

TABLE 4.1 PARTITION FUNCTIONS FOR DIFFERENT TYPES OF MOTION

Motion	Degrees of freedom	Partition function	Order of magnitude
Woton		$(2\pi m kT)^{3/2}$	
Translation	3	h^3	10 ³¹ -10 ³² m ⁻³
Rotation	2	(per unit volume) $8\pi^2 I k T$	10-10 ²
(linear molecule)	2	$\frac{\sigma h^2}{\sigma h^2}$	
Rotation (nonlinear molecule)	3	$\frac{8\pi^2(8\pi^3I_{\rm A}I_{\rm B}I_{\rm C})^{1/2}(kT)^{3/2}}{\sigma h^3}$	$10^2 - 10^3$
Vibration (per normal mode)	1	$\frac{1}{1 - e^{-hr/kT}}$	1-10
Free internal rotation	1	$\frac{(8\pi^2 I' kT)^{1/2}}{h}$	1-10

where

m =mass of molecule

I = moment of inertia for linear molecule

 I_A , I_B , and I_C = moments of inertia for a nonlinear molecule about three axes at right angles to one another

I' = moment of inertia for internal rotation

 ν = normal-mode vibrational frequency

k = Boltzmann constant

h = Planck constant

T = absolute temperature

 $\sigma = \text{symmetry number}^a$

It is useful to remember that the power to which h appears is equal to the number of degrees of freedom.

^a As discussed in the text (Section 4.5.4), symmetry numbers are used in the calculation of equilibrium constants, but for rates an alternative procedure is recommended.