
262

The treatment of environmental pollution by microorganisms is a
promising technology. Various genetic approaches have been
developed and used to optimize the enzymes, metabolic
pathways and organisms relevant for biodegradation. New
information on the metabolic routes and bottlenecks of
degradation is still accumulating, enlarging the available toolbox.
With molecular methods allowing the characterization of
microbial community structure and activities, the performance of
microorganisms under in situ conditions and in concert with the
indigenous microflora will become predictable.
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Abbreviations
PCB polychlorinated biphenyl
PCR polymerase chain reaction
TNT trinitrotoluene

Introduction
The use of microbial metabolic potential for eliminating
environmental pollutants provides a safe and economic alter-
native to their disposal in waste dump sites and to commonly
used physico-chemical strategies. Microorganisms capable of
mineralizing a variety of toxic compounds under laboratory
conditions have been isolated. The accumulation in the
environment of highly toxic and persistent compounds, how-
ever, emphasizes the fact that the natural metabolic diversity
of the autochthonous microbes is insufficient to protect the
biosphere from anthropogenic pollution. 

Many recalcitrant chemicals contain structural elements
or substituents that do not (or seldom) occur in nature
(xenobiotics). Presumably, because of the novelty of
these compounds, microorganisms have not evolved
appropriate metabolic pathways for them. Whereas for
some xenobiotics no degradative routes have been
described, others are transformed incompletely or ineffi-
ciently, or the complex mixtures of contaminants prevent
degradation by existing pathways. A solely biochemical
explanation is not sufficient, however, for explaining the
accumulation of such compounds. Efficient degradation
involves various factors, such as bioavailability of the sub-
strates, which have to be understood. Furthermore, the
substrate has to diffuse or be transported into the cell.
Besides these factors, the organism capable of degrada-
tion must be present at the site where it is needed and it

has to perform under the given or manipulated environ-
mental conditions. 

Thus, a combined approach is required to understand the
bottlenecks of xenobiotic degradation, to rationally over-
come them by different (genetic) engineering methods, to
elucidate the microbial metabolic diversity and to under-
stand the metabolic and organismic network necessary for
activity under environmental conditions. 

In this review, we will discuss the advances in understand-
ing the natural diversity and capabilities of microorganisms
for degrading aromatic and xenobiotic organic compounds,
the engineering of enzymes, catabolic pathways and organ-
isms for bioremediation purposes, and methods for
characterizing microbial activities in situ.

Classical analysis and exploitation of the
natural biodiversity
New information on metabolic pathways
Naturally occurring microbial activities are and have been
the starting point for all biotechnological applications. It is
therefore necessary to isolate bacterial strains with novel
metabolic capabilities and to biochemically and genetical-
ly elucidate degradative pathways.

Aromatic compounds are usually activated for subsequent
reactions by the introduction of two hydroxyl-groups,
either in ortho- or para-position to one another, which in
the case of hydrophobic aromatics is usually achieved by
multi-component dioxygenases, composed of an electron
transport chain and the catalytically active α- and β-sub-
units. These enzymes usually define the range of
substrates that can be transformed by a certain metabolic
pathway, and their diversity and substrate ranges, there-
fore, awaited major attention. Serious advances have been
made on the biochemical and genetic characterization of
such enzymes and their respective genes. Dioxin dioxyge-
nase of Sphingomonas sp. strain RW1 was among the first
enzymes reported to be capable of carrying out an angular
dioxygenation, that is, oxygenation at a pair of vicinal car-
bon atoms, one of which is involved in one of the bridges
between the two aromatic rings. The respective genes are
now characterized and whereas genes coding for multi-
component dioxygenases are usually clustered, those
coding for dioxin dioxygenase were unexpectedly scat-
tered throughout the chromosome [1•]. A second recently
characterized multi-component enzyme capable of carry-
ing out angular dioxygenation is carbazole 1,9a
dioxygenase, the terminal oxygenase of which consists of a
single protein CarAa, contrasting with the classical oxyge-
nase composition of large α and β subunits. The
nucleotide and deduced amino acid sequences of CarAa
are, again, unique and exhibit only poor similarities with
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other large subunits of terminal oxygenases, including
dioxin dioxygenase [2]. The broad substrate range of the
gene product has now been reported [3]. Another relative-
ly recently identified lineage of ring-activating
dioxygenases has been characterized genetically [4•] to
contain, between the genes coding for the electron trans-
port chain of a naphthalene dioxygenase, genes coding for
subunits of an enzyme catalyzing a later step in the path-
way, that is, salicylate 5-hydroxylase. Even other relatively
unrelated naphthalene and phenanthrene systems from
Rhodococcus sp. NCIMB 12038 [5] and Burkholderia sp.
strain RP007 [6] have been described, but no substrate
specificity profiles have been given. Such results indicate,
however, the broad diversity of ring-activating dioxygenas-
es and allows one to assume that new genes with new
specificities wait to be discovered.

Although polyaromatic hydrocarbon (PAH) degradation has
been relatively well characterized in terrestrial isolates, little
was known about the mechanisms by which marine bacteria
catabolize such compounds. New genera capable of PAH
degradation, such as Cytoclasticus [7] and Neptunomonas [8],
have now been isolated. The respective genes were shown
to be distantly related to the genes encoding naphthalene
dioxygenases of Pseudomonas and Burkholderia strains and
thus form subgroups in the nah gene family.

Advances in understanding bacterial degradative diversity
are not restricted to the initial ring-activating dioxygenases
but also apply to enzymes dealing with metabolites of aro-
matic degradation. Aromatic ring-cleavage can be regarded
as a major key reaction in haloaromatic degradation, and
mineralization has been reported, with a few exceptions,
only after intradiol cleavage of chlorocatechols or chlorohy-
droxyhydroquinones. It was assumed for a long time that it
was impossible to metabolize 3-chlorinated catechols via
the meta-cleavage pathway, because the reaction products
would inactivate the extradiol dioxygenase. Pseudomonas
putida strain GJ31 containing a novel chlorocatechol
2,3-dioxygenase that can efficiently cleave 3-chlorocate-
chol at the 2,3-position, leading to simultaneous
ring-cleavage and dechlorination, thereby allowing the
strain to degrade chlorobenzene via a meta-cleavage path-
way, has recently been described [9], however, and
residues responsible for resistance to suicide inactivation
were localized [10]. A similar type of reaction is also
assumed to occur in the degradation of pentachlorophenol
and γ-hexachlorocyclohexane (lindane) [11•–13•].

Another new type of meta-cleavage dioxygenase has
recently been reported to be involved in the degradation of
various nitroaromatics [14,15]. Whereas the ring-cleavage
substrates are normally diphenols with the two hydroxy
groups either ortho or para to each other, in the case report-
ed, only one hydroxyl-group is present in the ring-cleavage
substrate 2-aminophenol, which undergoes ring-cleavage
to 2-aminomuconic semialdehyde. The amino group obvi-
ously substitutes for a second hydroxyl function. 

Bioavailability of xenobiotics
One of the main reasons for the prolonged persistence of
hydrophobic organic compounds in the environment is
their solubilization-limited bioavailability. A possible way
to enhance their bioavailability and, thereby, their
biodegradation is the application of (bio)surfactants, mole-
cules that consist of both a hydrophilic and hydrophobic
part, and which in most of the studies reported thus for
have been introduced seperately. Reports on the efficacy of
surfactants on bioremediation have, however, been mixed.
The natural roles of biosurfactants have been claimed to
increase the surface area of hydrophobic, water-insoluble
growth substrates, increasing their bioavailability by
increasing the apparent solubility or desorbing them from
surfaces and regulating attachment and detachment of
microorganisms to and from surfaces [16]. Thus, the net
effect of a surfactant on biodegradation depends on the
benefits that result from enhanced solubility of target com-
pounds versus the reduction in direct adhesion of bacteria
to those compounds. Stelmack et al. [17] showed that the
addition of surfactants reduced bacterial adhesion to the
surfaces of non-aqueous phase liquids and, concomitantly,
growth on anthracene. Thus, contrasting effects of surfac-
tant application are a result of the poorly understood
complexity of interactions between soil/sediment, pollu-
tant, surfactant and microorganisms in different
environments. The recent observations that single surfac-
tants can have contrasting effects on the degradation of
organic pollutants [18•] may further explain why applica-
tions of surfactants have yielded inconclusive results.
There is certainly a need to design an optimal
surfactant/biodegrader/target environment combination
and to further unravel the underlying complex interactions.
Thus, although with the current knowledge the optimiza-
tion of degradation by unknown metabolic communities on
site through the addition of surfactants remains a trial and
error test, optimization of defined pure or mixed cultures
can be performed. The combination of surfactant produc-
tion with degradative capabilities in a single bacterial strain
[19•] will offer advances for in situ bioremediation, but fur-
ther insights into the genetic organization and regulation of
surfactant production are needed (for a review see [20]). 

Transport and chemotaxis
Many aromatic compounds are taken up by bacteria
through energy-dependent transport systems. Pao et al.
[21•] recently listed 18 transport protein families within
the major facilitator superfamily. The narrow specificity
of such permeases has been shown recently, for example,
for phthalate permease [22]. There is now accumulating
information that xenobiotic compounds are also trans-
ported by specialized transporter systems. A transporter
for 2,4-dichlorophenoxyacetate has been reported initial-
ly by Leveau et al. [23]. Enantioselective uptake was
shown for the chiral, similarly-structured herbicide
2-(2,4-dichlorophenoxy)propionate [24•]. Whitman et al.
[25] even gave evidence for the presence of an active trans-
port system in Pseudomonas fluorescens for the noncharged,



hydrophobic naphthalene molecule. Clearly, transport
mechanisms have to be taken into consideration when
designing superior biocatalysts for bioremediation purposes.

The 4-hydroxybenzoate transporter PcaK of P. putida is also
responsible for chemotaxis to this compound. It is, to date,
the only major facilitator superfamily transporter involved in
chemoreception and, thus, is different from the described
classical chemoreceptors [26]. Grimm and Harwood [27•]
reported that the plasmid-encoded membrane protein
NahY is required for chemotaxis with naphthalene. Its car-
boxy-terminal region resembles chemotaxis transducer
proteins, thereby functioning as a chemoreceptor for naph-
thalene and, possibly, for related compounds, such as
biphenyl [28]. Chemotaxis towards pollutants may enhance
their biodegradation in natural environments. The under-
standing of the genetic basis for chemotaxis will enable the
rational use of such genetic determinants.

Properties of organisms important for bioremediation 
Various environmental contaminants, such as toluene, are
highly hydrophobic. They are toxic for microorganisms
because they accumulate in and disrupt cell membranes,
inactivate the cells and thereby abolish the desired
biodegradative activity, even in microorganisms capable of
biodegradation. Several bacteria resistant to solvents have
been isolated and possible mechanisms of organic solvent
tolerance, such as alterations in the composition of the
cytoplasmic and outer membranes, as well as the cell sur-
face, have been reported (for a recent review see [29]).
The cis to trans isomerization of fatty acids is one of the
adaptive mechanisms. Because of the higher rigidity of
trans fatty acids, the membrane is less susceptible to the
structural disturbances caused by the organic solvent. The
gene encoding an enzyme responsible for the cis to trans
isomerization of fatty acids has now been cloned and char-
acterized [30]. An increased biosynthesis of phospholipids
has also been observed in solvent-tolerant microorganisms.
Studies comparing the solvent-tolerant wild type with sol-
vent-sensitive mutants have shown that low cell-surface
hydrophobicity (modification of the lipopolysaccharide or
porines of the outer membrane) serves as a defense mech-
anism that prevents the accumulation of organic solvent
molecules in the membrane [31]. In addition to these
adaptive changes, active mechanisms such as the presence
of solvent efflux pump systems, which are often linked to
multidrug efflux pump systems [32,33], contribute to
organic solvent tolerance. The elimination of higher sol-
vent concentrations through its effective degradation was
found to be not responsible for solvent tolerance [34].
Nevertheless, some of the isolated solvent-tolerant bacte-
ria are also capable of mineralization of, for example,
toluene, and the catabolic potential can be engineered to
include substrates previously not mineralizable by the
given organism [35]. As evidenced by Huertas et al. [36], in
sites heavily polluted by aromatic hydrocarbons, solvent-
tolerant strains would be expected to become established
first, to colonize the site, and to become predominant in

the removal of these pollutants. Thus, equipping solvent-
tolerant bacteria with an appropriate catabolic potential
will be a promising approach for bioremediation purposes. 

A similar approach to equip bacteria adapted to a certain
environment with a new catabolic potential was used by
Lange et al. [37], who constructed a recombinant
Deinococcus radiodurans capable of oxidizing toluene and
chlorobenzene in highly irradiating environments. Other
extreme environments that require remediation include
Arctic and Antarctic sites. Polychlorinated biphenyl (PCB)-
degrading psychrotolerant bacteria have recently been
isolated [38]. Even though the results suggest that the
respective enzymes are cold-adapted, it remains to be
proven whether this is actually the case or if the cell mem-
brane composition facilitates transport at low temperatures.
Nevertheless, either the organisms themselves or the
enzymes and information acquired thereof can, without
doubt, help in optimizing future bioremediation efforts. 

Changes in cell-surface hydrophobicity are not only report-
ed to be a defense mechanism against organic solvents, but
also to be involved in the adhesion of bacteria to surfaces
[39]. As for bioremediation purposes, dispersion of inocu-
lant cells relative to their point of introduction is desirable
and blocking of wells should be avoided; therefore, adhe-
sion-deficient strains could be advantageous and, in fact,
appropriate mutant strains which are rapidly transported
through soils recently have been produced [40•].

New developments on organisms capable of
enhanced biodegradation
Optimizing bacteria and transgenic plants
One strategy for designing superior biocatalysts is the
rational combination of catabolic segments from different
organisms within one recipient strain. Thereby, complete
metabolic routes for xenobiotics, which are only co-metab-
olized, can be generated and the formation of dead-end
products or even toxic metabolites can be avoided. This
strategy has been applied successfully for the degradation
of highly toxic trihalopropanes, for which mineralization
has not yet been described [41•].

A similar strategy of combining complementary metabolic
activities can be used for the development of microorgan-
isms capable of mineralizing PCBs by combining an
oxidative pathway for (chloro)biphenyl transformation
(encoded by the bph genes) into (chloro)benzoate with a
chlorobenzoate degradative pathway. Several hybrid
strains have been engineered in recent years by conjuga-
tive matings [42•] of appropriate organisms or by
introduction of the bph genes into chlorobenzoate
degraders, usually using a degradative pathway for
chlorobenzoates via the corresponding chlorocatechols. By
cloning and expressing the genes encoding enzymes for
ortho- and para-dechlorination of chlorobenzoates in the
biphenyl-degrading and chlorinated biphenyls co-metabo-
lizing strain Comamonas testosteroni strain VP44, derivatives
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capable of growing on and completely dechlorinating
2- and 4-chlorobiphenyl were obtained [43•].

Metabolic routes or catabolic fragments can be assembled
or introduced not only into appropriate bacterial recipient
strains. Accumulation of heavy metals by plants is a well-
characterized technology for bioremediation, and plants
can be supplemented with additional genetic information
of bacterial origin. Transgenic poplar plantlets expressing
bacterial mercuric reductase were shown to germinate
and grow in the presence of levels of ionic mercury that
are normally toxic [44] and to release elemental mercury,
thereby transporting soil-bound mercury efficiently out
of the soil. Arabidopsis thaliana was engineered to express
a modified organomercurial lyase [45] and those trans-
genic plants grew vigorously on a wide range of
concentrations of highly toxic organomercurials, probably
by forming ionic mercury, which should accumulate in
the disposable plant tissues. 

French et al. [46••] gave the first report of genetically modi-
fied plants for the transformation of xenobiotic
contaminants to nontoxic material. They previously report-
ed that Enterobacter cloacae PB2 is capable of growth with
trinitrotoluene (TNT) as a nitrogen source. The pentaery-
thritol tetranitrate reductase, an enzyme described to be
involved in the degradation of nitrate esters, is capable of
reducing the aromatic ring of TNT and causing liberation of
nitrite [46••,47]. Unfortunately, the final transformation
products have not yet been characterized, however, toxic
products containing reduced nitrofunctions were clearly not
formed. Seeds from transgenic tobacco plants expressing
pentaeryhritol tetranitrate reductase were able to germinate
and grow at concentrations of glycerol trinitrate or TNT that
inhibited the germination and growth of wild-type seeds.
Seedlings also showed a more rapid and complete denitra-
tion of glycerol trinitrate than did wild-type seedlings.
Transgenic plants can, therefore, become an alternative to
optimized bacteria for bioremediation purposes. 

Molecular tools
A general problem of using recombinant strains in bioreme-
diation is the instability of the cloned genes when borne on
plasmids and the inheritance of marker genes used for selec-
tion. The problem of stability has been overcome by the use
of so-called mini-transposons for the stable integration of
genes into the chromosome of recipient strains (for a review
see [48]). The usefulness of the mini-transposon method
has recently been evidenced again by the construction of
highly stable recombinant strains carrying genetic expres-
sion cassettes with different oxygenase-encoding genes on
their chromosomes [49]. Antibiotic-resistance markers were
replaced by non-antibiotic markers, such as the easy-to-use
tellurite-resistance determinants [50]. An elegant method is
the deletion of all unnecessary recombinant tags inherited
from previous cloning steps, resulting in quasi-natural
strains bearing exclusively the DNA segment encoding the
phenotype of choice [51•].

Optimizing biocatalysts
The increasing information on the structure and function
of catabolic enzymes and pathways offers further possibili-
ties for their optimization. A rational site-directed
mutagenesis approach to improving enzyme function is
possible if a detailed characterization of a given enzyme
and at best the crystal structure is available. Alternatively,
sequence alignments can help in identifying residues crit-
ical for enzyme activity (usually highly conserved) or
substrate specificity (usually visible as differences in the
sequences), and a rational design can lead to improved bio-
catalysts. Besides such site-directed approaches, various
DNA-shuffling methods (i.e. the random fragmentation of
a population of mutant genes of a certain family followed
by random reassembly) have been developed, which allow
the creation of a vast range of chimeric proteins and pro-
tein variants. However, useful methods for screening the
variety of derivatives are available only in some cases, for
example, when the desired reaction can be coupled to an
obvious phenotype or color reaction. 

Haloalkane dehalogenases were among the first enzymes
in xenobiotic degradation where, based on crystal structure
information, enzymes with higher catalytic activity could
be created [52,53]. To understand the specificity of differ-
ent haloalkane dehalogenases in detail, protein sequences
and models of tertiary structures of haloalkane dehaloge-
nases have now been compared and functionally important
amino acids, as possible targets for future site-directed
mutagenesis experiments, were predicted [54]. Based on
known three-dimensional structures, Vollmer et al. [55•]
constructed variants of a muconate cycloisomerase
(involved in the degradation of natural aromatic com-
pounds) containing amino acids found in equivalent
positions in the binding cavity of chloromuconate cycloiso-
merases (involved in the degradation of chloroaromatics)
and could increase the specificity constants for some
chloromuconates. In various other aspects, however, the
mutant enzymes retained wild-type characteristics. It
became evident that evolution from muconate to chloro-
muconate cycloisomerase was a rather complex process.
Rather than simple changes in the binding cavity, other or
more complex changes are thus responsible for the
observed differences between the enzymes. A similar com-
plexity of residue importance at the active site was
observed when analyzing extradiol dioxygenases. An
enzyme, superior to most other extradiol dioxygenases by
its ability to oxidize 3-chlorocatechol in a distal manner,
lost its activity much more rapidly during oxidation of var-
ious substrates. The results of site-directed mutagenesis
studies [56•] show that optimization of the catalytic perfor-
mance of this enzyme, in one respect, leads to worsening
in another. Detailed analysis of mutant enzymes is, there-
fore, necessary to evaluate critically the effectiveness of
engineered derivatives.

In cases where structural information is not available,
amino acid sequence comparisons between enzymes can
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give indications of the residues important for catalytic
activity. Information on the regions of an enzyme involved
in determination of substrate specificity can be obtained
by creation of hybrids between related enzymes with dif-
ferent substrate specificity or catalytic properties. This
strategy has been applied to determine the residues
responsible for the difference in substrate specificity of
biphenyl dioxygenases [57]. Based upon the results, site-
directed mutagenesis studies were performed that resulted
in the expansion of the range of PCB congeners biodegrad-
able by a single enzyme. Parales et al. [58] showed that, as
observed for biphenyl dioxygenases, the carboxy-terminal
region of the large subunit of the oxygenase component
was responsible for the differences in enzyme specificity
observed between 2-nitrotoluene and 2,4-dinitrotoluene
dioxygenases. In contrast, hybrid enzymes created from a
toluene and chlorobenzene dioxygenase indicated that
regions that determine the substrate specificity are differ-
ent from those previously identified in biphenyl
dioxygenases, and a single amino acid near the catalytic
site was shown to be crucial for substrate specificity [59•].

The three-dimensional structures of biphenyl or toluene
dioxygenases are not known at present; however, the struc-
ture of a similar naphthalene dioxygenase was recently
elucidated [60•]. It was suggested that residues shown to
be important for substrate specificities of biphenyl dioxy-
genases align structurally with residues in naphthalene
dioxygenase that interact directly with hydrophobic sub-
strates or those located near the narrow gorge, which
provide substrates with access to the iron ion [61]. Further
analysis of biphenyl dioxygenase derivatives indicated that
changes outside of regions reported to be critical can affect
the specificity when occurring in concert with appropriate
changes within the critical regions [61]. These results
clearly indicate that a broad range of different hybrid
enzymes must be analyzed.

Methods applying intensive mutagenesis in combination
with shuffling of the generated mutations will result in a
large library of genes with different mutations [62]. Family
shuffling (i.e. shuffling of naturally occurring homologous
sequences) assumes that chimeric analogs derived from
various homologous proteins could gain favorable proper-
ties, as has been shown for the large subunits of biphenyl
dioxygenases [63]. Family shuffling methods have been
refined excluding the preferential reformation of non-
hybrid molecules and leading to an approximately
quantitative formation of hybrid enzymes [64]. As well, the
broad natural diversity of enzymes can be analyzed and
recruited, without the need to isolate the appropriate
organisms or enzymes. This was performed by isolating
from the environment the central coding segments of the
genes of choice through the use of degenerate PCR
primers designed from amino acid sequences conserved
among the class of enzymes analyzed (in this case extradi-
ol cleavage dioxygenases) and flanking the central gene
segments and inserting them into the flanking regions of a

related gene [65••]. Heat-resistant hybrids of catechol
2,3-dioxygenase enzymes could be easily detected due to
the bright yellow color of the reaction product formed even
at elevated temeratures. This color reaction was also the
basis for screening optimized biphenyl dioxygenases [61].
Yellow ring-cleavage products can, however, only be
formed when the dioxygenation product is further trans-
formed by the two subsequent pathway enzymes and thus
only if those two enzymes do not constitute a pathway bot-
tleneck. Lin et al. [66] generated a variant of horseradish
peroxidase that is expressed in an active form in
Escherichia coli. The enzyme is used for the coupling of
phenolic products of aromatic substrates to generate col-
ored or fluorescent compounds and co-expression creates a
pathway for the conversion of aromatic substrates into eas-
ily detectable compounds in vivo [67]. Using this system,
variants of cytochrome P450cam with high activity against
naphthalene could be identified easily [68•]. The system
could also be used to detect catechols formed from ben-
zene derivatives by the concerted action of a toluene
dioxygenase and the subsequent pathway enzyme toluene
dihydrodiol dehydrogenase [67]. Despite its superiority
compared to previously developed tests, the system still
depends on the presence of a toluene dihydrodiol dehy-
drogenase that exhibits a sufficiently broad substrate
specifically to further transform all dioxygenation products
into the respective catechols. 

Tools to characterize and follow active
organisms in the environment
Attempts to demonstrate the potential for bioaugmentation
in soils have resulted in successes and failures. An under-
standing is necessary of the bioavailability of a pollutant, of
the survival, activity and transport of added microorganisms
or their genetic material, and on the general environmental
conditions. Furthermore, the intrinsic capabilities and
activities of the site of interest have to be characterized, on
one hand, to suggest the bottlenecks of biodegradation and,
on the other hand, possibly to recruit the intrinsic potential
for biotechnological applications. Genetic engineering
techniques offer the possibility to equip organisms, known
to survive and be active when introduced into certain envi-
ronments, with the desired catabolic potential [69].

PCR methods offer a sensitive method to follow introduced
bacteria in the environment. Both the introduced microor-
ganism and the introduced catabolic genes can be monitored
and even quantified [70]. The same strategies of PCR ampli-
fication of genes coding for degradative enzymes and
DNA:DNA hybridizations using PCR-generated labeled
gene probes, can be used to characterize a certain environ-
ment concerning its metabolic potential or concerning the
metabolic pathway predominant in a certain environment
[71,72]. Extraction and characterization of mRNA provides
an indication of the activity and can be used to identify those
genes of predominant importance at the site under study
[73••]. By comparing the results of culture-independent
methods (i.e. the analysis of 16S ribosomal DNA fragments
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and genes coding for a phenol hydroxylase) with those
obtained by different enrichment strategies, Watanabe et al.
[74•] could identify the dominant phenol-degrading popula-
tions in the sludge analyzed and show that they could be
isolated by direct plating or chemostat enrichment, but not
by classical batch enrichment. That batch enrichments pro-
duce different results from those of continuous culture
enrichments was further evidenced by the analysis of a 4-
chlorosalicylate degrading chemostat community [75].
Whereas monochlorinated aromatics are usually degraded by
organisms isolated thus far via chlorocatechol and a subse-
quent respectively modified ortho-cleavage pathway, the
chemostat community comprised organisms with a new
pathway for chloroaromatic degredation which uses enzymes
of the ‘classical’ ortho-cleavage (3-oxoadipate) pathway. The
identification of new degradative pathways demonstrates
that the biodegradative potential of microorganisms is not yet
adequately understood. New enrichment strategies will aid
in making available the broad diversity of microorganisms,
which can then be exploited and optimized for biotechno-
logical applications. New methods available for the
characterization of the active members in microbial commu-
nities, such as incorporation of isotope markers into the
taxonomically relevant phospholipid fatty acids [76] or com-
bination of fluorescence in situ hybridization for visualization
of specific groups of bacteria with microautoradiography for
visualization of active members [77,78••], will allow the
adaptation of enrichment strategies for important species.

Conclusions
It is evident that we are just beginning to understand and,
thus, to fully exploit the natural diversity for biodegrada-
tion and bioremediation purposes. New genes, enzymes
and metabolic routes involved in bacterial xenobiotic
degradation have been discovered, and new methods have
been developed, which allow the discovery of the broad
flexibility of microorganisms. Besides application of the
natural diversity, the artificial evolution of enzymes and
pathways will lead, without doubt, to improved biocata-
lysts and high-throughput methods of screening for the
desired phenotypes are becoming available. Strategies to
design superior biocatalysts are taking into account more
and more the necessity of such organisms to perform in a
reliable fashion under environmental conditions. Thus,
studies to understand the interaction between xenobiotics
and organisms and on the fate, survival and activities of
microorganisms in the environment have to intersect with
the biochemical and genetic engineering studies. Such a
crossfeeding will provide the ground for successful inter-
ventions into environmental processes and, thereby, lead
to optimized strategies for bioremediation.

Update
Evidently, the sequence diversity in genes for the degra-
dation of aromatic compounds is rather broad and new
genes and genetic organizations are still being discovered.
The catabolic genes of a Nocardioides strain capable of
degrading phenanthrene but not naphthalene have now

been described [79]. The genetic organization of the
genes encoding phenanthrene dioxygenase, the phyloge-
netically diverged positions of these genes and an unusual
type of ferredoxin component suggest this enzyme to be a
new class of aromatic-ring-hydroxylating dioxygenases. It
was thus far assumed that resistance to hydrophobic pol-
lutants is not linked to the degradative capabilities.
Mosqueda and Ramos [80] have now shown that a second
toluene efflux system is actually linked to the tod genes
for toluene metabolism in P. putida DOT-T1E. The ratio-
nal combination of a degradative pathway with genes
encoding for functions of possible potential for enhancing
bioremediation has been carried out by combination of
2,4-dinitrotoluene degradation with the production of a
prokaryotic hemoglobin [81]. Recombinant Burkholderia
stains expressing the hemoglobin grew faster on dinitro-
toluene than the wild type. It has still to be elucidated if
those recombinants have an improved ability to bioreme-
diate dinitrotoluene, especially in the presence of low
oxygen concentrations. Engineering of phytodetoxifica-
tion of organomercurials has been extended by
simultaneous introduction of two genes encoding  mer-
curic reductase and organomercurial lyase, thus enabling
plants to transform organic mercury into volatile and less
toxic elemental mercury [82].

The optimization of biocatalysts by rational site-directed
mutagenesis based on available crystal structures was initi-
ated for naphthalene dioxygenase [83], where the crystal
structure had just recently become available and extended
for cytochrome P450cam [84]. New cytochrome P450cam
variants with elevated phenanthrene and fluoranthrene
oxidation rates could be engineered.
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