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Highlights
Human AHN is severely depleted in both
MDD and AD indicated by reduction of
distinct neurogenic markers and hippo-
campal volume.

Human AHN might be a converging
mechanism for MDD and AD, indicating
clinical as well as genetic links.

Human AHNmight display an interesting
therapeutic target to potentially develop
Depression and dementia are major public health problems. Major depressive
disorder (MDD) and Alzheimer’s disease (AD) reciprocally elevate the risk for
one another. No effective drug is available to treat AD and about one-third of
depressive patients show treatment resistance. The biological connection
between MDD and AD is still unclear. Uncovering this link might open novel
ways of treatment and prevention to improve patient healthcare. Here, we
discuss recent studies specifically on the role of human adult hippocampal
neurogenesis (AHN) inMDD and AD.We compare diverse approaches to analyse
the effect of MDD and AD on human AHN and analyse different studies implicat-
ing the role of human AHN as a potential convergingmechanism inMDD and AD.
novel treatment strategies for MDD and
AD.
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Challenges of AD and MDD
Mental health disorders are widespread throughout society. Among the most common and most
challenging diseases are AD (Box 1) and MDD (Box 2) [1,2]. The risk of developing depression
or AD increases with age, thus with the rising number of older adults, AD and depression pose
increasing challenges for public health care. Depression and AD are associated. An early-life
depression event elevates the subsequent AD risk [3–5], and patients suffering from AD are
more prone to develop depression [6,7] and depressed people often have impaired cognition
[8–10]. Even though antidepressant treatment can helpMDD patients in many cases, a significant
proportion of patients do not respond fully to it [11,12], and cognitive impairment may not improve
in parallel with the mood symptoms. Even amodest effect in delaying disease onset in subgroups of
people at risk for dementia potentially has large societal effects [13], https://www.alzheimers.org.uk/
about-dementia/types-dementia/treatments-dementia (see Clinician’s Corner). There are many
interventions aiming to prevent or delay the onset of dementia, but despite continuous efforts to
develop novel therapeutics, there is still no disease-modifying drug available [14]. Therefore,
understanding the underlying mechanisms of the depression-induced risk for dementia could help
to overcome this problem.

Could Neurogenesis Be a Common Link?
The hippocampus plays a key role in both AD and MDD. In one of its subregions, the dentate
gyrus (DG), new neurons are generated throughout life in a process called AHN. The generation
of new neurons plays a crucial role in memory and other cognitive functions, as well as the
regulation of mood [15–17]. Neurogenesis declines with increasing age, as shown in mice and
nonhuman primates [18,19]. In humans, some studies indicate age-related changes to different
degrees [20–22], while others do not see an age-related decrease in neurogenesis [23]. Of
note, a recent study did not see any age-related changes in intermediate progenitor cells and
neurons. Instead, they observed a decrease in quiescent neural stem cells (NSCs) and angiogen-
esis, resulting in decreased neural plasticity [23]. AHN can be modulated via lifestyle and nutrition
[24–26]. Several neuropsychiatric diseases have been associated with aberrations of the neuro-
genic niche [27], including MDD and AD [17,28–32]. Despite all the evidence, it should be kept in
Trends in Molecular Medicine, Month 2020, Vol. xx, No. xx https://doi.org/10.1016/j.molmed.2020.03.010 1
© 2020 Elsevier Ltd. All rights reserved.

https://orcid.org/0000-0003-1260-8083
https://www.alzheimers.org.uk/about-dementia/types-dementia/treatments-dementia
https://www.alzheimers.org.uk/about-dementia/types-dementia/treatments-dementia
https://doi.org/10.1016/j.molmed.2020.03.010
https://doi.org/10.1016/j.molmed.2020.03.010
https://doi.org/10.1016/j.molmed.2020.03.010
https://doi.org/10.1016/j.molmed.2020.03.010


Glossary
βIII-Tubulin: microtubule component
encoded by TUBB3 gene, which is
almost exclusively expressed in neurons
[80].
Braak staging: classification of AD
severity according to the progressive
spreading of neurofibrillary tangles
formed by Tau. The early stages (I/II)
refer to pathology which is mainly
confined to transentorhinal brain
regions. In stages III and IV, the
hippocampus and other parts of the
limbic system are affected. In stages V
and VI, pathology has spread to the
neocortex [81].
Bromodeoxyuridine: as it is
incorporated into cellular DNA during
division, a BrdU-positive cell would have
divided after BrdU administration. Often
used to measure cell proliferation in
hippocampus [82].
14C-method: birth-dating method
using carbon isotope. 14C is taken up in
cells and is integrated into newly
synthesised DNA during cell division.
The 14C amount in a cell is dependent on
the concentration at the time of the cell
division. Presence of different 14C levels
in GN DNA demonstrated that new GNs

Box 1. Alzheimer’s Disease

Dementia affects about 50 million people worldwide. About 70% of these people are diagnosed with AD [1]. AD patients typ-
ically suffer frommemory loss and progressive cognitive decline. Changes inmood and behaviour including anxiety and, in later
stages of the disease, impaired motor function can be observed [91]. AD pathology results in synapse dysfunction and loss.

Early-onset AD (EOAD)/familial AD represents 4–6% of all AD cases and usually starts before the age of 65 years. Genetics
are the main determinant and heritability of EOAD lies above 90% [93,151]. Genes predictive of EOAD are APP, SORL1,
PSEN1/2, andABCA7 [93,94]. Themore common sporadic/late-onset AD (LOAD) cannot be connected to explicit genetic
variations and occurs sporadically, although there is a strong genetic contribution also to LOAD, mediated via several mu-
tations with small effect sizes [95,96]. At least 30% of the risk of LOAD is linked to lifestyle factors, such as low education,
hearing loss, depression, cardiovascular disease, metabolic diseases, and head trauma [73].

Even though both amyloid β (Aβ) and Tau deposition are AD hallmarks, it is debated whether they initiate AD pathology [97].
Other factors are considered to contribute to AD pathology. Reactive oxygen species might play a role in neuronal apoptosis
[98]. The dysregulation of calcium homeostasis plays a crucial role as well, as it can be linked to excitotoxicity, mitochondrial
dysfunction, and apoptosis or necrosis, as well as to increased protein production resulting in increased levels of Aβ and Tau
[99–102]. Low levels of the brain-derived neurotrophic factor (BDNF), which plays a crucial role in hippocampus-dependent
learning [103,104], have been detected in AD patients during postmortem analyses [105]. Changes in AHN have been linked
to AD by multiple studies (see Table 2 in main text) and AHN is among the earlier changes in AD [106].
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mind that observed correlations between AHN biomarkers and MDD or AD pathology could
potentially result from co-correlations with unknown confounding factors that are yet to be
identified.

Nevertheless, human AHN is an interesting target to better understand dysregulation of mood and
memory in MDD and AD and might be a converging mechanism by which MDD elevates the risk
for AD. Thus, interventions enhancing AHN could help developing novel treatment strategies to tackle
are generated during adulthood.
Calbindin: a calcium-binding protein
and marker of mature GNs [80].
Cognitive reserve: concept that
accounts for the brain’s ability to tolerate
or adapt to changes before showing
signs of cognitive impairment [83].
Doublecortin: is a microtubule-
associated protein expressed in
immature neurons and neural progenitor
cells [80].
Early-life adversity: includes physical
abuse, emotional or psychological
abuse, or child neglect [84]. Stress or
trauma early in life are large risk factors
for depression.
Electroconvulsive therapy:
application of small controlled seizures to
the brain to improve symptoms in several
psychiatric disorders (e.g., depression).
Results in changed plasticity,
neurophysiological alterations, and
changes in neurochemical levels [85].
Genome-wide association study:
genome-wide screening of genetic
variants in large populations comparing
a control group with a group carrying a
specific trait to identify variants
significantly associatedwith the trait [86].
Hypothalamic pituitary adrenal axis:
hypothalamic signals communicating
with pituitary gland and adrenal glands

Box 2. Major Depressive Disorder

Depression is characterised by a combination of five or more of the following symptoms: depressed mood, decreased
activity, gain/loss of weight, increased/decreased appetite, insomnia/hypersomnia, fatigue, retardation, delusional feelings
of guilt and worthlessness, concentration problems, and recurrent suicidal thoughts. MDD is specified by the severity of
symptoms, seasonal symptom patterns, psychotic features, and anxiety [107–109]. Genetic and environmental risk
factors modify MDD risk. It has been described as a polygenic disorder with a complex and heterogeneous genetic
structure with weak effects of each variation itself, but a large cumulative effect promoting disease onset and progression
[110], resulting from a combination of genetic and environmental factors [111].

Environmental risk factors for MDD come into play early in life and can have a long-lasting impact. Early traumas, like sexual
or physical abuse during childhood, parental separation or witnessing injury or death correlate with a higher incidence of
MDD [112]. Physical exercise can reduce depressive symptoms and decrease the risk to develop depression at all
[113,114]. Multiple studies indicate a role of nutrition, while heavy smoking, alcohol abuse and the lack of sleep raise
the risk of depression [113,115–119].

Multiple mechanisms may contribute to MDD onset and progression. Dysregulation of the hypothalamic pituitary
adrenal axis might play a role in onset and disease progression [120]. Chronic stress and immune activation are crucial
for MDD development [121,122]. Depression has been linked to aberrant noradrenaline signalling [123]. Reduced levels of
BDNF correlate with MDD and reduced neural plasticity and neurogenesis [124]. Conversely, BDNF treatment improves
depressive symptoms [125].

Many studies have linked MDD to reduced biomarkers of AHN, including reduced numbers of hippocampal GNs and
neural stem/progenitor cells, decreased hippocampal and DG volume, and reduced vascularisation of the neurogenic
niche [43,46,52]. In turn, SSRI treatment of depressed patients correlates with an increase in those hippocampal
biomarkers [43,46,48], indicating a link between AHN and depression.

Tricyclic antidepressants or monoamine oxidase inhibitors have been used to treat depression [126]. SSRIs and SNRIs are
most commonly used to treat depressive symptoms [127]. A particularly interesting drug is vortioxetine, which improves
cognition in MDD patients. It is believed to inhibit serotonin transporters and acts as a serotonin receptor agonist [127].
Combining pharmacotherapy with psychotherapy often results in better treatment outcomes [128].
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to regulate glucocorticoid/cortisol levels.
Regulates stress response, immune
response, and adrenergic and
noradrenergic neural circuits [87].
Lewy body dementia: form of
dementia that is associated with
deposits of a protein called α-synuclein,
or so-called Lewy bodies [88].
Nestin: gene encoding for an
intermediate-filament protein. Used to
label proliferating neural progenitor cells
[80].
NeuN: neuronal nuclei antigen encoded
by RBFOX1 gene. Marker for neuronal
differentiation [80].
Polygenic risk score: prediction of risk
for a certain disease based on
cumulative effects of all known
associated genetic variations. The
effects of those variations are based on
data from genome-wide association
studies [92].
Proliferating cell nuclear antigen:
involved in DNA replication and marker
for proliferating cells [80].
Prospero homeobox protein 1:
transcription factor specific to
hippocampal GNs in the brain [89].
Polysialic acid-neural cell adhesion
molecule: marks developing and
migrating neurons in the hippocampus
[80].
Selective serotonin-reuptake
inhibitors: most common form of
antidepressant drug (https://www.nhs.
uk/conditions/ssri-antidepressants).
Vascular Endothelial Growth Factor
A: involved in vascularisation and
angiogenesis [90].

Key Figure

Dynamics of Adult Hippocampal Neurogenesis (AHN) in Major
Depressive Disorder (MDD) and Alzheimer's Disease (AD)
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Figure 1. In the hippocampus of a healthy adult, about 700 new neurons are generated every day. Radial glia-like neural
stem cells are indicated in red and newborn neurons in purple. Neurogenesis has been proven to be reduced in both
MDD and AD. Neurogenesis has been shown to be modulated by many factors, such as exercise, diet and chronic stress
both, positively (blue arrows to pointing left) and negatively (red arrows pointing right). Age is one of the biggest risk factors
for AD and there is some indication that age correlates with reduced adult hippocampal neurogenesis. Multiple studies
indicate that MDD and AD reciprocally elevate the risk for one another, indicated by discontinuous arrows. There is more
evidence for MDD to be an AD risk factor than vice versa (indicated by arrow thickness). Treatment with selective
serotonin-reuptake inhibitors (SSRIs) might not only increase the rate of AHN back to normal levels (blue arrow pointing
left), but also prevent the progression from MDD to AD (broken blue inhibition sign).
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both diseases, as well as helping to predict people at increased risk for dementia [16,17,27] (Figure 1,
Key Figure). Promising findings have already beenmade inmouse studies, suggesting that the activity
of newly born neurons is crucial to mediate antidepressant effects [33]. Furthermore, a study using an
AD mouse model demonstrated that increased AHN improves cognition in AD, while a reduction of
neurogenesis exacerbates cognitive impairment [34].

Discovery and Evidence for Human AHN
For decades, it had been believed that no neurons are generated postnatally in the adult brain.
Today, we know that the brain is more plastic than previously thought, adapts to environmental
changes and can be modulated [16]. In 1965, Altman and Das demonstrated that in adult rats
the generation of granule neurons (GNs) continues postnatally by labelling dividing cells in the
adult hippocampus DG [35]. More than 30 years later, Eriksson et al. provided evidence for
AHN in postmortem tissue of patients that received injections of bromodeoxyuridine (BrdU,
see Glossary) [36]. Further evidence was provided by Spalding and Bergmann. They performed
a birth dating approach based on the presence of the isotope 14C in GN DNA to demonstrate that
new GNs are generated during adulthood (~700/day) [21].

The abundance of adult neurogenesis in the human hippocampus has recently been debated.
Sorrells et al. used doublecortin (DCX) and polysialic acid-neural cell adhesion molecule
(PSA-NCAM) as markers for immature neurons in human adult postmortem brains and found
Trends in Molecular Medicine, Month 2020, Vol. xx, No. xx 3
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almost undetectable levels, questioning the importance of AHN for memory and cognition [20].
Subsequently, contrasting studies provided evidence that AHN persists in adults, even in old
age, for example, by demonstrating neurogenic activity in brain samples of donors up to the
age of 79 years [23]. Additional studies demonstrated the presence of neurogenesis in the
adult hippocampus using markers such as DCX and PSA-NCAM [37,38]. These contrasting find-
ings might be explained by several factors including postmortem interval, method and duration of
fixation, as well as different methods of quantification. This has been analysed extensively else-
where [39]. Altogether, latest studies indicate that AHN in humans persists up into old age.

MDD Is Correlated with Changes in AHN
The hippocampus is involved in mood regulation and changes in neurogenic activity have been
associated with MDD. Multiple studies have suggested a reduction of AHN in MDD patients
[28,40,41]. Studies on human postmortem brain tissue demonstrated reduced hippocampal
volume, decreased numbers of hippocampal GNs, and decreased vascularisation of the
neurogenic niche in MDD patients. Vascularisation has been shown to correlate strongly with
neurogenesis and increased vascularisation indicates increased levels of neurogenesis as both
are regulated by overlapping factors [42,43]. In addition, magnetic resonance imaging (MRI) stud-
ies have reported decreased hippocampal volume associated with MDD [44,45]. It should be
noted that increased hippocampal volume alone is only an indicator of altered AHN. Volume
changes could also originate from other factors including altered numbers of glia cells or differ-
ences in cell survival. Therefore, it is important to quantify the numbers of stem cells and newborn
neurons to gain confidence about changes in AHN. In contrast, administration of selective se-
rotonin reuptake inhibitors (SSRIs) seemed to increase the number of neural progenitor cells
(NPCs) in the hippocampus [43,46–48]. A more complete overview of AHN in humans can be
found in Table 1. Work on AHN in animal models of depression has been summarised elsewhere
[49]. Support for the association of depression and AHN comes from studying cancer patients
receiving chemotherapy who develop depressive symptoms. The administered drugs interfere
with cell division and, therefore, affect NPC proliferation in the hippocampus [50,51].

A postmortem immunohistochemical analysis of human hippocampal tissue of depressed
patients revealed reduced numbers of NeuN+ GNs in the hippocampus, with levels dropping
to ~30%. This coincided with a decreased volume of the DG of approximately 40% in the anterior
DG and 50% in the mid-DG, associated with MDD. Nissl staining and stereological analysis
suggested a slight reduction of the mid-granule cell layer (GCL) size. Notably, the differences in
GN numbers were reversed upon antidepressant treatment. Both DG and mid-GCL size were
enlarged in MDD patients that were treated with SSRIs compared with controls. The number of
GNs and the DG size correlated with vascularisation of the neurogenic niche [46]. However, it
should be noted that a reduction of GN numbers and changes in hippocampal volume might
not necessarily reflect changes in AHN but could originate from other changes such as altered
rates of apoptosis. A more recent study reported, in addition to decreased numbers of GNs,
reduced numbers of Nestin+ cells in the anterior (N80%) and mid (N50 %) DG of MDD patients,
indicating a reduction of NSCs [52].

In the same study, the authors investigated the role of AHN in resilience to early-life adversity
(ELA) [52]. ELA has previously been suggested to increase the risk of developing depression
[53]. When comparing healthy people with ELA andMDD patients with ELA, the authors identified
significant differences in volume and cell numbers. Both anterior and posterior DG volume and
anterior NeuN+ cell counts were increased in tissue from healthy patients with ELA, while for
MDD patients with ELA the trend was inverse. The authors concluded that ELA affects AHN. A
decrease of DG volume and NeuN+ cells are probably associated with higher susceptibility to
stress and that increased AHN after ELA might be a mechanism of resilience [52].
4 Trends in Molecular Medicine, Month 2020, Vol. xx, No. xx



Table 1. Selected Studies on the Role of Human AHN in Depressiona,b

Disease/cases Age, year
(mean ± SD)

Neurogenic marker Main results Refs

One episode of major depression
(n = 30),
Control (n = 30)

40.6 ± 12.5

40.3 ± 12.6

MRI
Hippocampal volume

↓ Hippocampal grey matter (male)
↓ Hippocampal left and right white matter (male and female)
Alterations in left/right asymmetry (male and female)

[40]

Depressed suicide subjects (n = 11),
Control (n = 11)

36.2 ± 10.1

37.8 ± 11.6

P44/42 MAPK assay
Western blot, PCR
ERK1/2 levels

↓ P44/42 MAPK activity decreased in hippocampus
↑ MKP2 increased in hippocampus

[130]

MDD (n = 434)
Control (n = 379)

N/A
N/A

Hippocampal volume
(MRI)

Hippocampal volume ↓ in depression [28]

MDD untreated (n = 31)
Control (n = 31)

39.2 ± 11.9
36.7 ± 10.7

MRI
Hippocampal volume

No significant changes between control and MDD
Within MDD: correlation between MDD severity and level of
regional hippocampal atrophy

[131]

Untreated MDD (n = 5)
SSRI-treated MDD (n = 4)
TCA-treated MDD (n = 3)
Control (n = 7)

42 ± 15.8
41.5 ± 17
42.3 ± 16.9
53.9 ± 13

Immunohistochemistry
Nestin
Ki-67
DG volume

Lower number of progenitor cells in MDD Numbers
restored/increased upon treatment with TCA or SSRI:
Nestin ↑, Ki-67 ↑
DG volume ↑

[48]

MDD (n = 10)
Control (n = 10)

68.7 ± 11.7
68.1 ± 12.5

Immunohistochemistry
MCM2
PH3

MCM2 ↓ in MDD
PH3 ↔ no response to antidepressant treatment

[30]

MDD (n = 21)
Control (n = 21)

41.7 ± 11.0
43.2 ± 10.2
(all subjects
were female)

MRI
Hippocampal size and
shape analysis

Hippocampal atrophy and shape contractions in MDD [45]

MDD (untreated) (n = 12)
MDD (SSRI) (n = 6)
MDD (TCA) (n = 6)
Control (n = 12)

43.6 ± 13.3
38.8 ± 13.8
46.2 ± 17.1
41.8 ± 14.6

Immunohistochemistry
DG volume, capillary
area (Nestin/PECAM),
No. of NPCs
(Nestin/Ki67)

Lower number of NPCs in MDD
MDD (SSRI)
↑ NPCs
↑ Capillary area
↑ DG volume

MDD (TCA)
↑ NPCs
↑ DG volume

[43]

MDD (untreated) (n = 15)
MDD (TCA) (n = 5)
MDD (SSRI) (n = 5)
Control (n = 17)

51 ± 5
54 ± 10
40 ± 7
44 ± 4

Immunohistochemistry
NeuN (GN)
GCL volume
DG volume

MDD
↓ DG volume
↓ GCL volume
↓ NeuN

MDD (SSRI)
↑ GCL volume
↑ NeuN

[46]

MDD (n = 17)
Control (n = 17)

41.7 ± 11.0
43.2 ± 10.2

Nissl stain
Density of GC, glia,
CA2/3 and CA1 cells

MDD vs control ↔
MDD group: ↓ volume and GC numbers with ↑ duration of
recurrent/chronic MDD
(↑ GC and glia cell number when antidepressants detected
postmortem)
↑ CA1, pyramidal neuron density
with duration in recurrent/chronic MDD
↑ CA2/3 pyramidal neuron density with age in MDD
subjects with no antidepressant detected postmortem
↓ GC density with duration in MDD subjects with no
current antidepressant prescription

[132]

Control (n = 57) – self reporting levels of
depression (BDI scores) groups:
BDI b9 (n = 27) – not depressed
BDI N9 (n = 25) – moderate symptoms
(no one had a score N29, reflecting severe
depression)

19.48 ± 2.05 Neurogenesis-
dependent cognition
task (pattern
separation)

↓ Neurogenesis-dependent memory in BDI N9 group [62]

MDD (n = 20)
nine unmedicated, 11 medicated

47.3 ± 11.5 MRI
DG volume

↓ DG volume in MDD – increases upon treatment [44]

(continued on next page)
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Table 1. (continued)

Disease/cases Age, year
(mean ± SD)

Neurogenic marker Main results Refs

Control (n = 27) 48 ± 13.0

MDD (ECT) (n = 15) 54 ± 6 MRI
Hippocampal volume,
amygdala volume

↑ Volume increase of hippocampus and amygdala after
ECT correlating with ↓ depression score

[77]

Mood disorder (MD) (n = 17)
antidepressant-treated MD
[MD (ADT), n = 10]
benzodiazepine-antidepressant-treated
MD (MD – ADT, BZD, n = 7)
Control (n = 18)

51 ± 4.6
34 ± 2.6

57 ± 6.8

46 ± 4.1

Immunohistochemistry
DG NPCs
(Nestin/Ki67)
DG granule neurons
(NeuN)

BZD inhibits antidepressant effect on neurogenesis [47]

MDD (no exercise) (n = 38)
MDD (exercise) (n = 41)

43.8 ± 12.2
38.9 ± 11.7

MRI
Hippocampal volume,
serum (BDNF, VEGF,
IGF-1), verbal memory
and Hamilton
Depression Rating
Scale with 17 items

No changes from intervention, but ↑ right hippocampal
volume correlates with ↓ depression score independent of
exercise

[133]

MDD (n = 10)
Control (n = 10)

47.3 ± 11.5
48 ± 13.0

Quantitative PCR
Telomere length

↓ Telomere length in hippocampus in MDD [134]

Depression (n = 6) 51.3 ± 9.5 MRI
Hippocampal grey
matter volume

↑ Hippocampal grey matter volume, correlates with
↓depression score, after vagus nerve stimulation for
depression treatment

[135]

Dementia (n = 41)
- untreated (n = 13)
- treated with SSRIs (n = 6)
- treated with AChEI (n = 12)
- combined treatment (n = 10)
Control (n = 15)

N/A
80.92 ± 5.72
80.33 ± 5.82
78.67 ± 4.42
80.1 ± 5.99
80.47 ± 8.48

Immunohistochemistry
DCX

↑ DCX with SSRI treatment [29]

MDD (n = 23)
Control (n = 23)

56 ± 18
56 ± 18

RNA sequencing of
DG

↑ Cytokines, inhibitors of angiogenesis, KANSL1
↓ inflammatory genes, GABBR1

[54]

MDDSui-w/oELA (n = 13)
MDDSui-wELA (n = 13)
Control-w/oELA (n = 13)
Control-wELA (n = 13)

41.5 ± 10.9
36.3 ± 20.1
38.5 ± 14.5
36.6 ± 18.5

Immunohistochemistry
DG volume
GN number (NeuN)
NPC number (Nestin)
Glia (Nissl stain)

Control-wELA vs Control-w/oELA:
↑ DG volume
↓ NPCs

wELA vs w/oELA
↑ GN and Glia
MDDSui-w/oELA vs Control-w/oELA:
↓ Anterior and mid-DG GNs
↓ Anterior NPCs
↓ DG volume

[52]

Depressed (n= 23), before and after ECT
Control (n = 8)

50.3

49.25

MRI
DG volume
(before vs after ECT)

↑ Volume increase in left and right DG, and associated with
↓ in depression scores

[56]

MDD patients (n = 220),
Treatment with placebo or NSI-149
(40 or 80 mg/day) (3:1:1)

18–60 Several depression
scores: primary –

MARS: secondary –

SDQ, CPFQ, QIDS-SR

Improvement of all depression scores
(drug increased hippocampal neurogenesis in model of
human foetal hippocampus-derived stem cells and in
mouse model)

[55]

a↑, increased; ↓, decreased; ↔, unchanged.
bAbbreviations: AChEI, acetylcholin-esterase inhibitor; ADT, antidepressant-treated; BDI, Beck Depression Inventory; BZD, benzodiazepine; ERK1/2, extracellular signal-
regulated kinase 1/2; IGF-1, insulin-like growth factor 1; MAPK, mitogen-activated protein kinase; MCM2, minichromosome maintenance protein 2; MKP2, MAPK phos-
phatase 2; PECAM, platelet endothelial cell adhesion molecule; PH3, phosphorylated histone H3; wELA, with ELA; w/oELA, without ELA.
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Besides immunohistochemistry analyses, other approaches have been used to investigate the
role of AHN in MDD. RNA sequencing of DG tissue from healthy controls and MDD patients
identified elevatedmRNA levels of inhibitors of angiogenesis in theMDDgroup [54]. Asmentioned
earlier, vascularisation and angiogenesis have been correlated with neurogenesis [42,43].
6 Trends in Molecular Medicine, Month 2020, Vol. xx, No. xx
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Therefore, impaired angiogenesis might interfere with the neurogenic capacity of the hippocam-
pus. Furthermore, the authors identified inflammatory, as well as neurogenesis-related transcrip-
tional changes in the DG associated with MDD [54].

Several studies suggest that both pharmacological and nonpharmacological interventions may
enhance AHN, which not only improves depressive symptoms but also can have beneficial ef-
fects on cognition and may reduce the risk of dementia (Box 2 and Clinician’s Corner). Pharma-
cological treatment of patients with NSI-189 phosphate, which has been reported to increase
AHN in mice, as well as proliferation of human hippocampal progenitor cells in an in vitro
model, results in improved depression scores [55]. Electroconvulsive therapy (ECT) is used
to treat patients suffering from depression. MRI data indicate that ECT results in an increase of
hippocampal volume which correlates with improved depression scores [56].

Altered Human Neurogenesis in AD
Multiple studies in rodents [57,58] and humans [27] have investigated the role of AHN in AD
pathology. Different studies investigating aberrations of AHN in human AD patients are depicted
in Table 2. A detailed immunocytochemistry analysis detected AHN in healthy controls (n = 13)
and AD patients (n = 45) up to an age N90 years, elucidating distinct differences between healthy
subjects and AD patients [37]. AD patients were grouped according to Braak stages to investi-
gate whether increasing AHN depletion correlates with disease progression. DCX+ neuroblasts
were reduced to approximately 60–70% of control levels in less severe AD (Braak stages I–II).
As AD pathology progresses (Braak stages IV–VI), DCX levels decreased further to approximately
30–40%. Of all DCX+ cells, coexpression of PSA-NCAM, Prospero homeobox protein 1
(PROX1), NeuN, βIII-tubulin, or calbindin (CB) was reduced, indicating impaired neuronal
maturation.

Tobin et al. investigated AHN in a cohort up to the tenth decade of life, including cognitively
healthy people (n = 6), as well as patients suffering from mild cognitive impairment (MCI),
describing memory problems that were not severe enough to be classified as dementia (n = 6),
or AD (n = 6) [38]. In contrast to Moreno-Jiménez et al. [37], they correlated neurogenic decline
with impaired cognitive function rather than progressive Tau pathology. The authors report a
reduction of DCX+/proliferating cell nuclear antigen (PCNA)+ cells, reflecting dividing
neuroblasts, in the hippocampus of subjects withMCI. Logistic regression analysis demonstrated
that reduced numbers of neuroblasts correlate with impaired cognitive performance. The number
of neuroblasts is additionally correlated with the functional interaction of SNARE proteins, which
are essential for neurotransmitter release. Cognition and the number of Nestin+/SOX2+/Ki67+

cells were negatively correlated. The authors speculate that the ratio between the two described
cell populations might be relevant in the context of cognitive decline.

Hippocampal gene expression profiles from RNA sequencing in young and healthy aged individ-
uals, and AD patients revealed gene expression differences in AD linked to reduced proliferation
and altered vascularisation, decreased neuroprotective functions, and increased cell death [150].
One of many differentially expressed genes was VEGFA. Vascular endothelial growth factor
(VEGF)A directly stimulates NPCs and is important for vascularisation and angiogenesis [59].
It was upregulated during healthy aging but not in AD [150]. As vascularization is essential for
the neurogenic niche, a reduction of this process is likely to have a negative impact on
neurogenesis [60].

In line with these findings, another study reported differential methylation of genes in hippocampal
tissue of AD patients [61]. Many differentially methylated genes could be linked to neural
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Table 2. Selected Studies on The Role of Human AHN in AD
Disease/cases Age, years

(mean ± SD)
Neurogenic marker Main results Refs

AD (n = 7)
Control (n = 45) – 14 of these
were age-matched

13–103 Neuronal loss in different
hippocampal subregions
(Immunohistology)

Neuronal loss in AD in CA1, hilus and subiculum, most strikingly in
CA1
Lower mean cell counts also in CA3-2 and DG yet not significant

[136]

AD
Western blot (n = 6),
Immunocytochemistry (n = 5)
Controls
Western blot (n = 6),
Immunocytochemistry (ICC)
(n = 5)

73.67
80 ± 7

71
70 ± 14

Western blot and
immunocytochemistry:
NCAM (four isoforms:
195, 185, 145, 120 kDa)

↔ NCAM in AD
(all brain regions)

[137]

AD (n = 12)
Control (n = 10)

82.4 ± 10.9

71.1 ± 12.7

Immunohistochemistry
and western blot
PSA-NCAM

↑ PSA-NCAM in AD (outer molecular layers and inner third of DG)
↑ PSA-NCAM in AD (CA1 subfield sections)
↔ PSA-NCAM in GCL

[138]

Early AD (n = 3)
Moderate AD (n = 3)
Severe AD (n = 3)
Control (n = 7)

76.67
79
77.33
35.4

Western blot
DCX
PSA-NCAM
NeuroD
Tuc-4
Calbindin
NeuN

Western blot
↑ DCX, PSA-NCAM, Tuc-4 and NeuroD in AD hippocampus
↔ Calbindin, D28K and NeuN

[139]

AD (n = 5)
Control (n = 4)

74.8
66

IHC
DCX
Tuc-4

Immunohistochemistry
↑ TUC4 and DCX in GCL in AD.

[139]

Cases (n = 17)
- Dementia (n = 8)
- Controls (n = 11)

71–102 Immunohistochemistry
MCM2
Ki-67
PCNA

↑ MCM2 in glia in CA1 in higher Braak groups
↑ proliferation markers in higher Braak groups

[140]

AD (n = 7)
Control (n = 7)

82.50 ± 4.97

79.67 ± 3.93

Immunocytochemistry
Msi-1
Nestin
GFAP

↑ Nestin in SVZ in AD.
↔ Nestin in ependymal layer
↓ Msi-1 in SVZ in AD.
↔ Msi-1 in ependymal layer
↔ GFAP in subventricular zone (SVZ)

[141]

AD (n = 9)
Control (n = 10)

66.2 ± 2

67.1 ± 2.3

Immunohistochemistry
DCX
GFAP
Ki67

↑ Ki67 in CA1-3 in AD (due to increases in glia-rich and blood
vessel-rich areas)
↑ GFAP in DG in AD
↔ DCX in AD

[142]

AD (n = 14)
Control (n = 15)

79.4 ± 10.9
83.6 ± 7.4

Immunohistochemistry
and in situ hybridisation
MAP2a/b/c

↓ MAP2a/b in AD DG.
↔ MAP2c

[31]

Early/moderate AD (n = 7)
severe AD (n = 7)
Control (n = 5)

86.1 ± 1.7
80.0 ± 1.9
87.0 ± 4.6

Immunocytochemistry
DCX
SOX2
BMP-6
qRT-PCR
BMP-6

↓ DCX and SOX2 in severe AD
↑ BMP-6 in AD

[32]

AD (n = 20)
Control (n = 21)

81.2 ± 7.0
80.9 ± 8.5

Immunohistochemistry
Msi-1
Nestin
DCX
PSA-NCAM
β-tubulin

↓Msi-1 in SGZ and GCL in AD (negative correlation with Braak staging)
↔Msi-1 in SVZ.
↑ Nestin in SVZ, SGZ and GCL in AD (correlation with Braak staging)
↑PSA-NCAM in SGZ and GCL in AD (correlated with Braak staging).
↔ in PSA-NCAM in SVZ.
↑DCX in GCL in AD.
↔ β-III-tubulin in AD.

[143]

AD (mild – moderate) (n = 66)
Control (n = 104)

76.6 ± 7.5
76.9 ± 4.1
(all participants
were female)

CDR System pattern
separation task, ApoE ε4
genotype and
cerebrospinal Aβ42

Presence of ApoE ε4 genotype and increased Aβ42 levels
correlated with worse performance in difficult pattern-separation
tasks

[144]
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Table 2. (continued)

Disease/cases Age, years
(mean ± SD)

Neurogenic marker Main results Refs

AD (n = 10)
Control (n = 9)

58–79
58–79

Immunohistochemistry
Ki67
Calretinin
SOX2

↑ Ki67 and Calretinin in SGZ of DG of AD
↔ SOX2 in AD

[145]

Braak stage 0–II
(n = 12, dementia n = 3)
Braak stage III–IV
(n = 11, dementia n = 5)
Braak stage V–VI
(n = 5, dementia n = 5)

80.3 ± 8.4

88.9 ± 8.2

86.8 ± 5.3

Immunohistochemistry
Nestin
DCX
PCNA
HuC/D
GFAP

↔ Nestin in DG.
↓ HuC/D in DG in Braak V-VI.
↓ GFAP in DG in Braak III-IV
↑ GFAP in DG in Braak V-VI
↑ DCX in DG in higher Braak stages
↔ all markers in SVZ and ECL

[146]

MCI (n = 3)
Symptomatic AD (n = 6)
Non-demented AD pathology
(n = 4)
Control (n = 4)

74 to N89
67 to N89

N89

74 to N89

Immunocytochemistry
NSC numbers in
dissected DG
miRNA qRT-PCR from
dissected DG

↑ SOX2+ NSCs in nondemented AD compared with symptomatic
AD
↓ Neurogenesis-regulating miRNA in nondemented AD compared
with symptomatic AD

[147]

Significant memory concerns
(n = 94)
Early mild cognitive
impairment (n = 280)
Late mild cognitive
impairment (n = 512)
AD (n = 310)
Control (n = 367)

71.77 ± 5.65

71.14 ± 7.26

73.52 ± 7.65

74.65 ± 7.79
74.59 ± 5.57

Gene-based association
analysis
ADORA2A,
MRI
Hippocampal volume

ADORA2A variant (rs9608282)
associated with increased hippocampal volume, lower Tau levels
and improved memory. AD patients with this variant also higher
hippocampal volume

[148]

AD (Braak V/VI) (n = 5)
Control (n = 39)

74–89
gestational week

13–72 years

Immunohistochemistry
Nestin+,
GFAP+/Vimentin+,
GFAP+/PAX6+,
GFAP+/PAX6-

(semi quantitative)

AD similar to controls, less contact between Nestin+ or GFAP+ with
blood vessels. More GFAP than Nestin in AD cases

[149]

AD (n = 18)
Young control (n = 17)
Aged control (n = 21)

70–99
20–50
70–99

Hippocampal gene
expression profiles

Altered hippocampal gene expression in AD, associated with:
- possible vascular dysfunction
- altered proliferation and cell death
- altered neuroprotective function

[150]

AD (n = 45)
Braak I (n = 5)
Braak II (n = 3)
Braak III (n = 4)
Braak IV (n = 4)
Braak V (n = 13)
Braak VI (n = 16)
Control (n = 13)

52–93

43–87

Immunocytochemistry
DCX
PSA-NCAM

↓ DCX: decreases with each Braak stage
↓ PSA-NCAM

[37]

MCI (n = 6)
AD (n = 6)
Control (n = 6)

86–95

85–99
79–93

Immunocytochemistry
DCX
DCX/PCNA
Nestin/Sox2/Ki67
Hippocampal Volume

↓ DCX/PCNA in MCI (correlates with lower cognitive score and less
interaction of presynaptic SNAREs)

[38]

AD (n = 26)
Control (n = 12)

59–96
19–88

ChIP–qPCR
Differentially methylated
positions (DMPs)

AD-related DMPs in hippocampal committed NPCs and
neurogenesis-related genes (includes homeobox transcription
factors)

[61]

a ↑, increased; ↓, decreased; ↔, unchanged.
b Abbreviations: MAP2, microtubule-associated protein 2; BMP-6, bone morphogenic protein 6; CDR, clinical dementia rating; PAX6, paired box 6; ADORA2A, adenosine
A2A receptor; qRT-PCR, quantitative real-time PCR; ChIP-qPCR, chromatin immunoprecipitation quantitative PCR; SNARE, soluble N-ethylmaleimide-sensitive-factor at-
tachment receptor.
c This table has been adapted and updated from [80].
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differentiation, reflecting alterations in hippocampal neurogenesis. This association is strong,
even when compared with the usual AD-associated pathways (apoptosis, autophagy, inflamma-
tion, oxidative stress, and mitochondrial or lysosomal dysfunction) suggesting a significant role of
AHN in AD, even in comparison with more commonly associated pathways.

AHN as a Potential Mediator of the Increased Risk of AD Associated with MDD
Given that AHNmight be altered in bothMDD and AD, AHNmight not only be correlated with, but
also possibly mediate the increased risk of AD in people with a history of MDD. Few studies have
explored this possible interaction, but a postmortem analysis of human brain tissue suggests that
treatment of depression using SSRIs is associated with increased numbers of DCX+ cells in
patients with Lewy body dementia, indicating increased neurogenic activity. Moreover, patients
receiving this treatment displayed less cognitive decline. In fact, increased levels of DCX corre-
lated with better cognitive scores [29]. These findings support the hypothesis that
antidepressant induced enhanced AHN may both improve mood and potentially prevent
neurodegeneration and preserve memory. Notably, depressed patients perform worse in
hippocampus-dependent cognition tasks compared with a nondepressed group, indicating
that the hippocampus does link mood and memory in depression [62].

A recent study analysed several MDD risk loci for association with AD by using genome-wide
association studies (GWASs) summary statistics, mRNA expression analyses of MDD risk
genes in AD patients and murine AD models, as well as sequencing of whole coding regions of
MDD risk genes in 107 Han Chinese patients with AD [63–65]. Some genes could be associated
with both MDD and AD, and some of these are highly expressed in the hippocampus. For
instance, SORCS3 could be associated with an increased pathological burden in the hippocam-
pus as it is involved in the processing of the amyloid precursor protein (APP), potentially affecting
AHN [66]. Another gene overlapping between MDD and AD isMEF2C, which has been linked to
memory and synapse regulation and MEF2C knockdowns have been associated with impaired
neuronal differentiation and maturation, processes that are relevant to AHN [67–69].

Furthermore, polygenic risk scores (PRSs) of genetic MDD risk variants in nondepressed
people suffering from MCI have been associated with decreased hippocampal grey matter
volume and are predictive of the conversion from MCI to AD. Following up with a hippocam-
pus-specific analysis of genes involved in the PRS, the data reveal that genes that are altered
are involved in processes like axon guidance, anatomical structural morphogenesis, neuron
projection, and cellular development [70].

These studies strengthen the hypothesis of a genetic or mechanistic link between MDD and AD
and indicate that AHN could indeed be a mechanism by which MDD increases the risk for AD or
results in earlier onset, possibly due to a reduced cognitive reserve. However, more studies are
needed to provide more evidence for this hypothesis.

Comparative Analysis of Neurogenic Reduction in AD and MDD
The process of AHN involves several stages, which can be differentiated by expression of differ-
ent markers, ranging from radial glia (RG)-like NSCs over transiently amplifying NPCs and
neuroblasts to immature and mature postmitotic neurons (Figure 2A). Using immunocytochemis-
try and immunohistochemistry analyses of human postmortem brain tissue, two recent studies
investigated neurogenic changes in AD [37], and the decline of AHN in MDD [52] (Figure 2B). No-
tably, many of the findings complement each other. DCX+ cells, which are probably representing
neuroblasts, as well as early postmitotic neurons are reduced [37]. Nestin, labelling NSCs and
early transiently amplifying NPCs, and NeuN a marker for early postmitotic and more mature
10 Trends in Molecular Medicine, Month 2020, Vol. xx, No. xx
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Figure 2. Stages of Human Adult Hippocampal Neurogenesis (AHN) and Immunocytochemical Analysis in
Major Depressive Disorder (MDD) and Alzheimer’s Disease (AD). (A) Generation of new neurons takes place in the
subgranular zone (SGZ) of the dentate gyrus (DG) which harbours the type I radial glia-like neural stem cells (RGL-NSCs,
red). RGL-NSCs divide sporadically and give rise to the rapidly proliferating type II a/b transient amplifying neural
progenitor cells (light red/orange). They give rise to type III neuroblasts (blue), which are still proliferating. Once they exit the
cell cycle, they form immature neurons in the granular layer (purple). During the early postmitotic phase, they are excitable
by GABA, regulating dendritic maturation and synaptic integration until they have properly matured (green) and connected
to the surrounding signalling network (yellow) [129]. Below, corresponding markers are indicated in matching colours to
highlight stage specificity. Prospero homeobox protein 1 (PROX1) (grey) marks the granule neuron lineage, instead of
specific stages (Adapted, with permission, from [80]). (B) Major findings on AHN alterations in MDD or AD. MDD is
associated with decreased levels of Nestin+ and NeuN+ cells, expressed by neural stem cells and mature neurons,
respectively, as well as with a lower dentate gyrus (DG) volume, especially in the anterior and mid-DG. AD is strongly
associated with decreased doublecortin (DCX)+ cells, representing progenitors or neuroblasts. DCX+ cells colabelled with
other markers [polysialic acid-neural cell adhesion molecule (PSA)-NCAM), DCX/CB, DCX/NeuN, DCX/PROX1, DCX/βIII-
tubulin), are decreased, indicating impaired differentiation from neuroblasts into immature neurons. Abbreviations: CB,
calbindin; GFAP, glial fibrillary acidic protein; MAP2a/b, microtubule-associated protein a/b; Msi1, musashi-1; NeuN,
neuronal nuclear antigen; PCNA, proliferating cell nuclear antigen; SOX2, SRY-box transcription factor 2.

Trends in Molecular Medicine
GNs are also reduced [52]. Furthermore, DG volume and GCL size are reduced [52], although
changes in volume are not proof for altered AHN and could originate from changes in glial cell
counts, altered apoptosis, and altered vascularisation, etc. While the results from both studies
indicate a decrease in the presented markers, supporting the hypothesis of AHN dysregulation
in neuropsychiatric diseases, neither of them assessed the whole neurogenic trajectory
completely. Moreover, the use of different markers makes it difficult to compare findings,
especially quantitatively, among different studies.
Trends in Molecular Medicine, Month 2020, Vol. xx, No. xx 11



Clinician’s Corner
Depression is widespread among
older people and often accompanied
by cognitive impairment which can
progress to dementia [73]. Especially
in patients with late-life depression, it
can be difficult to decipher whether
cognitive impairment is a side effect of
depression, or whether it is a symptom
of dementia/AD [74,75].

Antidepressants may improve cognitive
function in the short term, but it is
unclear if they have a protective effect
against dementia.

Hippocampal neurogenesis can be
increased by certain antidepressants
and nondrug interventions, such as
diet or exercise [24,76], but its role in
depression-induced cognitive decline
in elderly people is not clear. SSRIs
have previously been shown to improve
depressive symptoms, as well as to
increase hippocampal neurogenesis.
Similar findings have been reported
after ECT [56,77]. The compound
vortioxetine has been reported to
improve cognition in depressed
patients [78].

Cognitive training improves cognition
but its potential in treating depression-
induced cognitive decline is unknown
[79].
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A reduction of NeuN+ cells only might not necessarily mean that fewer new neurons are born,
and increased rates of apoptosis would lead to a similar result. Only the addition of Nestin as
a second marker increases confidence that decreased NeuN+ cells might be a result of a re-
duction of Nestin+ NSCs/NPCs. Colabelling of DCX with a second marker for postmitotic
cells (NeuN, PSA-NCAM, β,III-tubulin, CB or PROX1) gives more robust data to demonstrate
a reduction of neuroblasts and early postmitotic neurons. While this gives evidence for a re-
duction of neuroblasts and early postmitotic cells, it does not provide information on the NSC
pool. Therefore, none of the aforementioned studies draw a complete picture of the neuro-
genic trajectory. It might be useful, to define distinct sets of markers to label all stages of
AHN in order to create findings that are comparable among different studies. Furthermore,
analysing for all stages of AHN gives a better impression of where neurogenesis might be
disturbed.

When looking at changes of AHN in MDD, different DG subregions demonstrate MDD related
changes predominantly in the anterior- and mid-DG [52]. The more prominent reduction of
neurogenic activity in anterior regions is in line with previous studies suggesting that the anterior
(ventral in mice) DG is more involved in mood regulation, while the posterior part (dorsal in mice)
shows stronger links to cognition [71]. A similar differentiation into subregions in the context of
AD would be interesting to investigate whether changes might be more prominent in the
posterior DG.

Concluding Remarks
In our ageing population, depression and dementia become increasingly prominent and present
major challenges for society. The role of depression as a possible risk factor for dementia and the
overlap of MDD and AD have been under debate. Here, we focused on human studies demon-
strating the role of AHN in MDD and AD, as well as some indications that hippocampal
neurogenesis might display a converging link between those two diseases.

Although use of antidepressants improves cognition in patients with Lewi body dementia [29], this
does not necessarily mean that the same applies to AD. We propose to further study whether the
treatment of depression that prevents or delays the onset of cognitive decline and AD involves
AHN (see Outstanding Questions). Postmortem analyses of neurogenic decline in MDD or AD
present findings that are complementary, but difficult to compare. One way to create a more
comprehensive view on AHN in depression and dementia would be to define a commonly
used set of markers that labels all different stages of neurogenesis in the human brain. This
would allow a comparison of findings across different studies and disorders and enable better
interpretations regarding the role of AHN. Furthermore, postmortem analyses only depict a
screenshot of AHN which is a very dynamic process. While recent studies indicate a reduction
in neurogenesis, it cannot be provenwith certainty, as not all stages of AHN are visualised in either
of those studies. AHN is a dynamic process; developing a live model for direct assessment of AHN
could contribute to understanding its role in MDD and AD. Some in vitromodels of human hippo-
campal neurogenesis already exist; for example, using human induced-pluripotent-stem-cell-
derived GNs [72]. Similar models could be used to investigate the effect of hippocampal
neurogenesis in MDD and AD.

Genetics could provide further insight into the overlap of AD and MDD. Multiple GWASs have
looked at genetic alterations in MDD or AD [63,64] and identified overlaps between both diseases
[65]. A combination of these data with cellular assays could provide further functional understand-
ing of AHN as a possible converging mechanism.
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Outstanding Questions
Can immunocytochemical postmortem
analyses of human brain tissue be more
comparable across different laboratories?
Recently, immunocytochemical analysis
has undergone great advancements. It
has also become clear that postmortem
delay and fixation methods greatly
influence the analysis. Moreover, it would
be interesting to analyse the whole
neurogenic trajectory including specific
markers for all stages (RG-like NSCs,
NPCs/neuroblasts, and newborn
neurons). This would make the
comparison of neurogenic changes
amongst different studies more
comparable.

How strongly do genetics support the
concept of AHN as a biological link be-
tween MDD and AD? Some studies
now indicate that GWAS-identified
MDD risk genes might be involved in
AD. How strong is the genetic overlap
between MDD and AD? If different
genes are affected, are they involved
in overlapping cellular mechanisms?

Is depression a risk factor for AD, or is it

Trends in Molecular Medicine
Altogether, AHN is crucial for the manifestation of new memories and cognitive function, as well
as the regulation of mood. If disturbed, it can have severe consequences for mental health.
AHN has been shown to be involved in AD pathology and to play a role in MDD. The human
studies presented here provide some evidence that AHN is involved in both disorders. Even
though current findings do not prove a direct link between AD and MDD, they suggest that
AHN might be a possible crossroad. In the long run, this opens up a new avenue for potentially
preventing the onset of AD and other dementias.
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rather a common early symptomwhich
arises prior to any cognitive decline?
Depression, often occurs in associa-
tion with AD. However, it is debated,
whether depression itself promotes
the progression to AD, or whether it is
just a symptom of AD, as it not only oc-
curs prior to it, but also can occur later
during the disease.

Can cellular models utilising living human
cells/tissue be used to model genetic
alterations inMDDandAD to gain further
mechanistical insight? Which informa-
tion could be gained from using
patient-derived cell lines or isogenic
lines looking at selected mutations?

Do MDD and AD affect multiple stages
of AHN, or do they interfere at selective
timepoints of neurogenesis? Are the
stages of neurogenesis affected differ-
ently in MDD and AD? Is there regional
specificity? Studies on depression indi-
cate a stronger involvement of the
anterior DG. Is in AD the posterior DG
more affected?

Could AHN be a novel therapeutic tar-
get to treat MDD and AD? For instance,
would an increase of AHN in patients
suffering from late-life depression pre-
vent their progression to dementia?
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