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and after Egs. (8.131) and (8.136) are substituted into Eqs. (8.135) and the

integration is performed, the axial rate of change of the force components
becomes

& X X,

e A_ P %m& o’ + MH + Q«i T. (8.137a)
dk;

— =

= (8.137b)
dF,

o pQias’ (8.137¢)

The side force distribution is zero and therefore the side force is also
zero. The normal force distribution is proportional to the angle of attack and
rate of change of cross-sectional area, a result obtained by Munk (see Sears®*).
An integration in x shows clearly that the normal force on the body is zero if
the body’s ends are pointed. A similar result can be obtained for the axial
force, which is also zero if the body’s ends are pointed (see Ward®~).

The moment about the origin is given by

l r2n
an% r X mpR d6 dx (8.138)

0 J0

where the position vector r is seen to be
r=xe, + Re, = xe, + R cos 8 e, +Rsinfe, (8.139)

The components of the moment about the x and z axes are zero from
symmetry considerations and the pitching moment about the y axis is

|l r2n
M, = WBQW“. (x + RR')sin 6 RC,, d6 dx (8.140)
0 70
With the use of Eq. (8.135¢) the pitching moment can be written as
X dF,
?@HI_V (x +RR')—=dx (8.141)
o dx

The second term in the integrand is neglected as being second order and after
an integration by parts, the pitching moment becomes

! !
M, = lb@wo% x5 dx = lb@wa_ﬂxm |6~ h. M&L =pQiaV (8.142)
0

0

where V is the body volume

8.3.4 Conclusions from Slender Body Theory

The above results for the aerodynamic forces acting on slender bodies show
that for pointed bodies there is no lift and no drag force, but there is an

THREE-DIMENSIONAL SMALL-DISTURBANCE mQ_PCJ._OZw £33

) ,

- aerodynamic E.n!am moment. This important result is very userul when
checking the accuracy of numerical methods that calculate the _..n m:& drag by
integrating the surface pressure over the body (and may aow.c_. in lift and drag
that are different from zero). Lift and drag forces are v.omw_v_m only when the
base is mot pointed, and a base pressure exists that is n__m.mnﬁ.: from that
predicted by potential flow theory (e.g., due to flow separations). Some
methods for the treatment of bodies with blunt bases are presented by

Nielsen.5-®

8.4 FAR FIELD CALCULATION OF
INDUCED DRAG

It is possible to compute the forces acting on a body or wing by applying mro
integral form of the momentum equation (Eq. (1.19)). For example, n._..n wing
shown in Fig. 8.29 is surrounded by a large control volume, and for an inviscid,
steady-state flow without body forces, Eq. (1.19) reduces to

‘— pq(q-n)dS =F — ‘ pndS (8.143)
s s

where the second term in the right-hand side is the integral of the pressures. A

Wing

Spanwise vortex

strength Trefftz plane Sy

(x = const.)

FIGURE 8.29
Far-field control volume used for momentum balance.
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/
coordnate system is selected such that the x axis is parallel to the free-stream,

<&.§G~\s§n-_ _. . . i
e ¢ velocity vector, including the perturbation (v, v, tv..

g=(U.+u,v,w) .
If the x component of the f i 3)
~hesdid orce (drag) is to be computed then Eq. nm.:uu.

p=-|
ubAQs+=vRQs+5&zn~ +c&&~+€&&£|\\&n~
s

The pressures are found by using Bernoulli’s equation:

—p =Pyp_P 2
P =P uQa N:Qe+:v +e~+€~_uIbttslm?~+e~+x.~v

Substituting this result into the drag integral yields
D=-— "
bh.QLQx+=v%&N bhAQs.f:X:%&N+c&«&~+€&k&,v

+Tcsma+m\ 24 2 w2

Note that the second integral will vanish due to th. inui i
von.:gﬁ.mo:, and the first and the third will o»:Mon_o MWM:N&M@M»MH: nmmnh‘_. M
volume is large then the perturbation velocity components will <w==w.”.
.9605_53 but on the wake. If the flow is inviscid, then at this plane S; sho

in Fig. 8.30 A.ow:o._ the Trefftz plane) the wake is parallel to the _omw_ ?ia
stream W:a M:__ result in velocity components only in the y and z a:.aoao”n
(thus u” < v, w?). Therefore, the drag can be obtained by integrating the .w

Lifting line

~\ Trefftz plane

FIGURE 8.30

Trefftz plane used for the calculation
of induced drag.
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and w components on this plane only:

5[ wemwat] [(F) (3]
bll +&m|| .I|+.|m .
2 3? w) dy 2 LG = f:a:&
where @ is the perturbation velocity potential. Use of the divergence theorem
to transfer the surface integral into a line integral (similar to Eq. (1.20)) results

i a®\2 (30N (PP PP 3
.h:&v % A&v +0A$~ 2 mmv_&& -1 %"

The third term in the first integral is canceled since in the two-dimensional
Trefftz plane V*® =0 and the integration is now limited to a path surrounding
the wake (where a potential jump exists). If the wake is modeled by a vortex
(or doublet) distribution parallel to the x axis, as in Fig. 8.30, the formulation
of Section 3.14 for continuous singularity distributions can be used. Because of
the symmetry of the induced velocity above and under the vortex sheet this
integral can be reduced to a single spanwise line integral:

p [ p (b2
=— Adwdy = — - [(y)wady (8.146)

2 —bu/2 2 —b,2
the minus sign is a result of the d®/3n direction pointing inside the circle of
integration and b,, is the local wake span. In Eq. (8.146) a ‘“horse shoe”
vortex structure is assumed for the lifting wing, but the wake span is allowed to
be different from the wing’s span (e.g., due to self-induced wake

displacement).
Following the same methodology, the lift force can be derived as

b2 b, /2
L= bQL. Ad dy = an% ['(y)dy (8.147)
—bu/2 =b,/2

The above drag formula may be useful in measuring the accuracy of data
that is obtained by numerical integration of the local pressures. As an example
for the use of Eq. (8.146), consider the elliptic lifting-line model of Section 8.1.
The downwash at the lifting line (point A in Fig. 8.30) due to the elliptic load
distribution is constant (Eq. (8.24)):

This was a result observed on the lifting line due to the semi-infinite trailing
vortex lines. However, far downstream at a point B (in Fig. 8.30) the
downwash is twice as much since to an observer at this point the vortex sheet
seems to be infinite in both directions. Using the elliptic distribution I'(y) of
Eq. (8.21) and by substituting w; into Eq. (8.146) the drag force becomes

br2 nb

p b4
D=-32 ‘ I(y)dy = —pW,~ Cmax = 5 PTonas
5 W, o (y)dy pwW 2 mb—,
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whic. s exactly the same result as in Eq. (8.27). Also, in :_wm case a rigid wake
model is used and the wake span b,, was assumed to be equal to the wing
span b.
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PROBLEMS

8.1. Consider the Fourier coefficients for the lifting-line circulation in Eq. (8.42). Show
that for wing loading symmetrical about the midspan the even coefficients are zero
and for antisymmetrical loading the odd coefficients are zero.

8.2. The governing equation for the Fourier coefficients in Problem 8.1 is Eq. (8.58).
One method for the numerical solution of this equation is to set all coefficients
equal to zero for n greater than some value, say N, and to evaluate the equation
for N values of 6. The N linear equations for the unknown coefficients can then be
solved using standard techniques. This is called the collocation method. Use the
collocation method to find the Fourier coefficients for a flat rectangular wing of
aspect ratio 6 for N=3, 5, 7 (two-, three-, and four-term expansions). Calculate
the lift and induced drag coefficients for these three cases.

8.3. Find the vortex distribution for slender-wing theory by the direct integration of
Eq. (8.72) with the use of the results of Section 7.1.

8.4. Consider the flow past a flat elliptic planform wing at angle of attack a. A flap
whose extent covers the center half of the wing span is deflected such that the
zero-lift angle distribution along the span is given by

where f is constant.

Find the wing lift coefficient and circulation distribution and plot the

circulation distribution to study its behavior at the tip of the flap. Use lifting-line
theory.

8.5. Find the ratio of wing pitching moment (about the leading edge) coefficient to
wing lift coefficient for a large aspect ratio flat plate wing with (a) elliptic
planform, (b) rectanguiar planform. Your answer should be a number.
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CHAPTER

NUMERICAL
PANEL
METHOD

In the previous chapters the solution to the potential aoi.vno!o_: was
obtained by analytical techniques. These noosinjom Ao.aonv.” in .O__»v.no_, 6)
were applicable only after some major geometrical simplifications in the
boundary conditions were made. In most of these n»mo.w.:.n na.oao.:”w was
approximated by flat, zero-thickness surfaces and ﬁoq waﬂ.__:o:m_ simplicity the
boundary conditions were transferred, too, to these simplified surfaces (e.g., at
: cw?o application of numerical techniques allows the treatment of more
realistic geometries, and the fulfillment of the boundary oo..a_.:o._m o:.:ﬁ
actual surface. In this chapter the methodology of some numerical solutions
will be examined and applied to various problems. The methods _unmmo:.:&
here are based on the surface distribution of mm..m:_m:...w o_o:_o:nm, which is a
logical extension of the analytical methods presented in the earlier .o__»—zawm.
Since the solution is now reduced to finding the strength of the singularity
elements distributed on the body’s surface this approach seems to be more
economical, from the computational point of view, than methods that solve for
the flowfield in the whole fluid volume (e.g., :::«.m_mmoao:on methods). Of
course this comparison holds for inviscid incompressible noi.u only, whereas
numerical methods such as finite-difference methods were r»m_nm_._w developed
to solve the more complex flowfields where compressibility and viscous effects

are not negligible.
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