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Optimal Control with Constraints

* In the present chapter, we turn to constraints that apply throughout
the planning period [0, T].

* The treatment of constraints in optimal control theory relies heavily
on the Lagrange-multiplier technique.

e But since optimal control problems contain not only state variables,
but also control variables, it is necessary to distinguish between two
major categories of constraints.

* In the first category, control variables are present in the constraints,
either with or without the state variables alongside.

* In the second category, control variables are absent, so that the
constraints only affect the state variables.



Constraints Involving Control Variables

* Four basic types of constraints can be considered:
1. Equality constraints.

2. Inequality constraints.

3. Equality integral constraints.

4. Inequality integral constraints.

 We shall in general include the state variables alongside the control
variables in the constraints.



Equality Constraints

* Let there be two control variables in a problem, u; and u,, that are
required to satisfy the condition

(1) g(t'yJulJU'Z) = C

* We shall refer to the g function as the constraint function, and the
constant ¢ as the constraint constant.

* The control problem may then be stated as
Maximize V = fOT F(t,y,uq, uy)dt
(2) Subject to y = f(ty u,uy)

g(t,y,ul,uz) = C
and boundary conditions



Equality Constraints

* This is a simple version of the problem with m control variables and g
equality constraints, where it is required that ¢ < m.

* The maximum principle calls for the maximization of the Hamiltonian
(3) H = F(t) Y, Uy, uZ) + }\(t)f(ti Y, Uy, uZ)
« forallt € [0, T].

 But this time the maximization of H is subject to the constraint
g(tJy'ulJuZ) = C.
* Accordingly, we form the Lagrangian expression

(4) L=H+ H(t)[C o g(t'y'ul'u2)]
(4’) L = F(t, Y, ul'uZ) + }\(t)f(t' Y, ul'uZ) + H(t)[C R g(t, Y, ulJuZ)]



Equality Constraints

 Where the Lagrange multiplier 8 is made dynamic, as a function of t.

* This is necessary by the fact that the g constraint must be satisfied at
every t in the planning period.

* Assuming an interior solution for each u;, we require that:

(5) =28 19 g9 forallt € [0,T]; (j = 1,2)

auj au]' au]' auj
e Simultaneously, we must also set
oL
(6) 5 = C— g(t,y,u,uy) =0 forallt € [0, T]

* to ensure that the constraint will always be in force.



Equality Constraints

* Together, (5) and (6) constitute the first-order condition for the
constrained maximization of H.

* The rest of the maximum-principle conditions includes:
0L OH

(7) vy = T [equation of motion for y]
* And
\ = 9L _ _9H 509 - -
(8) A= 3y~ 3y + 6 3y [equation of motion for A]

 plus an appropriate transversality condition.

* Equation of motion for y is the same whether we differentiate the
Lagrangian or the original Hamiltonian function with respect to A.



Equality Constraints

* On the other hand, it would make a difference in the equation of
motion for 4, (8), whether we differentiate £ or H with respect to y.

* This is because, as the constraint in problem (2) specifically
prescribes, the y variable impinges upon the range of choice of the
control variables, and such effects must be taken into account in
determining the path for the costate variable A.

* While it is feasible to solve a problem with equality constraints in the
manner outlined above, it is usually simpler to use substitution to
reduce the number of variables we have to deal with.



Inequality Constraints

* We first remark that when the g constraints are in the inequality
form, there is no need to insist that the number of control variables
exceed the number of constraints.

* For simplicity, we shall illustrate this type of problem with two control
variables and two inequality constraints:

Maximize V = fOTF(t, Y, Uq, Uy)dt
(9) Subject to y = f(t,y,uq,uy)
gt(t,y,ug,up) < ¢

g°(t,y,uq,up) < ¢
and boundary conditions



Inequality Constraints

* The Hamiltonian defined in (3) is still valid for the present problem.

* But since the Hamiltonian is now to be maximized with respect to
uq and u, subject to the two inequality constraints, we need to
invoke the Kuhn-Tucker conditions.

* Besides, for these conditions to be necessary, a constraint
gualification must be satisfied.

* According to a theorem of Arrow, Hurwicz, and Uzawa, any of the
following conditions will satisfy the constraint qualification:

1) All the constraint functions g* are concave in the control variables
u; [here, concave in (u,, uy)].



Inequality Constraints

2) All the constraint functions g* are linear in the control variables U;
[here, concave in (u4, u,)] - a special case of (1).

3) All the constraint functions g' are convex in the control variables u;.
In addition, there exists a point in the control region uy € U [here,
Uy is a point (ugg, Uze)] such that, when evaluated at u,, all

constraints g' < c (That is, the constraint set has a nonempty interior.)
4) The gi functions satisfy the rank condition: Taking only those

constraints that turn out to be effective or binding (satisfied as strict
equalities), form the matrix of partial derivative [6g‘/6u]-]e(where

e indicates "effective constraints only"), and evaluate the partial
derivatives at the optimal values of the y and u variables.



Inequality Constraints

4) The rank condition is that the rank of this matrix be equal to the
number of effective constraints.

* We now augment the Hamiltonian into a Lagrangian function:

(10) L = F(t, YV, ul'uZ) + }\(t)f(t' Y, ul'uZ) + Hl(t) [Cl o gl(t! Y, ul!”Z)] +
0,(t)[cz — g (t, y,uq, up)]

* The essence of L may become more transparent if we suppress all the
arguments and simply write

(10') L =F +Af + 04[c; — g*] + 03[c; — g°]
* The first-order condition for maximizing L, assuming interior solutions

0L
(11) P 0



Inequality Constraints

e as well as
0L i
(12) £=Ci—g > 0; HiZO;
eforallt € |0,T]; (i=1,2 and j =1, 2).

* Condition (12) differs from (6) because the constraints in the present
problem are inequalities.

* The dL/00; = 0 condition merely restates the ith constraint.

* The complementary-slackness condition 8;(0£/d6;) = 0 ensures
that those terms in (10) Hl-[c,- — g‘] will vanish in the solution, so

that the value of L will be identical with that of H = F + Af after
maximization.

9, 2L

=0
L oo;



Inequality Constraints

* If the latter problem contains additional nonnegativity restrictions
u; =0
] —_—

* then, by the Kuhn-Tucker conditions, we should replace the
d0L/0du; = 0 conditions in (11) with
oL
(13) a_ujSO’ u; = 0; U — =
* It should be pointed out that the symbol L in (13) denotes the same

Lagrangian as defined in (10), without separate 8(t) type of multiplier
terms appended on account of the additional constraints u; (t) = 0.

 Other maximume-principle conditions include the equations of
motion for y and A. These are the same as in (7) and (8):



Inequality Constraints

(14) y = FTL and A= — g—ﬁ [equations of motion for y and A]
* Wherever appropriate, of course, transversality conditions must be

added, too.



Isoperimetric Problem

* When an equality integral constraint is present, the control problem
is known as an isoperimetric problem.

* Two features of such a problem are worth noting:

1. The costate variable associated with the integral constraint is, as
in the calculus of variations, constant over time.

2. Although the constraint is in the nature of a strict equality, the
integral aspect of it obviates the need to restrict the number of
constraints relative to the number of control variables.

* We shall illustrate the solution method with a problem that contains
one state variable, one control variable, and one integral constraint:



Isoperimetric Problem

Maximize V = fOTF(t, y, u)dt
(15) Subject to y = f(t,y,u)
fOT G(t,y,u)dt = k; (k given)
and y(0) = yo; y(T) = free; (Yo, T given).

* The approach to be used here is to introduce a new state variable
I'(t) into the problem such that the integral constraint can be
replaced by a condition in terms of I'(t). To this end, let us define

(16) T(t) = — [, G(t,y,wdt

* Where the upper limit of integration is t not the terminal time T.



Isoperimetric Problem

* The derivative of this variable [F(t) = — fot G(t,y, u)dt] is
(17) T'(t) = — G(t,y,u)dt [equation of motion for I'(t)]
 and the initial and terminal values of I'(t) in the planning period are
(18) T(0) = — [ G(t,y,u)dt = 0
* And
(19) ['(T) = — fOTG(t, y,u)dt = —k from (15)

* From (19), it is clear that we can replace the given integral constraint
by a terminal condition on the I'(t) variable.



Isoperimetric Problem

By incorporating I'(t) into the problem as a new state variable, we
can restate (15) as

Maximize V= fOTF(t, y, u)dt
(20) Subject to y = f(t,y,u)
['(t) =—G(tyuwdt
and v(0) =yo; y(T) = free;  (¥o,T given)
'0)=0; I(T)=-k; (k given)

* This new problem is an unconstrained problem with two state
variables, y and I'.



Isoperimetric Problem

* While the y variable has a vertical terminal line, the new I' variable
has a fixed terminal point.

* Inasmuch as this problem is now an unconstrained problem, we can
work with the Hamiltonian without first expanding it into a
Lagrangian function.

* Defining the Hamiltonian as
(21) H=F(t,y,u) + A(O)f (¢, y,u) — puG(t,y,u)
* we have the following conditions from the maximum principle:
Max H(t,y,u, A, 1) forallt € |0, T]
u



Isoperimetric Problem

(22) Subject to y = Z—Z [equation of motion for y]
1=— Z—I; [equation of motion for A]
[ = Z—Z [equation of motion for ']
U= — Z—? [equation of motion for u]

A(T) = 0 [transversality condition]

« What distinguishes (22) from the conditions for the usual
unconstrained problem is the presence of the pair of equations of
motion for I' and u.



Isoperimetric Problem

 Since the I' variable is an artifact whose mission is only to guide us to
add the uG(t, y, u) term to the Hamiltonian, we can safely omit its
equation of motion from (22) at no loss.

* On the other hand, the equation of motion for u does impart a
significant piece of information.

* Since the I' does not appear in the Hamiltonian, it follows that
0H

(23) 1= — o = 0 = u(t) = constant

* The costate variable associated with the integral constraint is
constant over time.



Inequality Integral Constraint

* Consider the case where the integral constraint enters the problem
as an inequality

Maximize V= fOT F(t,y,u)dt
(24) Subject to y = f(t,y,u)
fOT G(t,y,u)dt < k; (k given)
and v(0) =yo; y(T) = free;  (¥o,T given)

 Define a new state variable I'(t) t?e same as in (16):

') = —f G(t,y,u)dt
0



Inequality Integral Constraint

* The derivative of I'(t) = — f(f G(t,y,u)dt is simply
(25) T'(t) = — G(t,y,u)dt [equation of motion for I'(t)]

e and its initial and

(26) Ir0) = — |

terminal values are [ (24) fOTG(t, y,u)dt < k]
VOO G(t,y,u)dt = 0 and

r(T) = — |

Gt y,wdt = —k by (24)]

* Using (25) and (26), we can restate problem (24) as



Inequality Integral Constraint

Maximize V = fOTF(t,y,u)dt
(27) Subject to y = f(t,y,u)
['(t) =—G(tyuwdt
and y(0) = yo; y(T) = free; (Yo, T given)

'(0)=0; r(r) =-k; (k given)

* Like the problem in (20), this is an unconstrained problem with two
state variables.

e But, unlike (20), the new variable I'in (27) has a truncated vertical
terminal line.



Inequality Integral Constraint
* The Hamiltonian of problem (27) is simply
(28) H=F(t,y,u) +A(t)f(t,y,u) — uG(t,y,u) [same as (21)]
* If the constraint qualification is satisfied, then the maximum principle requires
ng H(t,y,u,A, u) forallt € |0, T]

(29) Subject to y = Z—Z ‘equation of motion for y.
1=— Z—I; ‘equation of motion for A
[ = g—Z [equation of motion for I']

: 0H . .
p=—— [equation of motion for u]



Inequality Integral Constraint

and to AT)=0 [transversality condition for y]
w(@T =0; [I(T)+k]=0; u(MIT)+k]=0
[transversality condition for I']

* Note, again, that because the Hamiltonian is independent of I'(T),

we have
. OH
(30) 1= ——5 = 0 = u(t) = constant

* Therefore, the multiplier associated with any integral constraint,
whether equality or inequality, is constant over time.

* Asin (22), we can omit from (29) the equations of motion for I' and
W, as long as we bear in mind that 1 is a nonnegative constant.



Inequality Integral Constraint

* In sum, the conditions in (29) can be restated without reference to I' as
follows:

Max H(t,y,u, A, u) forallt € [0, T]
u

(29°) Subject to y = Z—Z [equation of motion for y]
A=— 2_1;1 [equation of motion for A]
U= - ?3_1; [equation of motion for u]

u = constant = 0; k — fOTG(t, y,u)dt = 0
and U [k — fOTG(t, v, u)dt] = ( [by 26]



