Optimal Control with Constraints

Prof. Luciano Nakabashi

Optimal Control with Constraints

- In the present chapter, we turn **to constraints** that apply **throughout** the planning period [**0**, **T**].
- The treatment of constraints in optimal control theory relies heavily on the Lagrange-multiplier technique.
- But since optimal control problems contain not only state variables, but also control variables, it is necessary to distinguish between two major categories of constraints.
- In the first category, control variables are present in the constraints, either with or without the state variables alongside.
- In the second category, control variables are absent, so that the constraints only affect the state variables.

Constraints Involving Control Variables

- Four basic types of constraints can be considered:
- **1. Equality constraints.**
- 2. Inequality constraints.
- 3. Equality integral constraints.
- 4. Inequality integral constraints.
- We shall in general include the state variables alongside the control variables in the constraints.

• Let there be **two control variables** in a problem, u_1 and u_2 , that are required to satisfy the condition

(1) $g(t, y, u_1, u_2) = c$

- We shall refer to the *g* function as **the constraint function**, and the constant *c* as **the constraint constant**.
- The control problem may then be stated as

Maximize	$V = \int_0^T F(t, y, u_1, u_2) dt$
Subject to	$\dot{y} = f(t, y, u_1, u_2)$
	$g(t, y, u_1, u_2) = c$
and	boundary conditions
	Subject to

- This is a simple version of the problem with m control variables and q equality constraints, where it is required that q < m.
- The maximum principle calls for the maximization of the Hamiltonian (3) $H = F(t, y, u_1, u_2) + \lambda(t)f(t, y, u_1, u_2)$
- for all $t \in [0, T]$.
- But this time **the maximization of** *H* is subject to the constraint $g(t, y, u_1, u_2) = c$.
- Accordingly, we form the Lagrangian expression

(4)
$$\mathcal{L} = H + \theta(t)[c - g(t, y, u_1, u_2)]$$

(4') $\mathcal{L} = F(t, y, u_1, u_2) + \lambda(t)f(t, y, u_1, u_2) + \theta(t)[c - g(t, y, u_1, u_2)]$

- Where the Lagrange multiplier θ is made dynamic, as a function of t.
- This is necessary by the fact that the *g* constraint **must be satisfied at every** *t* in the planning period.
- Assuming an interior solution for each u_i , we require that:

(5)
$$\frac{\partial \mathcal{L}}{\partial u_j} = \frac{\partial F}{\partial u_j} + \lambda \frac{\partial f}{\partial u_j} - \theta \frac{\partial g}{\partial u_j} = 0$$
 for all $t \in [0, T]$; $(j = 1, 2)$

• Simultaneously, we must also set

(6)
$$\frac{\partial \mathcal{L}}{\partial \theta} = c - g(t, y, u_1, u_2) = 0$$
 for all $t \in [0, T]$

• to ensure that the **constraint will always be in force**.

- Together, (5) and (6) constitute the first-order condition for the constrained maximization of *H*.
- The rest of the maximum-principle conditions includes:
 - (7) $\dot{y} = \frac{\partial \mathcal{L}}{\partial \lambda} = \frac{\partial H}{\partial \lambda}$ [equation of motion for y]
- And

(8)
$$\dot{\lambda} = -\frac{\partial \mathcal{L}}{\partial y} = -\frac{\partial H}{\partial y} + \theta \frac{\partial g}{\partial y}$$
 [equation of motion for λ]

- plus an appropriate transversality condition.
- Equation of motion for y is the same whether we differentiate the Lagrangian or the original Hamiltonian function with respect to λ .

- On the other hand, it would make a difference in the equation of motion for λ, (8), whether we differentiate L or H with respect to y.
- This is because, as the constraint in problem (2) specifically prescribes, the *y* variable impinges upon the range of choice of the control variables, and such effects must be taken into account in determining the path for the costate variable λ .
- While it is feasible to solve a problem with equality constraints in the manner outlined above, it is usually simpler to use substitution to reduce the number of variables we have to deal with.

- We first remark that when the *g* constraints are in the inequality form, there is no need to insist that the number of control variables exceed the number of constraints.
- For simplicity, we shall illustrate this type of problem with **two control** variables and two inequality constraints:

	Maximize	$V = \int_0^T F(t, y, u_1, u_2) dt$
(9)	Subject to	$\dot{y} = f(t, y, u_1, u_2)$
		$g^1(t, y, u_1, u_2) \leq c_1$
		$g^2(t, y, u_1, u_2) \leq c_2$
	and	boundary conditions

- The Hamiltonian defined in (3) is still valid for the present problem.
- But since the Hamiltonian is now to be maximized with respect to u_1 and u_2 subject to the two inequality constraints, we need to invoke the Kuhn-Tucker conditions.
- Besides, for these conditions to be necessary, a constraint qualification must be satisfied.
- According to a theorem of Arrow, Hurwicz, and Uzawa, any of the following conditions will satisfy the constraint qualification:
- 1) All the constraint functions g^i are concave in the control variables u_j [here, concave in (u_1, u_2)].

- 2) All the constraint functions g^i are linear in the control variables u_j [here, concave in (u_1, u_2)] a special case of (1).
- 3) All the constraint functions g^i are convex in the control variables u_j . In addition, there exists a point in the control region $u_0 \in U$ [here, u_0 is a point (u_{10}, u_{20})] such that, when evaluated at u_0 , all constraints $g^i < c$ (That is, the constraint set has a nonempty interior.)
- 4) The g^i functions satisfy the rank condition: Taking only those constraints that turn out to be effective or binding (satisfied as strict equalities), form the matrix of partial derivative $\left[\partial g^i/\partial u_j\right]_e$ (where e indicates "effective constraints only"), and evaluate the partial derivatives at the optimal values of the y and u variables.

- 4) The rank condition is that the **rank of this matrix be equal to the number of effective constraints**.
- We now augment the Hamiltonian into a Lagrangian function:

(10) $\mathcal{L} = F(t, y, u_1, u_2) + \lambda(t)f(t, y, u_1, u_2) + \theta_1(t)[c_1 - g^1(t, y, u_1, u_2)] + \theta_2(t)[c_2 - g^2(t, y, u_1, u_2)]$

- The essence of ${\cal L}$ may become more transparent if we suppress all the arguments and simply write

(10') $\mathcal{L} = F + \lambda f + \theta_1 [c_1 - g^1] + \theta_2 [c_2 - g^2]$

• The first-order condition for maximizing \mathcal{L} , assuming interior solutions

(11)
$$\frac{\partial \mathcal{L}}{\partial u_j} = 0$$

as well as

(12)
$$\frac{\partial \mathcal{L}}{\partial \theta_i} = c_i - g^i \ge 0;$$
 $\theta_i \ge 0;$ $\theta_i \frac{\partial \mathcal{L}}{\partial \theta_i} = 0$

- for all $t \in [0, T]$; (i = 1, 2 and j = 1, 2).
- Condition (12) differs from (6) because the constraints in the present problem are inequalities.
- The $\partial \mathcal{L} / \partial \theta_i \ge 0$ condition merely restates the *ith* constraint.
- The complementary-slackness condition $\theta_i(\partial \mathcal{L}/\partial \theta_i) = 0$ ensures that those terms in (10) $\theta_i[c_i g^i]$ will vanish in the solution, so that the value of \mathcal{L} will be identical with that of $H = F + \lambda f$ after maximization.

- If the latter problem contains additional nonnegativity restrictions $u_i \ge 0$
- then, by the Kuhn-Tucker conditions, we should replace the $\partial \mathcal{L}/\partial u_j = 0$ conditions in (11) with

(13)
$$\frac{\partial \mathcal{L}}{\partial u_j} \leq 0;$$
 $u_j \geq 0;$ $u_j \frac{\partial \mathcal{L}}{\partial u_j} = 0$

- It should be pointed out that the symbol \mathcal{L} in (13) denotes the same Lagrangian as defined in (10), without separate $\theta(t)$ type of multiplier terms appended on account of the additional constraints $u_j(t) \ge 0$.
- Other maximum-principle conditions include the equations of motion for y and λ . These are the same as in (7) and (8):

(14)
$$\dot{y} = \frac{\partial \mathcal{L}}{\partial \lambda}$$
; and $\dot{\lambda} = -\frac{\partial \mathcal{L}}{\partial y}$ [equations of motion for y and λ]

• Wherever appropriate, of course, transversality conditions must be added, too.

- When an equality integral constraint is present, the control problem is known as an isoperimetric problem.
- Two features of such a problem are worth noting:
- **1.** The costate variable associated with the integral constraint is, as in the calculus of variations, constant over time.
- 2. Although the constraint is in the nature of a strict equality, the integral aspect of it obviates the need to restrict the number of constraints relative to the number of control variables.
- We shall illustrate the solution method with a problem that contains one state variable, one control variable, and one integral constraint:

Maximize	$V = \int_0^T F(t, y, u) dt$	
(15) Subject to	$\dot{y} = f(t, y, u)$	
	$\int_0^T G(t, y, u) dt = k;$	(k given)
and	$y(0) = y_0; y(T) = free;$	$(y_0, T \ given).$

• The approach to be used here is to introduce a new state variable $\Gamma(t)$ into the problem such that the integral constraint can be replaced by a condition in terms of $\Gamma(t)$. To this end, let us define

(16)
$$\Gamma(t) = -\int_0^t G(t, y, u) dt$$

• Where **the upper limit of integration is** *t* not the terminal time *T*.

• **The derivative** of this variable $\left[\Gamma(t) = -\int_0^t G(t, y, u) dt\right]$ is

(17) $\dot{\Gamma}(t) = -G(t, y, u)dt$ [equation of motion for $\Gamma(t)$]

• and the initial and terminal values of $\Gamma(t)$ in the planning period are (18) $\Gamma(0) = -\int_0^0 G(t, y, u) dt = 0$

• And

(19)
$$\Gamma(T) = -\int_0^T G(t, y, u) dt = -k$$
 from (15)

• From (19), it is clear that we can replace the given integral constraint by a terminal condition on the $\Gamma(t)$ variable.

• By incorporating $\Gamma(t)$ into the problem as a new state variable, we can restate (15) as

Maximize	$V = \int_0^T F(t, y, u) dt$	
(20) Subject to	$\dot{y} = f(t, y, u)$	
	$\dot{\Gamma}(t) = -G(t, y, u)dt$	
and	$y(0) = y_0; y(T) = free;$	$(y_0, T \ given)$
	$\Gamma(0) = 0; \Gamma(T) = -k;$	(k given)

• This new problem is an unconstrained problem with two state variables, y and Γ .

- While the y variable has a vertical terminal line, the new Γ variable has a fixed terminal point.
- Inasmuch as this problem is now an unconstrained problem, we can work with the Hamiltonian without first expanding it into a Lagrangian function.
- Defining the Hamiltonian as

(21) $H = F(t, y, u) + \lambda(t)f(t, y, u) - \mu G(t, y, u)$

• we have the **following conditions from the maximum principle**:

$$\max_{u} H(t, y, u, \lambda, \mu) \qquad \text{for all } t \in [0, T]$$

(22) Subject to

- $\dot{y} = \frac{\partial H}{\partial \lambda} \qquad [equation of motion for y]$ $\dot{\lambda} = -\frac{\partial H}{\partial y} \qquad [equation of motion for \lambda]$ $\dot{\Gamma} = \frac{\partial H}{\partial \mu} \qquad [equation of motion for \Gamma]$ $\dot{\mu} = -\frac{\partial H}{\partial \Gamma} \qquad [equation of motion for \mu]$ $\lambda(T) = 0 \qquad [transversality condition]$
- What distinguishes (22) from the conditions for the usual unconstrained problem is the presence of the pair of equations of motion for Γ and μ .

- Since the Γ variable is an artifact whose mission is only to guide us to add the $\mu G(t, y, u)$ term to the Hamiltonian, we can safely omit its equation of motion from (22) at no loss.
- On the other hand, the equation of motion for μ does impart a significant piece of information.
- Since the Γ does not appear in the Hamiltonian, it follows that

(23)
$$\dot{\mu} = -\frac{\partial H}{\partial \Gamma} = 0 \qquad \Rightarrow \qquad u(t) = constant$$

• The costate variable associated with the integral constraint is constant over time.

 Consider the case where the integral constraint enters the problem as an inequality

Maximize
$$V = \int_0^T F(t, y, u) dt$$

(24) Subject to $\dot{y} = f(t, y, u)$
 $\int_0^T G(t, y, u) dt \le k;$ (k given)
and $y(0) = y_0; y(T) = free;$ (y₀, T given)

• Define a new state variable $\Gamma(t)$ the same as in (16):

$$\Gamma(t) = -\int_0^t G(t, y, u)dt$$

• The derivative of $\Gamma(t) = -\int_0^t G(t, y, u) dt$ is simply

(25) $\dot{\Gamma}(t) = -G(t, y, u)dt$ [equation of motion for $\Gamma(t)$]

• and its initial and terminal values are [(24) $\int_0^T G(t, y, u) dt \le k$]

(26)
$$\Gamma(\mathbf{0}) = -\int_0^0 G(t, y, u) dt = \mathbf{0}$$
 and
 $\Gamma(\mathbf{T}) = -\int_0^T G(t, y, u) dt \ge -\mathbf{k}$ [by (24)]

• Using (25) and (26), we can restate problem (24) as

Maximize	$V = \int_0^T F(t, y, u) dt$	
(27) Subject to	$\dot{y} = f(t, y, u)$	
	$\dot{\Gamma}(t) = -G(t, y, u)dt$	
and	$y(0) = y_0; y(T) = free;$	$(y_0, T \ given)$
	$\Gamma(0) = 0; \boldsymbol{\Gamma}(\boldsymbol{T}) \geq -\boldsymbol{k};$	(k given)

- Like the problem in (20), this is an unconstrained problem with two state variables.
- But, unlike (20), the new variable Γ in (27) has a truncated vertical terminal line.

• The Hamiltonian of problem (27) is simply

(28) $H = F(t, y, u) + \lambda(t)f(t, y, u) - \mu G(t, y, u)$ [same as (21)]

• If the constraint qualification is satisfied, then the maximum principle requires

$$\begin{split} & \underset{u}{\operatorname{Max}} H(t, y, u, \lambda, \mu) & \text{ for all } t \in [0, T] \\ & \dot{y} = \frac{\partial H}{\partial \lambda} & [\text{equation of motion for } y] \\ & \dot{\lambda} = -\frac{\partial H}{\partial y} & [\text{equation of motion for } \lambda] \end{split}$$

(29) Subject to

$$\dot{\lambda} = -\frac{\partial H}{\partial y}$$
 [equation $\dot{\Gamma} = \frac{\partial H}{\partial \mu}$ [equation $\dot{\mu} = -\frac{\partial H}{\partial \Gamma}$ [equation $\dot{\mu}$

[equation of motion for Γ]

[equation of motion for
$$\mu$$
]

and to $\lambda(T) = 0$ [transversality condition for y] $\mu(T) \ge 0;$ $[\Gamma(T) + k] \ge 0;$ $\mu(T)[\Gamma(T) + k] = 0$

[transversality condition for Γ]

• Note, again, that because the Hamiltonian is independent of $\Gamma(T)$, we have

(30)
$$\dot{\mu} = -\frac{\partial H}{\partial \Gamma} = 0 \qquad \Rightarrow \qquad \mu(t) = constant$$

- Therefore, the multiplier associated with any integral constraint, whether equality or inequality, is constant over time.
- As in (22), we can omit from (29) the equations of motion for Γ and μ, as long as we bear in mind that μ is a nonnegative constant.

 In sum, the conditions in (29) can be restated without reference to Γ as follows:

	$\max_{u} H(t, y, u, \lambda, \mu)$) for all $t \in [0, T]$
(29') Subject to	$\dot{y} = \frac{\partial H}{\partial \lambda}$	[equation of motion for y]
	$\dot{\lambda} = -\frac{\partial H}{\partial y}$	[equation of motion for λ]
	$\dot{\mu} = -\frac{\partial H}{\partial \Gamma}$	[equation of motion for μ]
	$\mu = constant \ge 0$	$D; k - \int_0^T G(t, y, u) dt \ge 0$
and	$\mu \left[k - \int_0^T G(t, y, u) \right]$	dt = 0 [by 26]