PGF 5003 — Eletrodinamica Classica |
Prova lll

Descricdo: prova para ser feita individualmente em casa, com consulta livre a livros e
apontamentos

Data de disponibilizacdo: 14 Julho 2020 — 9hs

Prazo maximo para recebimento: 16 Julho 2020 — 19hs

1. Um modelo cldssico para um metal é considerar a conducdo elétrica devido a
uma densidade de volume, com massa m e carga g, se movendo com velocidade v em
relacdo a um fundo que mantém a neutralidade de carga. Considerando as colisdes dos
portadores com as cargas do fundo neutralizante, a equagdao de movimento para cada
portador é

dv N m B
m—+—v = qE.
dt 7 1
a) Justifique porque T corresponde ao “tempo de relaxacdo”.
b) Sabendo que a densidade de corrente é dada por j = Nqv, e também por j =

- 7 . . . ~ . -
ov, onde ¢ é a condutividade do meio, mostre que, para um campo harmoénico E =

S
E et a expressdo da condutividade é

Ng?t 1
o= —_—
m 1—iwt
. ~ - = 7 . 7’ 7 7 . ~
c) Considerando que a relagdo j = oE é causal, pois s6 ha corrente apos aplicagao

do campo elétrico, escreva as relagdes de Kramers-Kronig para .

d) Mostre que a expressdo para a poténcia média dissipada por unidade de volume
no meio é dada por

1
(P) = EEgRe(a).

e) Considerando o limite w — oo nas relacdes de Kramers-Kronig, mostre que
® nNe?
f Re[o(w)]dw = :
0 2m

Portanto, medindo a poténcia dissipada, por unidade de volume, em altas frequéncias,
é possivel estimar a densidade de portadores.

2. No caso de radiacdo por uma carga com aceleracdo paralela a velocidade,
obtivemos que a poténcia radiada é dada por

dP _dU  peq*v;  (sin6)?

dQ dt'  16m2c (1 — B cosh)>




a) Faga a integral dessa expressdo sobre o angulo sdélido d{l = sin 8 dfd¢, sem
utilizar resultados dados em tabelas, mas empregando adequadamente integracao por
partes, e obtenha a expressdo 6.163 do livro do Bo Thidé,

du 292 1
p=|an=t1" .
dt 6mec (1—p?%)3
b) Determine a expressao para o angulo 6,,,, correspondente a dire¢do de
intensidade da radiacao.
3. Em aula discutimos o desenvolvimento do campo de radiagdo em multipolos

considerando fontes monocromaticas. Neste problema vamos estender a teoria para
incluir fontes com variacdo temporal arbitraria, mas lenta. Por isso, queremos dizer que,
se 7. for o tempo caracteristico de variagao da fonte e d sua maior dimensao, entdo

d/t. < c. Além disso, vamos considerar apenas a regido de radiagdo, ou seja,
|7 77

-

T<<1 = |[F-7|=zr-

Com esta condigdo, podemos aproximar a expressao para o tempo retardado por
, |7 — 7| 77 r 77

thoy =t ———— =u + s u=t—-—; &L u.
c rc ¢ rc

Nessa aproximacdo, a varidvel u passa a ser um tempo retardado com dependéncia
explicita de (1, t), e ndo implicita envolvendo 7' (t").

a) Mostre que, até primeira ordem em 7 - 7' /rc, a expressdo para a densidade de
carga no tempo retardado pode ser aproximada como
=2/ I 4 A r ' F, . 4 . 4 a d 4
oG, t)]rer = p(F,w) + pFw) + ;5 p(Fu) = —p(F',u)
rc Ju
b) Usando esse resultado e aproximando |# — 7’|, no denominador da express3o

para o potencial escalar, sé pelo primeiro termo de seu desenvolvimento, mostre que

Q 1 é.- ﬁ(u)
—+ ; e =
ey r 4mey cr

0= f p(F W) dV'; ) = j P o WV,

Como Q independe de u, porque a carga total do sistema é fixa, o primeiro termo é o
potencial eletrostatico. Portanto, somente o segundo corresponde ao campo de
radiacdo,

P, 1) =

)

S

, 1 & pw
7t) = _
¢rad( ) 471'60 cr
c) Faca o mesmo desenvolvimento para a densidade de corrente no instante

retardado e mostre que



G t>~——U 1wV’ + f T o, *')dV’]

No caso estdtico, vimos que f](r’)dV = (0. Mas quando a densidade de corrente varia
com o tempo, sua integral ndo é nula, como serd visto a seguir. Mostre que a relagao
entre o segundo termo e o primeiro é da ordem de (d/ct.) < 1, de modo que pode ser
desprezado na aproximagao de mais baixa ordem. Entao,

re - l’t S, ’
Argq(7)t) = 4‘_7:7,.[](7' ,u)av'.

Empregando o mesmo método utilizado no cdlculo do quadrupolo elétrico, use a
identidade vetorial V- (x;7) = x;(V-]) +J-Vx; e a equagdo da continuidade para
mostrar que

[ war =2 = = At )—“—;”(T”)

d) Considerando que u =t — r/c, mostre que
-, 1., 514 1
v-lé - pw)] = —E(er.p)er +o (;)
Usando esse resultado, obtenha a expressao para o campo elétrico,

wop 1 (&P polér xp@)] xé

Erqa(@t) = — ==+ =
raa (7, 0) dmr  4me, c?r 4 r
e) Para calcular o campo magnético, justifique porque o segundo termo da relagado
vetorial
5(u 1 . 1 .
V X &l :—Vxﬁ+v<—>><ﬁ(u)
r r r
pode ser desprezado em compara¢do com o primeiro e obtenha
) = _ﬂerXp(u)
Brad 4w cr
f) Obtenha a expressao para o vetor de Poynting,
- C - 2 N
Sraa = ‘u_o |Brad €.

Integre o vetor de Poynting sobre o elemento de drea dd = 12 sin 8 d8d¢é,, supondo
p = pé,, e obtenha a express3o para a poténcia total radiada

ﬂo . 2
=—\|p)|*.
—lpw)|
Verifique se esta expressdo reproduz a obtida para ondas monocromaticas, no caso
p(t) = pe™"".
g) Vamos empregar esse resultado para calcular o tempo de decaimento do atomo

de hidrogénio, na descricao classica. Considerando atomo com um nucleo fixo, em torno
do qual orbita o elétron, temos que seu momento de dipolo é dado por

p(t) = —ed(t),



onde d(t) é o vetor posicdo do elétron na drbita circular. Sabendo que o elétron é
mantido em érbita pelo campo elétrico do nucleo, mostre que

1 e3 a

(o) = 41e, ma? a); a= a’
h) Substituindo esse resultado na poténcia radiada pelo elétron, e considerando
que ela é compensada pela diminui¢do da energia orbital do elétron, isto é,
dE 1 e?
d(:trb =P Eorp =- Amre, 2a’
Mostre que o raio da érbita do elétron decresce segundo a equagao
da 4 1 et
dt - 3 (4mey)?2 m2c3a?’
i) Supondo que o elétron esteja numa drbita inicial com raio a = a,, calcule o

tempo caracteristico T para ele cair sobre o nucleo, integrando a equagdo de a = a, até
a = 0 (note que esta integral é feita facilmente por quadratura), obtendo

T=1 (4meg)?m?c3ad.

Misturando agora um pouco de fisica moderna, tome para o raio inicial o raio de Bohr,
a, = 4meyh?/me?. Mostre entdo que o tempo de decaimento pode ser escrito como
1 Ac
T = —
8mas ¢’

onde a = e?/4meyhc = 1/137 é a constante de estrutura fina e A, = 2wh/mc =
2,43 x1072m é o comprimento de Compton do elétron. Usando os valores dessas
constantes, obtemos T = 1,6 X 10~ 115!

4, Um elétron se encontra no campo de uma carga positiva @, que esta fixa no
ponto x = D. No instante t = 0 o elétron é solto, se deslocando na diregdo de Q.

a) Calcule a forca que o elétron exerce sobre

a carga positiva em fungdo de sua posi¢do [R],e: .Q

e velocidade normalizada [B],¢¢- B X
o ~ ~ D

b) O principio de acdo e reacdo de Newton se

verifica neste caso? Justifique sua resposta.

c) Calcule a poténcia total radiada pelo elétron quando ele comeca a ser acelerado,

isto é, em x = 0, em funcdo de sua massam, cargae, D e Q.

5. Um dipolo que oscila harmonicamente com frequéncia w, p(t) = pe~'®te,, é

colocado a uma distancia a/2 de um plano condutor infinito, produzindo um dipolo
imagem, como esquematizado na figura.



a) Usando a expressdo derivada em aula para o potencial vetor de um dipolo
elétrico, mostre que, na regido de radiacdo, isto é, x > 0;r > a, o potencial vetor é
dado por

ikrq ikry
5. u e e o
A ) = —i—wp — e '0te
4T 1 r

- - a A - - a
onder; STr—Ceg T, =T+ 8

N

b) Usando a condicdo r > a, mostre que

a
g1 zT‘—ESiHHCOS(p; T zr+§sin9cos<p.

c) Com esse resultado, mostre que a expressao para o potencial vetor fica
o IuO (A)p i(kr—wt) . ka . N
A, t) = ———e sin(—sinf cos @ ) é,.
2w T 2
d) Escrevendo é, em coordenadas esféricas, mostre que na zona de radiagao o

campo magnético produzido pelo dipolo é dado por

E(e =i w’p gltkr=wt) 0si (a ino )A
rt) =i sin@ sin|{—sinf cos @ | .
2megcd T 2 ¢)Ce
e) Sabendo que, na regido de radiagdo, E(?, t) = c§(?, t) X é., mostre que a
distribuicdo angular da poténcia média radiada é dada por
dpy _ wp? [ (ka o >]2
= sin @ sin | —sin 6 cos .
dQ  8nleycs 2 ¢
f) Considerando apenas a condi¢do de longo comprimento de onda, ka < 1,
mostre que a poténcia total radiada pelo dipolo é dada por
wbp2a?
P)=———.
(P) 30me,c?



6. O célculo do campo produzido por cargas com movimento arbitrario é bastante
complexo, exigindo, via de regra, cdlculo numérico, devido a relagao implicita que define
o tempo retardado. No entanto, num trabalho recente, Ruhlandt, Miihle e Enderlein
apresentaram um método para obter as linhas de forga do campo electromagnético,
dadas por curvas tridimensionais parametrizadas, em que o tempo retardado é utilizado
como parametro.

O artigo, em anexo, deve ser analisado detalhadamente neste problema. Todas as
equacoes das secbes 2, 3 e 4 que nao forem triviais devem ser derivadas, com excecao
das equacdes da subsecdo 4A, que, apesar de relevante, nesta prova ndo precisa ser
estudada em detalhe para economia de tempo.
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Electric field lines of relativistically moving point charges
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Generation of electromagnetic fields by moving charges is a fascinating topic where the tight
connection between classical electrodynamics and special relativity becomes particularly apparent.
One can gain direct insight into the fascinating structure of such fields by visualizing the electric
field lines. However, the calculation of electric field lines for arbitrarily moving charges is far from
trivial. Here, we derive an equation for the direction that points from the retarded position of a
moving charge towards a specific field line position, which allows for a simple construction of
these lines. We analytically solve this equation for several special but important cases: for an
arbitrary rectilinear motion, for the motion within the wiggler magnetic field of a free electron
laser, and for the motion in a synchrotron. © 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000189

I. INTRODUCTION

Electric and magnetic fields generated by arbitrarily mov-
ing point charges are a fascinating topic where relativistic
physics meets classical electrodynamics. In particular, accel-
erated point charges are the generators for almost all electro-
magnetic radiation, such as that emitted by oscillating
electric dipoles, synchrotrons, or free electron lasers. As is
well known, the electric field E of an arbitrarily moving
point charge ¢ can be found with the helg of
Liénard—Wiechert potentials and has the explicit form"

R x [(R - RB) x p]
¢(R—R-p)’ .

B R —Rp
E(r,1) = q{yz(R R ﬁ)3 +

ey

where the three-dimensional vector R is the spatial part of
the four-dimensional null-vector

{c(t—=1),r —ro(F)}. )
This null-vector defines the retarded time ¢ < ¢ via
R —ro(?
t— l‘l [ w (3)
c c

at which the right hand side of Eq. (1) has to be evaluated. Here,
ro(t) is the particle’s trajectory as a function of time ¢. This
geometry of the situation is visualized in Fig. 1. The symbol
B(t) = c~'dry(t)/dt is the particle’s velocity divided by the
speed of light ¢, y is the usual Lorentz factor y = 1/4/1 — B,
and a dot denotes differentiation with respect to time. For find-
ing the electric field at a given position r and time ¢, one has first
to solve the retarded time equation (3), and then second to eval-
uate the right hand side of (1) at time #, which is typically a
numerically demanding task.

Another way of visualizing an electric field is to use elec-
tric field lines—continuous lines tangential to the electric field
vector. Visualization of field lines can lead to a better under-
standing of complex field configurations generated by non-
trivial particle trajectories, and knowledge of field lines can
also be used to estimate the electric field strength, due to the
interconnection between local field line density and field
strength as embodied in the zero divergence of the electric
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field in source-free space. Thus, the question how to effi-
ciently calculate and draw field lines for arbitrarily moving
point charges has been repeatedly considered in the litera-
ture.” ' Here, we present an efficient and relatively simple
way to find and draw electric field lines of an arbitrarily
moving charge by deriving a compact auxiliary equation for
a unit vector pointing from the retarded position of the
charge to a specific field line position. We then find analytic
solutions of the problem for several important cases.

II. ARBITRARY MOTION

Let us describe a field line at time ¢ by a parametric three-
dimensional curve p(s) which is parametrized by the vari-
able s. Along all its positions, it has to be parallel to the elec-
tric field vector, which means that it has to obey the
differential equation

dp(s)

220 o E[p(s)- )

Taking into account the non-trivial form of the electric field
as given in Eq. (1), finding analytic solutions to this equation
seems to be a formidable task. Note that any Cartesian posi-
tion r can be geometrically referenced to the retarded posi-
tion ro(#') by r = ro(¢) + R(¢), where 7 is the retarded time
of the particle’s position when it contributes to the electric
field at position r, see also Fig. 1. In particular, this holds
true also for positions r = p(s) on a field line. Our core idea
is to use the retarded time 7 to parametrize a field line, by
setting s = 7. Thus, the time ¢ has a double meaning: it
denotes the retarded time ¢ and it parametrizes the field line,
and we find for the field line positions the relation

p(7) = ro(f) + R(!) = ro(f) + c(t — ) A(r), (5)

where we have used the fact that the length of the vector
R(7) is ¢(t — '), so that the vector A(#) on the right hand
side of Eq. (5) is a unit vector pointing from the retarded
position ro(#') of the point charge to a position p(#'). Now,
let us consider Eq. (4). Because we require that the vector
dp/ds = dp/drt’ and the vector E have only to be parallel at
all positions p(#'), we can choose any proportionality factor
in Eq. (4) between these two vectors. Let us thus set dp/dr
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Fig. 1. A point charge moving along an arbitrary trajectory ro(#) (curved solid
line) generates an electromagnetic field throughout space. The field at
any given position r at time ¢ originates from the charge when it is at
retarded position ro('). Circles are lines of constant retarded time ¢. The
vector R = ¢(r — /)4 is the spatial part of the null-vector of Eq. (2) which con-
nects the space-time events {cf’,ro(¢') } and {ct,r}, so that 7 is a unit vector.

equal to —cy?R%(1 —R - B)’E/q so that we find the field-
line determining equation

dp(?)
dr

=—cR-p)-7Rx[R-p) xB],

where a hat over a vector symbolizes normalization (unit
vector). Now, by inserting Eq. (5) into the last equation, we
find the following auxiliary equation for the unit vector
A(l)=R:

da

=71 — ) x B] x @

This equation is the core result of our paper: When we can
solve this equation and determine A(7) for all times ¢ < ¢,
then we can use Eq. (5) to find the full field line. Thus, #
plays the role of a curve parameter and does not have to be
found a priori from an implicit retarded time equation such
as Eq. (3), as has to be done when calculating the electric
field. The final condition of Eq. (7), i.e., the direction
A(? = t), defines into which direction a field line starts from
a point charge at time .

Although we cannot present a general solution of Eq. (7)
for an arbitrary motion ry(7), we consider in the next chap-
ters several important and quite general cases for which ana-
lytical solutions can be found.

III. RECTILINEAR MOTION

Let us assume that the velocity and acceleration are
always co-linear, i.e., B || B. In that case, our auxiliary equa-
tion for 4 simplifies to

— =92 (A xB) xi=7*[p—i(B-1)]. ®)

Multiplying both sides with unit vector ﬁ leads to an equa-
tion for the component 4| = B - 4 of 4 parallel to the con-
stant direction of motion
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1 —
diy = Lap. ©)

This equation can be integrated and has the solution

_n+p
L 1+n‘|ﬂ’

(10)

where nj is an integration constant. For a ;l—component AL
that is orthogonal to the direction of motion, we can find a
similar equation by multiplying both sides of Eq. (8) with a
unit vector perpendicular to . This results in

h 2y A (m) + B)
di, = — dp = — d

which can also be explicitly integrated and has the solution

ny

M 12
7(1+nB) (12

AL =

with a second integration constant n 1. By adding )b” and 12 1
together, one can check that nH +n3 =1 so that the integra-
tion constants are the components of a unit vector fi. Putting
this all together leads to the compact result

s A+ (y—1)(n- ﬁ)ﬂ+?ﬂ 13
L= (14 p-n) 1

Inserting this expression into Eq. (5) and after some alge-
braic transformations, one finds the result for the electric
field line itself to be

p() =ro() + c(t —)B(!)

Fe(t—1) [(V_l _(l)(ﬁ Iz)ﬁ tn

(14)

4

Here, B and y in the square bracket are evaluated at time 7.
Please note that the expression ro(¢) + ¢(t — ¢)B(¢) in the
above equation would represent the position of the moving
charge if it would continue to move uniformly with its
instantaneous velocity Fo(¢') = ¢B(¢') from its position ry()
at time 7. Thus, the vector in the second line of Eq. (14)
points from this virtual position to the field line position cor-
responding to 7.

The expression found for p(#) gives an explicit parametric
representation of a field line at time ¢, where the parametric
variable is the retarded time 7. For finding a particular field
line, one first defines n and then traces the line for decreasing
values of ¢ starting from ¢/ = ¢.

To better understand the physical meaning of the unit vec-
tor n, let us check Eq. (14) against the well-known case of a
point charge moving uniformly with velocity ro = c¢f. For
this case, the electric field reads

qyAr

E(r,1) = 7 (15)
(e by« [ae— ar-pa] '}

where we have used the abbreviation Ar =r —ry(7)
—c(t —¢')B. This expression describes an isotropic electric
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field which is “squeezed” by a factor y~! along the direction
of motion. Thus, if a field line is directed along unit vector n
in the particle’s rest frame, it will point along direction

(16)

in the observer’s lab frame. Comparing Eq. (16) with Eq.
(14) shows that Eq. (14) indeed describes straight field lines
along directions n’ starting from the instantaneous position
ro(?') + c(t — ) B of the uniformly moving charge at time 7,
and that n in Eq. (7) is the starting direction of the field line
within the rest frame of the moving charge. To summarize,
Eq. (14) describes the field line position as pointing from the
virtual position ry(7) + ¢(t — ¢)p into the direction of the
squeezed unit vector in the charge’s rest frame. Thus, if
p = const., this direction is also constant and the field lines
are straight lines originating from the virtual position at time
t of the charge.

In what follows, we consider several special case of recti-
linear motion and calculate images of the corresponding field
lines. All numerical calculations for the figures in this paper
have been done with MATHEMATICA, and the code can be
found at Ref. 11. Animated GIFs for all the discussed exam-
ples below can be found in Ref. 12.

A. Uniformly accelerated motion

As a first application of Eq. (14), we consider the well-
known classical example of a uniformly accelerated charge'?
which is at rest at time zero, then (relativistically) accelerates
along the (horizontal) x-direction with constant acceleration
to the speed ¢/ v/2 within one unit of time, and then contin-
ues to move uniformly with that constant velocity. For such
a motion, the particle’s x-position as a function of time is
given by

0, if 1<0
cWT+2-1), if0<r<1
c(V2—=14@—1)/V2), if t>1.

X()(l‘) =

a7

Figure 2 shows the electric field lines overlaid with a density
plot of the decadic logarithm of the electric field amplitude
for the time r =4. As can be seen, Eq. (14) nicely reproduces
the field lines of the static charge at large distances and those
of the uniformly moving charge at small distances from the
particle, with the acceleration-related transition zone in
between. Due to the zero-divergence of the electric field, the
field lines outside and inside the transition zone have to be
continuously connected which leads to their strong inclina-
tion towards radial lines starting from the point charge. This
transition zone of strongly inclined electric field lines forms
a shell that travels with the speed of light. For a detailed dis-
cussion, see Ref. 13.

B. Uniformly decelerated motion

The second example considers the opposite situation: A
uniformly moving charge (uniform speed c/v/2) starts to
decelerate at time zero with constant deceleration so that it
stops moving at time one. Now, its position is given by

7 Am. J. Phys., Vol. 88, No. 1, January 2020
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Fig. 2. Electric field (density plot) and electric field lines for an accelerated
point charge. Its position along the horizontal axis (x-axis) is given in Eq. (17).
The picture shown refers to time # =4, and the unit of length is chosen in such
a way that the numerical value of the speed of light is unity. Here, we show
field lines that start, in the particle’s rest frame, from its position at angles
¢ = 15° to ¢ = 360° with respect to the horizontal axis in steps of 15°.

ct/V?2, if 1<0
c(14+1/V2-V1¥£2), if0<r<l1
c(14+1/vV2-v2), if 1> 1.

xo(t) =

(18)

The resulting field lines and electric field for t =4 are pre-
sented in Fig. 3. Although the motion of the charge is a sim-
ple time-reversal of the first example, the field lines and
electric field look significantly different, which is, of course,
a direct consequence of the retarded time effect. However,
one sees again a transition zone of highly inclined field lines
that moves away with the speed of light. This is the shock
wave of light (“Bremsstrahlung™) which is generated when
charged particles (electrons) jam into a solid, the classical
process of x-ray generation in x-ray vacuum tubes.'*

Fig. 3. Same as Fig. 2 but for a decelerating charge, the horizontal position
of which is described in Eq. (18). Shown is a snapshot for time # = 4.
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C. Oscillating charge

As a third and last example for rectilinear motion we con-
sider a charge which oscillates with angular frequency w and
amplitude @ along the vertical direction. Thus, its vertical
position is given by

yo(t) = asinwt, (19)

so that p = y and f§ = aw cos wt/c. The resulting field lines
and electric field for the numerical values w =m and
wa/c = 0.8 are presented in Fig. 4 for r=0.

IV. PLANAR MOTION

Remarkably, the expression of Eq. (14) was already pre-
sented by Arutyunyan in the 1980s, see Refs. 15-17. There, it
was claimed that it is valid also for non-rectilinear motions
such as that of a charge in a synchrotron. Unfortunately, this is
not true because its derivation was based on the assumption
that B || B so that the term with  x B in Eq. (7) drops out. In
Secs. IV A and IV B, we consider two cases of planar motion
(motion confined to a plane) where this is no longer true, but
where we can still find analytical solutions to Eq. (7).

A. Wiggler/undulator radiation

Let us consider the motion of a point charge in an mag-
netic wiggler/undulator:'"®2° A point charge moves with
constant speed cf}, along the x-direction and wiggles along
the orthogonal y-direction with arbitrarily time-dependent
velocity ¢f3 | (7). Thus, we now have

B(t) = Box + B (1)y (20)
and
B(t) =B, ()3 1)

In what follows, we always consider field lines in the plane
of motion so that 4 lies in the xy-plane. Let us denote the

Fig. 4. Same as Fig. 2 but for an vertically oscillating motion, see Eq. (19),
with oscillation angular frequency w = =, and oscillation amplitude @ chosen
in such a way that the maximum value of f = wa/c is equal to 0.8. Shown is a
snapshot at time 7=0. Shown are field lines that start, in the particle’s rest
frame, from its position at angles ¢p = 10° to ¢» = 350° with respect to the hori-
zontal axis in steps of 20°.
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angle between J and the horizontal x-axis by () so that
A X B = f, cosy(r)Z where Z is a unit vector pointing out
of the xy-plane. Also, we have g x = f, (¢),z. Inserting
these expressions into Eq. (7), and taking into account that
dy /dt’ equals the modulus of dA/dr', we find

dy _ Bu()
@ =T sy R, (22)

This equation can be solved analytically and has the explicit
solution

() = 2arctan{%tanh B artanh [VOﬁL (t/)]

B %artanh[)’oﬁi(l‘)] + artanh (C tan g)} } 7
(23)

where ¢ is the final angle of (¢') at time ¢ = ¢, and where
we have introduced the abbreviations

and 7, =1/1—f. (24)

Knowing the solution for i, the unit vector Jis given by

A(l) = {cosy(?), siny(r)}, (25)

which, when inserted into Eq. (5), solves the problem of find-
ing a parametric description for the electric field lines. The
expressions found are valid for an arbitrary transverse
motion described by f, (). Let us consider the special case
of a harmonic transverse oscillation with frequency . Then,
the particle’s trajectory is described by

1+ By

Vs

ro(t) = cfotx + C"%Sin (wi)y. (26)

Let us consider the following numerical values: w = 7, f3,
=1/ V2 and f | = 0.1. Thus, the particle moves uniformly
with 1/+/2 light speed along the horizontal axis while oscil-
lating with maximum 0.1 light speed vertically. The resulting
field lines and electric field are shown in Fig. 5. It is nice that
one sees that regions of strong transverse field-line orienta-
tion (with respect to the line of sight from the particle) and
thus field line density correspond to regions of large electric
field strength.

B. Synchrotron

The last example considered refers to the motion of a
point charge in a synchrotron:>'*> a motion with uniform
speed around a circle with radius a and angular frequency o.
Thus, the time-dependent coordinate of the particle is
described by

ro(f) = a(cos wtX + sinwr y), (27)

so that the constant modulus of § is f = aw/c and the con-
stant modulus of B is B = wf = aw?/c. Let us denote the
angle between 4 and ry by . Then we find the determining
equation for y/(¢') from Eq. (7) to be
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Fig. 5. Same as Fig. 2 but for a wiggling motion as described in Eq. (26).
Shown is a snapshot at time =0 in the xy-plane.

‘fl—fw:vz(ﬁsinw—ﬁif), (28)

where the o on the left side comes from the uniform rota-
tional motion of ry. After replacing f§ by wf and subtracting
w on both sides, this can be rewritten into

% =y*o(Bsiny — 1). (29)

Again, this equation admits an analytical solution which
reads

N _ 1ol —1)
() = 2arctan{[3 — ;tan [T

(9] "

where ¢ now is the final value of /(¢') for / = t. Now, with
the solution for (#') at hand, the unit vector 4 is given in
Cartesian (x, y)-coordinates by

A7) = {cos [of + (1)), sin[of + ()]}, (31)

which again solves the full problem. As a numerical exam-
ple, let us first consider the case of charge moving with 0.6
light speed around a circle of @ =100 m. Thus, we find for
the angular frequency a value of w = 0.6¢/a ~ 1.8 x 10°
s~', which corresponds to an oscillation period of ~3.5 us.
The resulting field line structure and electric field are pre-
sented in Fig. 6. For comparison, we consider also a travel
speed of 0.9 ¢, which corresponds to an angular frequency of
®=09c/a~18x10% s', or an oscillation period of
~2.3 us. The field line structure and electric field for this
case are shown in Fig. 7. Although both Figs. 6 and 7 look
qualitatively similar, one can see how the field line structures
develop a more pronounced shock-wave structure for veloci-
ties closer to the speed of light. It should be noted that the
polarization of this shock wave is everywhere parallel to the
field lines, thus becoming close to perpendicular to its propa-
gation direction for large velocities. Also, a comparison of
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-1 0 1

Fig. 6. Electric field lines and electric field amplitude for a circularly mov-
ing point charge (indicated by the circular line in the middle) at 0.6 light
speed. Here, the unit of length is 1 km, and the radius of the circular motion
is 0.1km. High field intensities coincide with strong bunching of electric
field lines, demonstrating nicely the tight connection between field intensity
and field line density.

Figs. 6 and 7 shows nicely how the pulse width of the emit-
ted light, i.e., the width of the shock wave, decreases with
increasing speed.

V. CONCLUSION

We have presented an elementary derivation of a differen-
tial equation, Eq. (7), the solution of which leads to a simple
description of electric field lines for an arbitrarily moving
charge. We have presented several analytical solutions of
this equation for a quite broad class of cases. Even if one
cannot find analytical solutions to Eq. (7), its simplicity
should make numerical integration straightforward. Thus, it
provides a powerful tool for visualizing the electric field
structure generated by a point charge moving along arbi-
trarily complex and relativistic trajectories.

- 0 1

Fig. 7. Same as Fig. 6 but for a circularly moving point charge at 0.9 light
speed.
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Cone Rolling up a Hill Illusion

This is a very old demonstration and is to be found in the 1713 lecture demonstration book by Hauksbee and Whiston.
When the system is started at the left-hand side, it moves steadily in what appears to be the uphill direction. In reality,
because of the differing slopes of the two guide rails and the cones, the center of mass of the system is actually get-
ting lower as the system moves. I photographed it during the summer 2005 AAPT meeting at the University of Utah
where Vacek Miglus and I examined all of the early apparatus in the physics demonstration room. (Picture and text by

Thomas B. Greenslade, Jr., Kenyon College)
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