Optimal Control with Constrâints

Prof. Luciano Nakabashi

The political-business-cycle model

- Suppose that a party has just won the election at $\boldsymbol{t}=\mathbf{0}$, and the next election is to be held \boldsymbol{T} years later at $\boldsymbol{t}=\boldsymbol{T}$.
- The incumbent party then has a total of \boldsymbol{T} years in which to impress the voters with its accomplishments in order to win their votes.
- At any time in the period $t \in[0, T]$, the pair of realized values of \boldsymbol{U} and p will determine a specific value of \boldsymbol{v}.
- Such values of v for different points of time must all enter into the objective functional of the incumbent party.
- If the voters have a short collective memory and are influenced more by the events occurring near election time, then the v values of the later part of the period $[0, T]$ should be assigned heavier weights.

The political-business-cycle model

- The political-business-cycle model

$$
\begin{array}{ll}
\text { Maximize } & \mathrm{V}=\int_{0}^{T} v(U, p) e^{r t} d t \\
& p=\phi(U)+a \pi
\end{array}
$$

(31) Subject to

$$
\begin{aligned}
& \dot{\pi}=b(p-\pi) ; \quad(\boldsymbol{b}>\mathbf{0}) \\
& \pi(0)=\pi_{0} ; \quad \pi(T)=\text { free } ; \quad\left(\pi_{0}, T \text { given }\right)
\end{aligned}
$$

- contains an equality constraint
(32) $p=\phi(U)+a \pi$
[Augmented Phillips Curve]

$$
\boldsymbol{\phi}^{\prime}<\mathbf{0} ; \quad \mathbf{0}<\boldsymbol{a} \leq \mathbf{1}
$$

- \boldsymbol{U} is the unemployment rate; \boldsymbol{p} is the inflation rate; $\boldsymbol{\pi}$ is expected inflation rate.

The political-business-cycle model

(33) $\boldsymbol{v}(\boldsymbol{U}, \boldsymbol{p}) ; \boldsymbol{v}_{\boldsymbol{U}}<\mathbf{0} ; \boldsymbol{v}_{\boldsymbol{p}}<\mathbf{0}$

- v is the aggregate vote function; a measure of the vote-getting $p(\%)$ power of the incumbent party.
- $\boldsymbol{r}>\mathbf{0}$ denotes the rate of decay of memory. It shows that the v values at later points of time are weighted more heavily.
- Figure 1 captures the tradeoff between \boldsymbol{U} and \boldsymbol{p}.
- U and p are both conducive to vote loss

Figure 1 - Isovote Curves

The political-business-cycle model

- Expectations are assumed to be formed adaptively, according to the differential equation

$$
\text { (34) } \dot{\pi}=b(p-\pi) ; \quad(\boldsymbol{b}>\mathbf{0})
$$

- For a variable to qualify as a state variable, it must come with a given equation of motion in the problem.
- Since (34) constitutes an equation of motion for π, we can take $\boldsymbol{\pi}$ as a state variable.
- The variable U, on the other hand, does not come with an equation of motion. But since \boldsymbol{U} can affect \boldsymbol{p} via (32) and then dynamically drive $\boldsymbol{\pi}$ via (34), we can use it as a control variable.

The political-business-cycle model

- To use \boldsymbol{U} as a control variable, however, requires the implicit assumption that the government in power does have the ability to implement any target rate of unemployment it chooses at any point of time.
- As to the remaining variable, p, (32) $\boldsymbol{p}=\boldsymbol{\phi}(\boldsymbol{U})+\boldsymbol{a} \boldsymbol{\pi}$ shows that its value at any time t will become determinate once the values of the state and control variables are known.
- Now that \boldsymbol{p} is retained in the model, it ought to be taken as another control variable. Thus the constraint equation (35) $p-\phi(U)-a \pi=0$
- is in line with the general format of $g\left(t, y, u_{1}, u_{2}\right)=c$, although there is no explicit t argument in it.

The political-business-cycle model

- We can write the Lagrangian

$$
\text { (36) } \mathcal{L}=v(U, p) e^{r t}+\lambda b(p-\pi)+\theta[\phi(U)+a \pi-p]
$$

- If the following specific functions are adopted:
(37) $v(U, p)=-U^{2}-h p$;
($h>0$)
(38) $\phi(U)=j-k U$
$(j, k>0)$
- Using these specific functions, the Lagrangian becomes: (39) $\mathcal{L}=\left(-U^{2}-h p\right) e^{r t}+\lambda b(p-\pi)+\theta[j-k U+a \pi-p]$
- Accordingly, the maximum principle calls for the conditions

The political-business-cycle model

$$
\mathcal{L}=\left(-U^{2}-h p\right) e^{r t}+\lambda b(p-\pi)+\theta[j-k U+a \pi-p]
$$

(40) $\frac{\partial \mathcal{L}}{\partial U}=-2 U e^{r t}-\theta k=0 \quad \Rightarrow \boldsymbol{U}=-\frac{1}{2} \boldsymbol{\theta} \boldsymbol{k} e^{-r t}$
(41) $\frac{\partial \mathcal{L}}{\partial p}=-h \boldsymbol{e}^{r t}+\lambda b-\theta=0 \quad \Rightarrow \boldsymbol{\theta}=\boldsymbol{\lambda} \boldsymbol{b}-\boldsymbol{h} \boldsymbol{e}^{r t}$
(42) $\frac{\partial \mathcal{L}}{\partial \theta}=j-k U+a \pi-p=0$
(43) $\dot{\pi}=\frac{\partial \mathcal{L}}{\partial \lambda}=b(p-\pi)$
(44) $\dot{\lambda}=-\frac{\partial \mathcal{L}}{\partial \pi}=\lambda b-\theta a$

- By using (41) into (40):
(45) $U=-\frac{1}{2}\left(\lambda b-h e^{r t}\right) k e^{-r t} \quad \Rightarrow \boldsymbol{U}=\frac{1}{2} \boldsymbol{k}\left(\boldsymbol{h}-\lambda \boldsymbol{b} \boldsymbol{e}^{-r t}\right)$

The optimal costate path.

- From (44) $\dot{\lambda}=-\frac{\partial \mathcal{L}}{\partial \pi}=\lambda b-\theta a$
$\dot{\lambda}=\lambda b-\theta a=\lambda b-\left(\lambda b-h e^{r t}\right) a=\lambda b(1-a)+a h e^{r t}$
(46) $\dot{\lambda}-b(1-a) \lambda=a h e^{r t}$
- Equation (46) is readily recognized as a first-order linear differential equation with a constant coefficient but a variable term.
- The general solution of (46) is:
(47) $\lambda(t)=A e^{b(1-a) t}+\frac{a h}{B} e^{r t}$
- Where $\boldsymbol{B}=\boldsymbol{r}-\boldsymbol{b}(\mathbf{1}-\boldsymbol{a})$ and A is an arbitrary constant.

The optimal costate path.

- Note that the two constants A and B are fundamentally different in nature; B is merely a shorthand symbol we have chosen in order to simplify the notation, but A is an arbitrary constant to be definitized.
- To definitize A, we can make use of the transversality condition for the vertical-terminal-line problem, $\boldsymbol{\lambda}(\boldsymbol{T})=\mathbf{0}$.
- Letting $t=T$ in (47) $\lambda(T)=A e^{b(1-a) T}+\frac{a h}{B} e^{r T}$, applying the transversality condition, and solving for A, we find that $\boldsymbol{A}=-\frac{a h}{\boldsymbol{B}} \boldsymbol{e}^{\boldsymbol{B T}}$.
- It follows that the definite solution - the optimal costate path - is (48) $\lambda^{*}(\boldsymbol{t})=-\frac{a h}{B} e^{B T} e^{b(1-a) t}+\frac{a h}{B} e^{r t}=\frac{a h}{B}\left[\boldsymbol{e}^{r t}-\boldsymbol{e}^{\boldsymbol{B T}+\boldsymbol{b}(1-a) t}\right]$

The optimal control path

- Now that we have found $\lambda^{*}(t)$, all it takes is to substitute (48) $\lambda^{*}(t)=$ $\frac{a h}{B}\left[e^{r t}-e^{B T+b(1-a) t}\right]$ into (45) $U=\frac{1}{2} k\left(h-\lambda b e^{-r t}\right)$ to derive the optimal control path.
- The result is

$$
\begin{aligned}
& U^{*}(t)=\frac{1}{2} k\left\{h-\frac{a h}{B}\left[e^{r t}-e^{B T+b(1-a) t}\right] b e^{-r t}\right\} \\
& U^{*}(t)=\frac{1}{2} k\left\{h-\frac{a h}{B}\left[e^{r t} e^{-r t}-e^{B T+[b(1-a)-r] t}\right] b\right\} \\
& U^{*}(t)=\frac{1}{2} \frac{h k}{B}\left\{B-a b\left[1-e^{B(T-t)}\right]\right\} ; \quad \boldsymbol{B}=\boldsymbol{r}-\boldsymbol{b}(\mathbf{1}-\boldsymbol{a}) \\
& \text { (49) } U^{*}(t)=\frac{h k}{2 B}\left[(r-b)+a b e^{B(T-t)}\right] \quad
\end{aligned}
$$

The optimal control path

- Equation (49) is this control path that the incumbent party should follow in the interest of its reelection in year T.
- What are the economic implications of this path?
- First, we note that $\boldsymbol{U}^{*}(\boldsymbol{t})$ is a decreasing function of \boldsymbol{t}. Specifically, we have $\left\{U^{*}(t)=\frac{h k}{2 B}\left[(r-b)+a b e^{B(T-t)}\right]\right\}$
(50) $\frac{d U^{*}}{d t}=-\frac{1}{2} a b h k e^{B(T-t)}<0$
- because $\boldsymbol{k}, \boldsymbol{h}, \boldsymbol{b}, \boldsymbol{a}$ and exponential expression are all positive.
- The vote-maximizing economic policy is to set a high unemployment level at $t=0$, and then let the rate of unemployment fall steadily throughout the electoral period [$0, T$].

The optimal control path

- In fact, the optimal levels of unemployment at time $\mathbf{0}$ and time \boldsymbol{T} can be exactly determined. They are $\left\{U^{*}(t)=\frac{h k}{2 B}\left[(r-b)+a b e^{B(T-t)}\right]\right\}$

$$
\begin{aligned}
& U^{*}(0)=\frac{h k}{2 B}\left[(r-b)+a b e^{B T}\right] ; \text { and } \\
& U^{*}(T)=\frac{h k}{2 B}[(r-b)+a b] \quad \Rightarrow U^{*}(T)=\frac{h k}{2}
\end{aligned}
$$

- Note that the terminal unemployment level, $\boldsymbol{h k} / \mathbf{2}$, is a positive quantity.
- Since $\boldsymbol{U}^{*}(\boldsymbol{T})$ represents the lowest point on the $U^{*}(T)$ path, the $U^{*}(T)$ values at all values of t in $[0, T]$ must uniformly be positive.
- This means that not imposing any restriction on \boldsymbol{U} does not cause any trouble regarding the sign of \boldsymbol{U} in the present case.

The optimal control path

- However, to be economically meaningful, $U^{*}(0)$ must be less than unity or, more realistically, less than some maximum tolerable unemployment rate $\boldsymbol{U}_{\max }<\mathbf{1}$.
- The typical optimal unemployment path, $\boldsymbol{U}^{*}(\boldsymbol{t})$, is illustrated in Fig. 2, where we also show the repetition of similar $U^{*}(t)$ patterns over successive electoral periods generates political business cycles.

Figure 2 - The Political Business Cycles

The optimal state path

- The politically inspired cyclical tendency in the control variable U must also spill over to the state variable π, and hence also to the actual rate of inflation p.
- The general pattern would be for the optimal rate of inflation to be relatively low at the beginning of each electoral period, but undergo a steady climb.
- In other words, the time profile of \boldsymbol{p}^{*} tends to be the opposite of that of U^{*}, since the Phillips Curve depicts a trade-off between the two: $p=\phi(U)+a \pi ; \phi^{\prime}<0 ; 0<a \leq 1$.

Current-Value Hamiltonian and Lagrangian

- When the constrained problem involves a discount factor, it is possible to use the current-value Hamiltonian $\boldsymbol{H}_{\boldsymbol{c}}$ in lieu of \boldsymbol{H}.
- In that case, the Lagrangian \mathcal{L} should be replaced by the currentvalue Lagrangian $\boldsymbol{L}_{\boldsymbol{c}}$.
- Consider the inequality-constraint problem

Maximize

$$
\mathrm{V}=\int_{0}^{T} \Phi(t, y, u) e^{-\rho t} d t
$$

(51) Subject to
$\dot{y}=f(t, y, u)$
$g(t, y, u) \leq c$
and
boundary conditions

Current-Value Hamiltonian and Lagrangian

- The regular Hamiltonian and Lagrangian are

(52) $H=\Phi(t, y, u) e^{-\rho t}+\lambda(t) f(t, y, u)$
(52') $\mathcal{L}=\Phi(t, y, u) e^{-\rho t}+\lambda(t) f(t, y, u)+\theta(t)[c-g(t, y, u)]$

- And the maximum principle calls for (assuming interior solution):
(53) $\frac{\partial \mathcal{L}}{\partial u}=0 ; \quad$ for all $t \in[0, T]$
(54) $\frac{\partial \mathcal{L}}{\partial \theta}=c-g(t, y, u) \geq 0 ; \quad \theta \geq 0 ; \quad \theta \frac{\partial \mathcal{L}}{\partial \theta}=0$
(55) $\dot{y}=\frac{\partial \mathcal{L}}{\partial \lambda} \quad$ [equation of motion for y]
(56) $\dot{\lambda}=-\frac{\partial \mathcal{L}}{\partial y} \quad$ [equation of motion for λ]
- Plus an appropriate transversality condition.

Current-Value Hamiltonian and Lagrangian

- By introducing new multipliers

$$
\begin{array}{ll}
\text { (57) } m(t)=\lambda(t) e^{\rho t} & {\left[\text { implying } \lambda(\boldsymbol{t})=\boldsymbol{m}(\boldsymbol{t}) \boldsymbol{e}^{-\boldsymbol{\rho} t}\right]} \\
\text { (57') } n(t)=\theta(t) e^{\rho t} & {\left[\text { implying } \boldsymbol{\theta}(\boldsymbol{t})=\boldsymbol{n}(\boldsymbol{t}) \boldsymbol{e}^{-\boldsymbol{\rho} t}\right]}
\end{array}
$$

- we can introduce the current-value versions of \boldsymbol{H} and \mathcal{L} as follows:
(58) $H_{c}=H e^{\rho t}=\Phi(t, y, u)+m(t) f(t, y, u)$
$\left(58^{\prime}\right) \mathcal{L}_{c}=\mathcal{L} e^{\rho t}=\Phi(t, y, u)+m(t) f(t, y, u)+n(t)[c-g(t, y, u)]$
- It can readily be verified that
(59) $\frac{\partial \mathcal{L}_{c}}{\partial u}=\frac{\partial \mathcal{L}}{\partial u} e^{\rho t} ; \quad \frac{\partial \mathcal{L}_{c}}{\partial n}=\frac{\partial \mathcal{L}}{\partial \theta} ; \quad$ and $\quad \frac{\partial \mathcal{L}_{c}}{\partial m}=\frac{\partial \mathcal{L}}{\partial \lambda}$

Current-Value Hamiltonian and Lagrangian

- Therefore, conditions (53), (54), and (55) can be equivalently expressed with $\mathcal{L}_{\boldsymbol{c}}$, and the new multipliers m and n as follows:
(60) $\frac{\partial \mathcal{L}_{c}}{\partial u}=0 ; \quad$ for all $t \in[0, T]$
(61) $\frac{\partial \mathcal{L}_{c}}{\partial n} \geq 0 ; \quad n \geq 0 ; \quad n \frac{\partial \mathcal{L}}{\partial n}=0$
(62) $\dot{y}=\frac{\partial \mathcal{L}_{c}}{\partial m} \quad$ [equation of motion for y]
- The only major modification required when we use $\mathcal{L}_{\boldsymbol{c}}$ in the equation of motion for the costate variable, (56).
- To revise the equation of motion for the costate variable, (56) $\dot{\lambda}=$ $-\boldsymbol{L} / \boldsymbol{\partial} \boldsymbol{y}$, we shall transform each side of this equation into an expression involving the new variable m.

Current-Value Hamiltonian and Lagrangian

- For the left-hand side, by differentiating (57) $\boldsymbol{m}(\boldsymbol{t})=\lambda(\boldsymbol{t}) \boldsymbol{e}^{\boldsymbol{\rho} \boldsymbol{t}}$:
(63) $\dot{m}=\dot{\lambda} e^{\rho t}+\rho \lambda e^{\rho t}=\dot{\lambda} e^{\rho t}+\rho m \quad \Rightarrow \dot{\lambda}=\dot{\boldsymbol{m}} \boldsymbol{e}^{-\rho t}-\boldsymbol{\rho m} \boldsymbol{e}^{-\boldsymbol{\rho t}}$
- Using the definition of \mathcal{L} in (58') $\mathcal{L}_{\boldsymbol{c}}=\boldsymbol{\mathcal { L }} \boldsymbol{e}^{\rho \boldsymbol{t}}$, we can rewrite (56) $\dot{\lambda}=$ $-\frac{\partial \mathcal{L}}{\partial y}$ as
(64) $\dot{\lambda}=-\frac{\partial \mathcal{L}}{\partial y}=-\frac{\partial \mathcal{L}_{c}}{\partial y} \boldsymbol{e}^{-\rho t}$
- Equating (63) and (64):
(65) $-\frac{\partial \mathcal{L}_{c}}{\partial y} e^{-\rho t}=\dot{m} e^{-\rho t}-\rho m e^{-\rho t}$
(66) $\dot{m}=-\frac{\partial \mathcal{L}_{c}}{\partial y}+\rho m$
[equation of motion for m]

Sufficient Conditions

- The Mangasarian and Arrow sufficient conditions, previously discussed in the context of unconstrained problems, turn out to be valid also for constrained problems when the terminal time T is fixed.
- Let us use the symbol \boldsymbol{u} to represent the vector of control variables. As before, let $\boldsymbol{H}^{\mathbf{0}}$ denote the maximized Hamiltonian, the Hamiltonian evaluated along the $\boldsymbol{u}^{*}(\boldsymbol{t})$ path.
- The Hamiltonian is understood to be maximized subject to all the constraints of the $\boldsymbol{g}(\boldsymbol{t}, \boldsymbol{y}, \boldsymbol{u})=\boldsymbol{c}$ form or the $\boldsymbol{g}(\boldsymbol{t}, \boldsymbol{y}, \boldsymbol{u}) \leq c$ form present in the problem.
- Besides, since every integral constraint is reflected in \boldsymbol{H} via the new costate variable $\boldsymbol{\mu}$, it must also be similarly reflected in $\boldsymbol{H}^{\mathbf{0}}$.

Sufficient Conditions

- For simplicity, we can consolidate the Mangasarian and Arrow sufficient conditions into a single statement.
- The maximum-principle conditions are sufficient for the global maximization of the objective functional if:
(67) Either the concavity of \mathcal{L} is in $(\boldsymbol{y}, \boldsymbol{u})$, jointly, for all $t \in[0, T]$; or Arrow's condition that $H^{\mathbf{0}}$ is concave in the y variable alone for all $t \in[0, T]$, for a given λ.
- These conditions are also applicable to infinite-horizon problems, but in this case, the λ must satisfy
(68) $\lim _{t \rightarrow \infty} \lambda(t)\left[y(t)-y^{*}(t)\right] \geq 0$

Sufficient Conditions

- A few comments about (67) may be added here.
- First, the concavity of \mathcal{L} is in (y, u) means concavity in the variables y and u jointly.
- Second, since \boldsymbol{H} and \mathcal{L} are composed of the $\boldsymbol{F}, \boldsymbol{f}, \boldsymbol{g}$, and \boldsymbol{G} functions as follows:
(69) $H=F+\lambda f-\mu G$
(70) $\mathcal{L}=H+\theta[c-g]$
- it is clear that (67) will be satisfied if the following are simultaneously true:

Sufficient Conditions

1) F is concave in (y, u)
2) λf is concave in (y, u)
3) μG is convex in (y, u)
4) and θg is convex in (y, u) for all $t \in[0, T]$

- In the case of an inequality integral constraint, however, where μ is a nonnegative constant, the convexity of μG is ensured by the convexity of \boldsymbol{G} itself.
- Similarly, in the case of an inequality constraint, where $\boldsymbol{\theta} \geq \mathbf{0}$, the convexity of $\boldsymbol{\theta} \boldsymbol{g}$ is ensured by the convexity of \boldsymbol{g} itself.
- Finally, if the current-value Hamiltonian and Lagrangian are used, (67) can be easily adapted by replacing \mathcal{L} by \mathcal{L}_{c} and H^{0} by H_{c}^{0}.

