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Optimal Control with Constraints

• In the present chapter, we turn to constraints that apply throughout
the planning period 𝟎, 𝑻 .

• The treatment of constraints in optimal control theory relies heavily
on the Lagrange-multiplier technique.

• But since optimal control problems contain not only state variables,
but also control variables, it is necessary to distinguish between two
major categories of constraints.

• In the first category, control variables are present in the constraints,
either with or without the state variables alongside.

• In the second category, control variables are absent, so that the
constraints only affect the state variables.



Constraints Involving Control Variables

• Four basic types of constraints can be considered:

1. Equality constraints.

2. Inequality constraints.

3. Equality integral constraints.

4. Inequality integral constraints.

• We shall in general include the state variables alongside the control
variables in the constraints.



Equality Constraints
• Let there be two control variables in a problem, 𝒖𝟏 and 𝒖𝟐, that are

required to satisfy the condition

(1) 𝑔 𝑡, 𝑦, 𝑢1, 𝑢2 = 𝑐

• We shall refer to the 𝒈 function as the constraint function, and the
constant 𝒄 as the constraint constant.

• The control problem may then be stated as

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, 𝑢1, 𝑢2 𝑑𝑡

(2) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢1, 𝑢2
𝑔 𝑡, 𝑦, 𝑢1, 𝑢2 = 𝑐

and boundary conditions



Equality Constraints

• This is a simple version of the problem with 𝒎 control variables and 𝒒
equality constraints, where it is required that 𝒒 < 𝒎.

• The maximum principle calls for the maximization of the Hamiltonian

(3) 𝐻 = 𝐹 𝑡, 𝑦, 𝑢1, 𝑢2 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢1, 𝑢2
• for all 𝑡 ∈ 0, 𝑇 .

• But this time the maximization of 𝐻 is subject to the constraint
𝑔 𝑡, 𝑦, 𝑢1, 𝑢2 = 𝑐.

• Accordingly, we form the Lagrangian expression

(4) ℒ = 𝐻 + 𝜃 𝑡 𝑐 − 𝑔 𝑡, 𝑦, 𝑢1, 𝑢2
(4’) ℒ = 𝐹 𝑡, 𝑦, 𝑢1, 𝑢2 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢1, 𝑢2 + 𝜃 𝑡 𝑐 − 𝑔 𝑡, 𝑦, 𝑢1, 𝑢2



Equality Constraints

• Where the Lagrange multiplier 𝜽 is made dynamic, as a function of 𝒕.

• This is necessary by the fact that the 𝒈 constraint must be satisfied at
every 𝒕 in the planning period.

• Assuming an interior solution for each 𝑢𝑗, we require that:

(5)
𝜕ℒ

𝜕𝑢𝑗
=

𝜕𝐹

𝜕𝑢𝑗
+ 𝜆

𝜕𝑓

𝜕𝑢𝑗
− 𝜃

𝜕𝑔

𝜕𝑢𝑗
= 0 for all 𝑡 ∈ 0, 𝑇 ; 𝑗 = 1,2

• Simultaneously, we must also set

(6)
𝜕ℒ

𝜕𝜃
= 𝑐 − 𝑔 𝑡, 𝑦, 𝑢1, 𝑢2 = 0 for all 𝑡 ∈ 0, 𝑇

• to ensure that the constraint will always be in force.



Equality Constraints

• Together, (5) and (6) constitute the first-order condition for the
constrained maximization of 𝐻.

• The rest of the maximum-principle conditions includes:

(7) ሶ𝑦 =
𝜕ℒ

𝜕λ
=

𝜕𝐻

𝜕λ
[equation of motion for 𝑦]

• And

(8) ሶλ = −
𝜕ℒ

𝜕𝑦
= −

𝜕𝐻

𝜕𝑦
+ 𝜃

𝜕𝑔

𝜕𝑦
[equation of motion for λ]

• plus an appropriate transversality condition.

• Equation of motion for 𝒚 is the same whether we differentiate the
Lagrangian or the original Hamiltonian function with respect to λ.



Equality Constraints

• On the other hand, it would make a difference in the equation of
motion for 𝝀, (8), whether we differentiate 𝓛 or𝑯 with respect to 𝒚.

• This is because, as the constraint in problem (2) specifically
prescribes, the 𝒚 variable impinges upon the range of choice of the
control variables, and such effects must be taken into account in
determining the path for the costate variable λ.

• While it is feasible to solve a problem with equality constraints in the
manner outlined above, it is usually simpler to use substitution to
reduce the number of variables we have to deal with.



Inequality Constraints

• We first remark that when the 𝒈 constraints are in the inequality
form, there is no need to insist that the number of control variables
exceed the number of constraints.

• For simplicity, we shall illustrate this type of problem with two control
variables and two inequality constraints:

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, 𝑢1, 𝑢2 𝑑𝑡

(9) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢1, 𝑢2
𝑔1 𝑡, 𝑦, 𝑢1, 𝑢2 ≤ 𝑐1
𝑔2 𝑡, 𝑦, 𝑢1, 𝑢2 ≤ 𝑐2

and boundary conditions



Inequality Constraints

• The Hamiltonian defined in (3) is still valid for the present problem.

• But since the Hamiltonian is now to be maximized with respect to
𝑢1 and 𝑢2 subject to the two inequality constraints, we need to
invoke the Kuhn-Tucker conditions.

• Besides, for these conditions to be necessary, a constraint
qualification must be satisfied.

• According to a theorem of Arrow, Hurwicz, and Uzawa, any of the
following conditions will satisfy the constraint qualification:

1) All the constraint functions 𝒈𝒊 are concave in the control variables
𝒖𝒋 [here, concave in 𝑢1, 𝑢2 ].



Inequality Constraints

2) All the constraint functions 𝒈𝒊 are linear in the control variables 𝒖𝒋
[here, concave in 𝑢1, 𝑢2 ] - a special case of (1).

3) All the constraint functions 𝒈𝒊 are convex in the control variables 𝒖𝒋.
In addition, there exists a point in the control region 𝒖𝟎 ∈ 𝑼 [here,
𝑢0 is a point 𝑢10, 𝑢20 ] such that, when evaluated at 𝑢0 , all
constraints 𝒈𝒊 < 𝒄 (That is, the constraint set has a nonempty interior.)

4) The 𝒈𝒊 functions satisfy the rank condition: Taking only those
constraints that turn out to be effective or binding (satisfied as strict
equalities), form the matrix of partial derivative ൗ𝝏𝒈𝒊 𝝏𝒖𝒋 𝒆

(where

𝑒 indicates "effective constraints only"), and evaluate the partial
derivatives at the optimal values of the 𝑦 and 𝑢 variables.



Inequality Constraints

4) The rank condition is that the rank of this matrix be equal to the
number of effective constraints.

• We now augment the Hamiltonian into a Lagrangian function:

(10) ℒ = 𝐹 𝑡, 𝑦, 𝑢1, 𝑢2 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢1, 𝑢2 + 𝜃1 𝑡 𝑐1 − 𝑔1 𝑡, 𝑦, 𝑢1, 𝑢2 +
𝜃2 𝑡 𝑐2 − 𝑔2 𝑡, 𝑦, 𝑢1, 𝑢2

• The essence of ℒ may become more transparent if we suppress all the
arguments and simply write

(10’) ℒ = 𝐹 + λ𝑓 + 𝜃1 𝑐1 − 𝑔1 + 𝜃2 𝑐2 − 𝑔2

• The first-order condition for maximizing ℒ, assuming interior solutions

(11)
𝜕ℒ

𝜕𝑢𝑗
= 0



Inequality Constraints

• as well as

(12)
𝜕ℒ

𝜕𝜃𝑖
= 𝑐𝑖 − 𝑔𝑖 ≥ 0; 𝜃𝑖 ≥ 0; 𝜃𝑖

𝜕ℒ

𝜕𝜃𝑖
= 0

• for all 𝑡 ∈ 0, 𝑇 ; 𝑖 = 1, 2 𝑎𝑛𝑑 𝑗 = 1, 2 .

• Condition (12) differs from (6) because the constraints in the present
problem are inequalities.

• The Τ𝝏𝓛 𝝏𝜽𝒊 ≥ 𝟎 condition merely restates the 𝒊𝒕𝒉 constraint.

• The complementary-slackness condition 𝜽𝒊 Τ𝝏𝓛 𝝏𝜽𝒊 = 𝟎 ensures
that those terms in (10) 𝜽𝒊 𝒄𝒊 − 𝒈𝒊 will vanish in the solution, so
that the value of 𝓛will be identical with that of 𝑯 = 𝑭 + 𝝀𝒇 after
maximization.



Inequality Constraints

• If the latter problem contains additional nonnegativity restrictions
𝑢𝑗 ≥ 0

• then, by the Kuhn-Tucker conditions, we should replace the
Τ𝝏𝓛 𝝏𝒖𝒋 = 𝟎 conditions in (11) with

(13)
𝜕ℒ

𝜕𝑢𝑗
≤ 0; 𝑢𝑗 ≥ 0; 𝑢𝑗

𝜕ℒ

𝜕𝑢𝑗
= 0

• It should be pointed out that the symbol ℒ in (13) denotes the same
Lagrangian as defined in (10), without separate 𝜃 𝑡 type of multiplier
terms appended on account of the additional constraints 𝑢𝑗 𝑡 ≥ 0.

• Other maximum-principle conditions include the equations of
motion for 𝒚 and 𝝀. These are the same as in (7) and (8):



Inequality Constraints

(14) ሶ𝑦 =
𝜕ℒ

𝜕λ
; and ሶλ = −

𝜕ℒ

𝜕𝑦
[equations of motion for 𝑦 and λ]

• Wherever appropriate, of course, transversality conditions must be
added, too.



Isoperimetric Problem

• When an equality integral constraint is present, the control problem
is known as an isoperimetric problem.

• Two features of such a problem are worth noting:

1. The costate variable associated with the integral constraint is, as
in the calculus of variations, constant over time.

2. Although the constraint is in the nature of a strict equality, the
integral aspect of it obviates the need to restrict the number of
constraints relative to the number of control variables.

• We shall illustrate the solution method with a problem that contains 
one state variable, one control variable, and one integral constraint:



Isoperimetric Problem

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, 𝑢 𝑑𝑡

(15) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢

0׬
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 = 𝑘; 𝑘 𝑔𝑖𝑣𝑒𝑛

and 𝑦 0 = 𝑦0; 𝑦 𝑇 = 𝑓𝑟𝑒𝑒; 𝑦0, 𝑇 𝑔𝑖𝑣𝑒𝑛 .

• The approach to be used here is to introduce a new state variable
𝜞 𝒕 into the problem such that the integral constraint can be
replaced by a condition in terms of Γ 𝑡 . To this end, let us define

(16) Γ 𝑡 = 0׬−
𝑡
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡

• Where the upper limit of integration is 𝒕 not the terminal time 𝑇.



Isoperimetric Problem

• The derivative of this variable Γ 𝑡 = 0׬−
𝑡
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 is

(17) ሶΓ 𝑡 = − 𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 [equation of motion for Γ 𝑡 ]

• and the initial and terminal values of Γ 𝑡 in the planning period are

(18) Γ 0 = 0׬−
0
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 = 0

• And

(19) Γ 𝑇 = 0׬−
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 = −𝑘 from (15)

• From (19), it is clear that we can replace the given integral constraint
by a terminal condition on the 𝜞 𝒕 variable.



Isoperimetric Problem

• By incorporating 𝜞 𝒕 into the problem as a new state variable, we
can restate (15) as

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, 𝑢 𝑑𝑡

(20) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢

ሶΓ 𝑡 = − 𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡

and 𝑦 0 = 𝑦0; 𝑦 𝑇 = 𝑓𝑟𝑒𝑒; 𝑦0, 𝑇 𝑔𝑖𝑣𝑒𝑛

Γ 0 = 0; Γ 𝑇 = −𝑘; 𝑘 𝑔𝑖𝑣𝑒𝑛

• This new problem is an unconstrained problem with two state
variables, 𝒚 and 𝜞.



Isoperimetric Problem

• While the 𝑦 variable has a vertical terminal line, the new 𝜞 variable
has a fixed terminal point.

• Inasmuch as this problem is now an unconstrained problem, we can
work with the Hamiltonian without first expanding it into a
Lagrangian function.

• Defining the Hamiltonian as

(21) 𝐻 = 𝐹 𝑡, 𝑦, 𝑢 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢 − 𝜇𝐺 𝑡, 𝑦, 𝑢

• we have the following conditions from the maximum principle:

Max
𝑢

𝐻 𝑡, 𝑦, 𝑢, 𝜆, 𝜇 for all 𝑡 ∈ 0, 𝑇



Isoperimetric Problem

(22) Subject to ሶ𝑦 =
𝜕𝐻

𝜕𝜆
[equation of motion for 𝑦]

ሶ𝜆 = −
𝜕𝐻

𝜕𝑦
[equation of motion for 𝜆]

ሶΓ =
𝜕𝐻

𝜕𝜇
[equation of motion for Γ]

ሶ𝜇 = −
𝜕𝐻

𝜕Γ
[equation of motion for 𝜇]

𝜆 𝑇 = 0 [transversality condition]

• What distinguishes (22) from the conditions for the usual
unconstrained problem is the presence of the pair of equations of
motion for 𝜞 and 𝝁.



Isoperimetric Problem

• Since the 𝜞 variable is an artifact whose mission is only to guide us to
add the 𝝁𝑮 𝒕, 𝒚, 𝒖 term to the Hamiltonian, we can safely omit its
equation of motion from (22) at no loss.

• On the other hand, the equation of motion for 𝝁 does impart a
significant piece of information.

• Since the 𝜞 does not appear in the Hamiltonian, it follows that

(23) ሶ𝜇 = −
𝜕𝐻

𝜕Γ
= 0 ⇒ 𝑢 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• The costate variable associated with the integral constraint is
constant over time.



Inequality Integral Constraint

• Consider the case where the integral constraint enters the problem
as an inequality

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, 𝑢 𝑑𝑡

(24) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢

0׬
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 ≤ 𝑘; 𝑘 𝑔𝑖𝑣𝑒𝑛

and 𝑦 0 = 𝑦0; 𝑦 𝑇 = 𝑓𝑟𝑒𝑒; 𝑦0, 𝑇 𝑔𝑖𝑣𝑒𝑛

• Define a new state variable 𝜞 𝒕 the same as in (16):

Γ 𝑡 = −න
0

𝑡

𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡



Inequality Integral Constraint

• The derivative of 𝜞 𝒕 = 𝟎׬−
𝒕
𝑮 𝒕, 𝒚, 𝒖 𝒅𝒕 is simply

(25) ሶΓ 𝑡 = − 𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 [equation of motion for Γ 𝑡 ]

• and its initial and terminal values are [ (24) 0׬
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 ≤ 𝑘]

(26) 𝜞 𝟎 = 0׬−
0
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 = 𝟎 and

𝜞 𝑻 = 0׬−
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 ≥ −𝒌 [by (24)]

• Using (25) and (26), we can restate problem (24) as



Inequality Integral Constraint

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, 𝑢 𝑑𝑡

(27) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢

ሶΓ 𝑡 = − 𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡

and 𝑦 0 = 𝑦0; 𝑦 𝑇 = 𝑓𝑟𝑒𝑒; 𝑦0, 𝑇 𝑔𝑖𝑣𝑒𝑛

Γ 0 = 0; 𝜞 𝑻 ≥ −𝒌; 𝑘 𝑔𝑖𝑣𝑒𝑛

• Like the problem in (20), this is an unconstrained problem with two
state variables.

• But, unlike (20), the new variable Γ in (27) has a truncated vertical
terminal line.



Inequality Integral Constraint

• The Hamiltonian of problem (27) is simply

(28) 𝐻 = 𝐹 𝑡, 𝑦, 𝑢 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢 − 𝜇𝐺 𝑡, 𝑦, 𝑢 [same as (21)]

• If the constraint qualification is satisfied, then the maximum principle requires

Max
𝑢

𝐻 𝑡, 𝑦, 𝑢, 𝜆, 𝜇 for all 𝑡 ∈ 0, 𝑇

(29) Subject to ሶ𝑦 =
𝜕𝐻

𝜕𝜆
[equation of motion for 𝑦]

ሶ𝜆 = −
𝜕𝐻

𝜕𝑦
[equation of motion for 𝜆]

ሶΓ =
𝜕𝐻

𝜕𝜇
[equation of motion for Γ]

ሶ𝜇 = −
𝜕𝐻

𝜕Γ
[equation of motion for 𝜇]



Inequality Integral Constraint

and to 𝜆 𝑇 = 0 [transversality condition for 𝑦]

𝜇 𝑇 ≥ 0; Γ 𝑇 + 𝑘 ≥ 0; 𝜇 𝑇 Γ 𝑇 + 𝑘 = 0

[transversality condition for 𝜞]

• Note, again, that because the Hamiltonian is independent of 𝜞 𝑻 ,
we have

(30) ሶ𝜇 = −
𝜕𝐻

𝜕Γ
= 0 ⇒ 𝜇 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• Therefore, the multiplier associated with any integral constraint,
whether equality or inequality, is constant over time.

• As in (22), we can omit from (29) the equations of motion for 𝜞 and
𝝁, as long as we bear in mind that 𝜇 is a nonnegative constant.



Inequality Integral Constraint

• In sum, the conditions in (29) can be restated without reference to 𝜞 as
follows:

Max
𝑢

𝐻 𝑡, 𝑦, 𝑢, 𝜆, 𝜇 for all 𝑡 ∈ 0, 𝑇

(29’) Subject to ሶ𝑦 =
𝜕𝐻

𝜕𝜆
[equation of motion for 𝑦]

ሶ𝜆 = −
𝜕𝐻

𝜕𝑦
[equation of motion for 𝜆]

ሶ𝜇 = −
𝜕𝐻

𝜕Γ
[equation of motion for 𝜇]

𝜇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≥ 0; 𝑘 − 0׬
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 ≥ 0

and 𝜇 𝑘 − 0׬
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑑𝑡 = 0 [by 26]


