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The political-business-cycle model

• Suppose that a party has just won the election at 𝒕 = 𝟎, and the next
election is to be held 𝑻 years later at 𝒕 = 𝑻.

• The incumbent party then has a total of 𝑻 years in which to impress
the voters with its accomplishments in order to win their votes.

• At any time in the period 𝑡 ∈ 0, 𝑇 , the pair of realized values of 𝑼
and 𝒑 will determine a specific value of 𝒗.

• Such values of 𝒗 for different points of time must all enter into the
objective functional of the incumbent party.

• If the voters have a short collective memory and are influenced more
by the events occurring near election time, then the 𝑣 values of the
later part of the period 0, 𝑇 should be assigned heavier weights.



The political-business-cycle model

• The political-business-cycle model

Maximize V = 0׬
𝑇
𝑣 𝑈, 𝑝 𝑒𝑟𝑡𝑑𝑡

𝑝 = 𝜙 𝑈 + 𝑎𝜋

(31) Subject to ሶ𝜋 = 𝑏 𝑝 − 𝜋 ; 𝒃 > 𝟎

𝜋 0 = 𝜋0; 𝜋 𝑇 = 𝑓𝑟𝑒𝑒; 𝜋0, 𝑇 𝑔𝑖𝑣𝑒𝑛

• contains an equality constraint

(32) 𝑝 = 𝜙 𝑈 + 𝑎𝜋 [Augmented Phillips Curve]

𝝓′ < 𝟎; 𝟎 < 𝒂 ≤ 𝟏

• 𝑼 is the unemployment rate; 𝒑 is the inflation rate; 𝝅 is expected
inflation rate.



The political-business-cycle model
(33) 𝒗 𝑼, 𝒑 ; 𝒗𝑼 < 𝟎; 𝒗𝒑 < 𝟎

• 𝒗 is the aggregate vote function;
a measure of the vote-getting
power of the incumbent party.

• 𝒓 > 𝟎 denotes the rate of decay
of memory. It shows that the
𝒗 values at later points of time
are weighted more heavily.

• Figure 1 captures the tradeoff
between 𝑼 and 𝒑.

• 𝑈 and 𝑝 are both conducive to
vote loss

Figure 1 – Isovote Curves



The political-business-cycle model

• Expectations are assumed to be formed adaptively, according to the
differential equation

(34) ሶ𝜋 = 𝑏 𝑝 − 𝜋 ; 𝒃 > 𝟎

• For a variable to qualify as a state variable, it must come with a given
equation of motion in the problem.

• Since (34) constitutes an equation of motion for 𝜋, we can take 𝝅 as a
state variable.

• The variable 𝑈, on the other hand, does not come with an equation
of motion. But since 𝑼 can affect 𝒑 via (32) and then dynamically
drive 𝝅 via (34), we can use it as a control variable.



The political-business-cycle model

• To use 𝑼 as a control variable, however, requires the implicit
assumption that the government in power does have the ability to
implement any target rate of unemployment it chooses at any point
of time.

• As to the remaining variable, 𝑝, (32) 𝒑 = 𝝓 𝑼 + 𝒂𝝅 shows that its
value at any time 𝑡 will become determinate once the values of the
state and control variables are known.

• Now that 𝒑 is retained in the model, it ought to be taken as another
control variable. Thus the constraint equation

(35) 𝑝 − 𝜙 𝑈 − 𝑎𝜋 = 0

• is in line with the general format of 𝒈 𝒕, 𝒚, 𝒖𝟏, 𝒖𝟐 = 𝒄, although
there is no explicit 𝑡 argument in it.



The political-business-cycle model

• We can write the Lagrangian

(36) ℒ = 𝑣 𝑈, 𝑝 𝑒𝑟𝑡 + 𝜆𝑏 𝑝 − 𝜋 + 𝜃 𝜙 𝑈 + 𝑎𝜋 − 𝑝

• If the following specific functions are adopted:

(37) 𝑣 𝑈, 𝑝 = −𝑈2 − ℎ𝑝; 𝒉 > 𝟎

(38) 𝜙 𝑈 = 𝑗 − 𝑘𝑈 𝒋, 𝒌 > 𝟎

• Using these specific functions, the Lagrangian becomes:

(39) ℒ = −𝑈2 − ℎ𝑝 𝑒𝑟𝑡 + 𝜆𝑏 𝑝 − 𝜋 + 𝜃 𝑗 − 𝑘𝑈 + 𝑎𝜋 − 𝑝

• Accordingly, the maximum principle calls for the conditions



The political-business-cycle model

𝓛 = −𝑼𝟐 − 𝒉𝒑 𝒆𝒓𝒕 + 𝝀𝒃 𝒑 − 𝝅 + 𝜽 𝒋 − 𝒌𝑼 + 𝒂𝝅 − 𝒑

(40)
𝜕ℒ

𝜕𝑈
= −2𝑈𝑒𝑟𝑡 − 𝜃𝑘 = 0 ⇒ 𝑼 = −

𝟏

𝟐
𝜽𝒌𝒆−𝒓𝒕

(41)
𝜕ℒ

𝜕𝑝
= −ℎ𝑒𝑟𝑡 + 𝜆𝑏 − 𝜃 = 0 ⇒ 𝜽 = 𝝀𝒃 − 𝒉𝒆𝒓𝒕

(42)
𝜕ℒ

𝜕𝜃
= 𝑗 − 𝑘𝑈 + 𝑎𝜋 − 𝑝 = 0

(43) ሶ𝜋 =
𝜕ℒ

𝜕λ
= 𝑏 𝑝 − 𝜋

(44) ሶλ = −
𝜕ℒ

𝜕𝜋
= 𝜆𝑏 − 𝜃𝑎

• By using (41) into (40):

(45) 𝑈 = −
1

2
𝜆𝑏 − ℎ𝑒𝑟𝑡 𝑘𝑒−𝑟𝑡 ⇒ 𝑼 =

𝟏

𝟐
𝒌 𝒉 − 𝝀𝒃𝒆−𝒓𝒕



The optimal costate path.

• From (44) ሶλ = −
𝜕ℒ

𝜕𝜋
= 𝜆𝑏 − 𝜃𝑎

ሶλ = 𝜆𝑏 − 𝜃𝑎 = 𝜆𝑏 − 𝜆𝑏 − ℎ𝑒𝑟𝑡 𝑎 = 𝜆𝑏 1 − 𝑎 + 𝑎ℎ𝑒𝑟𝑡

(46) ሶλ − 𝑏 1 − 𝑎 𝜆 = 𝑎ℎ𝑒𝑟𝑡

• Equation (46) is readily recognized as a first-order linear differential
equation with a constant coefficient but a variable term.

• The general solution of (46) is:

(47) 𝜆 𝑡 = 𝐴𝑒𝑏 1−𝑎 𝑡 +
𝑎ℎ

𝐵
𝑒𝑟𝑡

• Where 𝑩 = 𝒓 − 𝒃 𝟏 − 𝒂 and 𝐴 is an arbitrary constant.



The optimal costate path.

• Note that the two constants 𝐴 and 𝐵 are fundamentally different in
nature; 𝑩 is merely a shorthand symbol we have chosen in order to
simplify the notation, but 𝑨 is an arbitrary constant to be definitized.

• To definitize A, we can make use of the transversality condition for the
vertical-terminal-line problem, 𝝀 𝑻 = 𝟎.

• Letting 𝑡 = 𝑇 in (47) 𝜆 𝑇 = 𝐴𝑒𝑏 1−𝑎 𝑇 +
𝑎ℎ

𝐵
𝑒𝑟𝑇 , applying the

transversality condition, and solving for 𝐴, we find that 𝑨 = −
𝒂𝒉

𝑩
𝒆𝑩𝑻.

• It follows that the definite solution - the optimal costate path - is

(48) 𝝀∗ 𝒕 = −
𝑎ℎ

𝐵
𝑒𝐵𝑇𝑒𝑏 1−𝑎 𝑡 +

𝑎ℎ

𝐵
𝑒𝑟𝑡 =

𝒂𝒉

𝑩
𝒆𝒓𝒕 − 𝒆𝑩𝑻+𝒃 𝟏−𝒂 𝒕



The optimal control path

• Now that we have found 𝜆∗ 𝑡 , all it takes is to substitute (48) 𝜆∗ 𝑡 =
𝑎ℎ

𝐵
𝑒𝑟𝑡 − 𝑒𝐵𝑇+𝑏 1−𝑎 𝑡 into (45) 𝑈 =

1

2
𝑘 ℎ − 𝜆𝑏𝑒−𝑟𝑡 to derive the

optimal control path.

• The result is

𝑈∗ 𝑡 =
1

2
𝑘 ℎ −

𝑎ℎ

𝐵
𝑒𝑟𝑡 − 𝑒𝐵𝑇+𝑏 1−𝑎 𝑡 𝑏𝑒−𝑟𝑡

𝑈∗ 𝑡 =
1

2
𝑘 ℎ −

𝑎ℎ

𝐵
𝑒𝑟𝑡𝑒−𝑟𝑡 − 𝑒𝐵𝑇+ 𝑏 1−𝑎 −𝑟 𝑡 𝑏

𝑈∗ 𝑡 =
1

2

ℎ𝑘

𝐵
𝐵 − 𝑎𝑏 1 − 𝑒𝐵 𝑇−𝑡 ; 𝑩 = 𝒓 − 𝒃 𝟏 − 𝒂

(49) 𝑈∗ 𝑡 =
ℎ𝑘

2𝐵
𝑟 − 𝑏 + 𝑎𝑏𝑒𝐵 𝑇−𝑡



The optimal control path

• Equation (49) is this control path that the incumbent party should
follow in the interest of its reelection in year 𝑻.

• What are the economic implications of this path?

• First, we note that 𝑼∗ 𝒕 is a decreasing function of 𝒕. Specifically, we

have 𝑈∗ 𝑡 =
ℎ𝑘

2𝐵
𝑟 − 𝑏 + 𝑎𝑏𝑒𝐵 𝑇−𝑡

(50)
𝑑𝑈∗

𝑑𝑡
= −

1

2
𝑎𝑏ℎ𝑘𝑒𝐵 𝑇−𝑡 < 0

• because 𝒌, 𝒉, 𝒃, 𝒂 and exponential expression are all positive.

• The vote-maximizing economic policy is to set a high unemployment
level at 𝒕 = 𝟎, and then let the rate of unemployment fall steadily
throughout the electoral period 𝟎, 𝑻 .



The optimal control path

• In fact, the optimal levels of unemployment at time 𝟎 and time 𝑻 can be

exactly determined. They are 𝑈∗ 𝑡 =
ℎ𝑘

2𝐵
𝑟 − 𝑏 + 𝑎𝑏𝑒𝐵 𝑇−𝑡

𝑈∗ 0 =
ℎ𝑘

2𝐵
𝑟 − 𝑏 + 𝑎𝑏𝑒𝐵𝑇 ; and

𝑈∗ 𝑇 =
ℎ𝑘

2𝐵
𝑟 − 𝑏 + 𝑎𝑏 ⇒ 𝑈∗ 𝑇 =

ℎ𝑘

2

• Note that the terminal unemployment level, Τ𝒉𝒌 𝟐, is a positive quantity.

• Since 𝑼∗ 𝑻 represents the lowest point on the 𝑈∗ 𝑇 path, the
𝑈∗ 𝑇 values at all values of 𝑡 in 0, 𝑇 must uniformly be positive.

• This means that not imposing any restriction on 𝑼 does not cause any
trouble regarding the sign of 𝑼 in the present case.



The optimal control path

• However, to be economically
meaningful, 𝑼∗ 𝟎 must be less
than unity or, more realistically, less
than some maximum tolerable
unemployment rate 𝑼𝒎𝒂𝒙 < 𝟏.

• The typical optimal unemployment
path, 𝑼∗ 𝒕 , is illustrated in Fig. 2,
where we also show the repetition
of similar 𝑈∗ 𝑡 patterns over
successive electoral periods
generates political business cycles.

Figure 2 – The Political Business Cycles



The optimal state path

• The politically inspired cyclical tendency in the control variable U
must also spill over to the state variable 𝝅, and hence also to the
actual rate of inflation 𝒑.

• The general pattern would be for the optimal rate of inflation to be
relatively low at the beginning of each electoral period, but undergo a
steady climb.

• In other words, the time profile of 𝒑∗ tends to be the opposite of
that of 𝑼∗, since the Phillips Curve depicts a trade-off between the
two: 𝒑 = 𝝓 𝑼 + 𝒂𝝅; 𝝓′ < 𝟎; 𝟎 < 𝒂 ≤ 𝟏.



Current-Value Hamiltonian and Lagrangian

• When the constrained problem involves a discount factor, it is
possible to use the current-value Hamiltonian 𝑯𝒄 in lieu of 𝑯.

• In that case, the Lagrangian 𝓛 should be replaced by the current-
value Lagrangian 𝓛𝒄.

• Consider the inequality-constraint problem

Maximize V = 0׬
𝑇
Φ 𝑡, 𝑦, 𝑢 𝑒−𝜌𝑡𝑑𝑡

(51) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢

𝑔 𝑡, 𝑦, 𝑢 ≤ 𝑐

and boundary conditions



Current-Value Hamiltonian and Lagrangian
• The regular Hamiltonian and Lagrangian are

(52) 𝐻 = Φ 𝑡, 𝑦, 𝑢 𝑒−𝜌𝑡 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢

(52’) ℒ = Φ 𝑡, 𝑦, 𝑢 𝑒−𝜌𝑡 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢 + 𝜃 𝑡 𝑐 − 𝑔 𝑡, 𝑦, 𝑢

• And the maximum principle calls for (assuming interior solution):

(53)
𝜕ℒ

𝜕𝑢
= 0; for all 𝑡 ∈ 0, 𝑇

(54)
𝜕ℒ

𝜕𝜃
= 𝑐 − 𝑔 𝑡, 𝑦, 𝑢 ≥ 0; 𝜃 ≥ 0; 𝜃

𝜕ℒ

𝜕𝜃
= 0

(55) ሶ𝑦 =
𝜕ℒ

𝜕𝜆
[equation of motion for 𝑦]

(56) ሶ𝜆 = −
𝜕ℒ

𝜕𝑦
[equation of motion for 𝜆]

• Plus an appropriate transversality condition.



Current-Value Hamiltonian and Lagrangian

• By introducing new multipliers

(57) 𝑚 𝑡 = 𝜆 𝑡 𝑒𝜌𝑡 [implying 𝝀 𝒕 = 𝒎 𝒕 𝒆−𝝆𝒕]

(57’) 𝑛 𝑡 = 𝜃 𝑡 𝑒𝜌𝑡 [implying 𝜽 𝒕 = 𝒏 𝒕 𝒆−𝝆𝒕]

• we can introduce the current-value versions of 𝑯 and 𝓛 as follows:

(58) 𝐻𝑐 = 𝐻𝑒𝜌𝑡 = Φ 𝑡, 𝑦, 𝑢 + 𝑚 𝑡 𝑓 𝑡, 𝑦, 𝑢

(58’) ℒ𝑐 = ℒ𝑒𝜌𝑡 = Φ 𝑡, 𝑦, 𝑢 + 𝑚 𝑡 𝑓 𝑡, 𝑦, 𝑢 + 𝑛 𝑡 𝑐 − 𝑔 𝑡, 𝑦, 𝑢

• It can readily be verified that

(59)
𝜕ℒ𝑐

𝜕𝑢
=

𝜕ℒ

𝜕𝑢
𝑒𝜌𝑡;

𝜕ℒ𝑐

𝜕𝑛
=

𝜕ℒ

𝜕𝜃
; and

𝜕ℒ𝑐

𝜕𝑚
=

𝜕ℒ

𝜕𝜆



Current-Value Hamiltonian and Lagrangian

• Therefore, conditions (53), (54), and (55) can be equivalently
expressed with 𝓛𝒄, and the new multipliers 𝑚 and 𝑛 as follows:

(60)
𝜕ℒ𝑐

𝜕𝑢
= 0; for all 𝑡 ∈ 0, 𝑇

(61)
𝜕ℒ𝑐

𝜕𝑛
≥ 0; 𝑛 ≥ 0; 𝑛

𝜕ℒ

𝜕𝑛
= 0

(62) ሶ𝑦 =
𝜕ℒ𝑐

𝜕𝑚
[equation of motion for 𝑦]

• The only major modification required when we use 𝓛𝒄 in the
equation of motion for the costate variable, (56).

• To revise the equation of motion for the costate variable, (56) ሶ𝝀 =
Τ−𝝏𝓛 𝝏𝒚, we shall transform each side of this equation into an

expression involving the new variable 𝑚.



Current-Value Hamiltonian and Lagrangian

• For the left-hand side, by differentiating (57) 𝒎 𝒕 = 𝝀 𝒕 𝒆𝝆𝒕:

(63) ሶ𝑚 = ሶ𝜆𝑒𝜌𝑡 + 𝜌𝜆𝑒𝜌𝑡 = ሶ𝜆𝑒𝜌𝑡 + 𝜌𝑚 ⇒ ሶ𝝀 = ሶ𝒎𝒆−𝝆𝒕 − 𝝆𝒎𝒆−𝝆𝒕

• Using the definition of ℒ in (58’) 𝓛𝒄 = 𝓛𝒆𝝆𝒕, we can rewrite (56) ሶ𝝀 =

−
𝝏𝓛

𝝏𝒚
as

(64) ሶ𝝀 = −
𝜕ℒ

𝜕𝑦
= −

𝝏𝓛𝒄

𝝏𝒚
𝒆−𝝆𝒕

• Equating (63) and (64):

(65) −
𝜕ℒ𝑐

𝜕𝑦
𝑒−𝜌𝑡 = ሶ𝑚𝑒−𝜌𝑡 − 𝜌𝑚𝑒−𝜌𝑡

(66) ሶ𝑚 = −
𝜕ℒ𝑐

𝜕𝑦
+ 𝜌𝑚 [equation of motion for 𝒎]



Sufficient Conditions

• The Mangasarian and Arrow sufficient conditions, previously
discussed in the context of unconstrained problems, turn out to be
valid also for constrained problems when the terminal time 𝑇 is fixed.

• Let us use the symbol 𝒖 to represent the vector of control variables.
As before, let 𝑯𝟎 denote the maximized Hamiltonian, the Hamiltonian
evaluated along the 𝒖∗ 𝒕 path.

• The Hamiltonian is understood to be maximized subject to all the
constraints of the 𝒈 𝒕, 𝒚, 𝒖 = 𝒄 form or the 𝒈 𝒕, 𝒚, 𝒖 ≤ 𝑐 form
present in the problem.

• Besides, since every integral constraint is reflected in 𝑯 via the new
costate variable 𝝁, it must also be similarly reflected in 𝑯𝟎.



Sufficient Conditions

• For simplicity, we can consolidate the Mangasarian and Arrow
sufficient conditions into a single statement.

• The maximum-principle conditions are sufficient for the global
maximization of the objective functional if:

(67) Either the concavity of 𝓛 is in 𝒚, 𝒖 , jointly, for all 𝒕 ∈ 𝟎, 𝑻 ; or
Arrow's condition that 𝑯𝟎 is concave in the 𝒚 variable alone for
all 𝒕 ∈ 𝟎, 𝑻 , for a given 𝝀.

• These conditions are also applicable to infinite-horizon problems, but
in this case, the 𝝀 must satisfy

(68) 𝑙𝑖𝑚
𝑡→∞

𝜆 𝑡 𝑦 𝑡 − 𝑦∗ 𝑡 ≥ 0



Sufficient Conditions

• A few comments about (67) may be added here.

• First, the concavity of ℒ is in 𝑦, 𝑢 means concavity in the variables
𝑦 and 𝑢 jointly.

• Second, since 𝑯 and 𝓛 are composed of the 𝑭, 𝒇, 𝒈, and 𝑮 functions
as follows:

(69) 𝐻 = 𝐹 + λ𝑓 − 𝜇𝐺

(70) ℒ = 𝐻 + 𝜃 𝑐 − 𝑔

• it is clear that (67) will be satisfied if the following are simultaneously
true:



Sufficient Conditions

1) 𝐹 is concave in 𝑦, 𝑢

2) λ𝑓 is concave in 𝑦, 𝑢

3) 𝜇𝐺 is convex in 𝑦, 𝑢

4) and 𝜃𝑔 is convex in 𝑦, 𝑢 for all 𝑡 ∈ 0, 𝑇

• In the case of an inequality integral constraint, however, where 𝝁 is a
nonnegative constant, the convexity of 𝝁𝑮 is ensured by the
convexity of 𝑮 itself.

• Similarly, in the case of an inequality constraint, where 𝜽 ≥ 𝟎, the
convexity of 𝜽𝒈 is ensured by the convexity of 𝒈 itself.

• Finally, if the current-value Hamiltonian and Lagrangian are used, (67)
can be easily adapted by replacing ℒ by ℒ𝑐 and 𝐻0 by 𝐻𝑐

0.


