical soil properties or systematic
differences among measurement methodologies. In
contrast, the PTFs are supposed to be valid for the
ensemble of all characteristics. This problem is illu-
strated in Fig. 7, which shows retention data for a
narrow selection of 47 loam samples with bulk densi-
ties between 1.3 and 1.4 g cm ™. The average reten-
tion curve, as estimated by H3, is also shown. We
expect to see measured retention data in a narrow
band, but the figure shows that there is a considerable
scatter. This variation may be caused by predictors
other than texture and bulk density or by systematic
differences in measurement methodologies.
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Fig. 8. Estimated vs. measured water contents for model H3 and H5 for 47 loam samples with bulk densities between 1.3 and 1.4 g cm > (cf.

Fig. 8).
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Fig. 9. Schematic overview of the structure of ROSETTA.

Improved PTFs were obtained by Vereecken et al.
(1989) and Schaap and Bouten (1996), among others,
who used more particle size fractions. Additional
predictors can also be used to improve the perfor-
mance of the models, such as organic matter content,
porosity, particle density, soil chemical parameters,
soil structure, mineralogy, and pedality (Rawls et
al., 1991). However, using more predictors also
requires that they be available for both the calibration
of PTFs and their actual application. Of course, the
determination of additional predictors may take a
considerable effort, thereby diminishing the very
reason why one would want to use PTFs instead
of relying on the direct measurement of hydraulic
properties. From this perspective, the inclusion of
measured water retention points (Ahuja et al.,
1989; Messing 1989; Williams et al.,, 1992;
Schaap and Bouten, 1996) is a pragmatic way to
improve the prediction of hydraulic properties by
PTFs. One or two water retention points can be
viewed as lumped parameters that contain implicit
information on hydraulic properties not provided
by soil texture or bulk density. In many cases,
one or two retention points can be measured rela-
tively quickly or are available in national data-
bases such as the NRCS database, which
contains more than 120 000 soil horizons for the
USA (Soil Survey Staff, 1995). Using the same
data as in Fig. 7, we plotted estimated vs.
measured retention points for model H3 and H5
in Fig. 8. While the agreement with the measured

data is not perfect, the estimations by model H5
are much better than the estimations by model H3.
In the many situations where retention points are
simply not available, models HI-H3 may still
make acceptable estimations — also considering
that these models were calibrated on the same
data as models H4 and HS5.

The ability of the hydraulic functions (Eqgs. (1) and
(2)) to match the hydraulic data is another important
factor. Figs. 2 and 3 demonstrated that fits of Eq. (1)
described water retention data well. For hydraulic
conductivity however, we see that the direct fit of
Eq. (2) has already large RMSE, near saturation and
a predominantly negative ME, (Figs. 4 and 5). This
indicates that Eq. (2) is incapable of simultaneously
fitting the wet and the dry part of the unsaturated
hydraulic conductivity curve. As a result, all
models based on fitted K, and L will perform
poorly near saturation. Schaap and Leij (2000)
found that the fitted K, was often about one
order of magnitude lower than the measured Kj
value, thus causing a discontinuity in hydraulic
conductivity if Eq. (2) is evaluated at saturation.
They interpreted this difference in terms of macro-
pores that predominantly influenced K and proper-
ties of the soil matrix that determined K, An
improved version of Eq. (2) may need to consider
the effects of macropores. Unfortunately, such an
effort will be hampered by the limited number of
hydraulic conductivity measurements near satura-
tion (Fig. 4).
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5. Description of ROSETTA

Named somewhat whimsically after the Rosetta
Stone that allowed translation of ancient Egyptian
hieroglyphs into Old Greek, ROSETTA allows user-
friendly access to models HI-HS5 for water reten-
tion and saturated hydraulic conductivity and
models C2-Fit and C2-H1-C2-HS for unsaturated
hydraulic conductivity. In this section, we will
review the most important features of ROSETTA.
More information about various aspects of the
program and file specifications may be obtained
through the help system which can be accessed
from anywhere within the program. ROSETTA is
primarily a Windows®' based application which
uses a Microsoft access 97®' database file to
store its data and estimations. The Microsoft
ACCESS software, however, is not needed to run
ROSETTA. Command-line versions of ROSETTA
(currently without database support) are available
for the MS-DOS®' and the LINUX operating
systems. ROSETTA can be downloaded freely from
the world-wide-web site: .

The flow of data inside ROSETTA is illustrated in
Fig. 9. Input data can be entered manually or as a
formatted ASCII file. Input and output data are
stored in various tables in the same database file
and accessed by the program as needed. Basic soil
data (sand, silt, and clay percentages, bulk density
and the water contents at 330 and 15 000 cm
suction) are used by the hierarchical models
(H1-H5) to estimate water retention parameters
and K;. Model C2 uses fitted retention parameters
to estimate K, and L (i.e. C2-Fit), but is also able
to use estimated retention as input as illustrated by
the model combinations C2-HI1-C2-HS in this
study.

The user interface of ROSETTA (not shown)
consists of three menu-controlled and easy to
understand screens. The first screen provides
general database information, i.e. number of
records in the database. The second screen serves
to make estimations of the seven hydraulic para-
meters with models H1-H5 and C2-HI1-C2-HS5.
The third screen allows estimations of K, and L

' Trade names are provided for the benefit of the reader and do not
imply endorsement by the USDA.

from fitted retention parameters using model C2-
Fit.

6. Concluding remarks

This study presents the computer program ROSETTA
which implements a number of PTFs for estimation of
water retention parameters, the saturated and unsatu-
rated hydraulic conductivity as well as associated
uncertainties. The models were characterized in
terms of their calibration data sets and the accuracy
of their estimations. For the estimation of water reten-
tion and saturated hydraulic conductivity, it turned out
that the hierarchical models performed reasonably
well if more predictors were used (texture, bulk
density and one or two retention points). The estima-
tions were less accurate when fewer predictors were
used, however, such predictions by these models may
still be useful when no data are available. The PTFs
provide uncertainty estimates of predicted hydraulic
parameters allowing an assessment of ROSETTA’S
reliability, even when no independent hydraulic data
are available.

A previous study (Schaap and Leij, 2000) estab-
lished models that estimated unsaturated hydraulic
conductivity parameters from fitted retention para-
meters. This study showed that it was also possible
to get reasonable estimations of unsaturated hydraulic
conductivity using estimated retention parameters
derived from the hierarchical models. However,
some problems remain in the estimation of unsatu-
rated hydraulic conductivity, notably the poor perfor-
mance near saturation. Although the new models are
better than the ‘traditional’ MVG model (K, = K and
L = 0.5) for suctions higher than a few centimeter,
they are unable to deal with a transition from saturated
to unsaturated hydraulic conductivity.

ROSETTA offers a user-friendly graphical interface
and combines the PTFs with a simple database
management structure to facilitate parameter esti-
mates and data management. The program is available
at the US Salinity Laboratory’s World-Wide-Web
site.
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