Optimal Control with Constrâints

Prof. Luciano Nakabashi

Optimal Control with Constraints

- In the present chapter, we turn to constraints that apply throughout the planning period $[\mathbf{0}, \boldsymbol{T}]$.
- The treatment of constraints in optimal control theory relies heavily on the Lagrange-multiplier technique.
- But since optimal control problems contain not only state variables, but also control variables, it is necessary to distinguish between two major categories of constraints.
- In the first category, control variables are present in the constraints, either with or without the state variables alongside.
- In the second category, control variables are absent, so that the constraints only affect the state variables.

Constraints Involving Control Variables

- Four basic types of constraints can be considered:

1. Equality constraints.
2. Inequality constraints.
3. Equality integral constraints.
4. Inequality integral constraints.

- We shall in general include the state variables alongside the control variables in the constraints.

Equality Constraints

- Let there be two control variables in a problem, $\boldsymbol{u}_{\mathbf{1}}$ and $\boldsymbol{u}_{\mathbf{2}}$, that are required to satisfy the condition
(1) $g\left(t, y, u_{1}, u_{2}\right)=c$
- We shall refer to the \boldsymbol{g} function as the constraint function, and the constant \boldsymbol{c} as the constraint constant.
- The control problem may then be stated as

Maximize

$$
\mathrm{V}=\int_{0}^{T} F\left(t, y, u_{1}, u_{2}\right) d t
$$

(2) Subject to

$$
\begin{aligned}
& \dot{y}=f\left(t, y, u_{1}, u_{2}\right) \\
& g\left(t, y, u_{1}, u_{2}\right)=c
\end{aligned}
$$

and boundary conditions

Equality Constraints

- This is a simple version of the problem with \boldsymbol{m} control variables and \boldsymbol{q} equality constraints, where it is required that $\boldsymbol{q}<\boldsymbol{m}$.
- The maximum principle calls for the maximization of the Hamiltonian
(3) $H=F\left(t, y, u_{1}, u_{2}\right)+\lambda(t) f\left(t, y, u_{1}, u_{2}\right)$
- for all $t \in[0, T]$.
- But this time the maximization of H is subject to the constraint $g\left(t, y, u_{1}, u_{2}\right)=c$.
- Accordingly, we form the Lagrangian expression
(4) $\mathcal{L}=H+\theta(t)\left[c-g\left(t, y, u_{1}, u_{2}\right)\right]$
(4') $\mathcal{L}=F\left(t, y, u_{1}, u_{2}\right)+\lambda(t) f\left(t, y, u_{1}, u_{2}\right)+\theta(t)\left[c-g\left(t, y, u_{1}, u_{2}\right)\right]$

Equality Constraints

- Where the Lagrange multiplier $\boldsymbol{\theta}$ is made dynamic, as a function of \boldsymbol{t}.
- This is necessary by the fact that the \boldsymbol{g} constraint must be satisfied at every t in the planning period.
- Assuming an interior solution for each u_{j}, we require that:

$$
\text { (5) } \frac{\partial \mathcal{L}}{\partial u_{j}}=\frac{\partial F}{\partial u_{j}}+\lambda \frac{\partial f}{\partial u_{j}}-\theta \frac{\partial g}{\partial u_{j}}=0 \quad \text { for all } t \in[0, T] ;(j=1,2)
$$

- Simultaneously, we must also set
(6) $\frac{\partial \mathcal{L}}{\partial \theta}=c-g\left(t, y, u_{1}, u_{2}\right)=0$
for all $t \in[0, T]$
- to ensure that the constraint will always be in force.

Equality Constraints

- Together, (5) and (6) constitute the first-order condition for the constrained maximization of H.
- The rest of the maximum-principle conditions includes:
(7) $\dot{y}=\frac{\partial \mathcal{L}}{\partial \lambda}=\frac{\partial H}{\partial \lambda}$
[equation of motion for y]
- And
(8) $\dot{\lambda}=-\frac{\partial \mathcal{L}}{\partial y}=-\frac{\partial H}{\partial y}+\theta \frac{\partial g}{\partial y}$
[equation of motion for λ]
- plus an appropriate transversality condition.
- Equation of motion for \boldsymbol{y} is the same whether we differentiate the Lagrangian or the original Hamiltonian function with respect to λ.

Equality Constraints

- On the other hand, it would make a difference in the equation of motion for λ, (8), whether we differentiate \mathcal{L} or \boldsymbol{H} with respect to \boldsymbol{y}.
- This is because, as the constraint in problem (2) specifically prescribes, the y variable impinges upon the range of choice of the control variables, and such effects must be taken into account in determining the path for the costate variable λ.
- While it is feasible to solve a problem with equality constraints in the manner outlined above, it is usually simpler to use substitution to reduce the number of variables we have to deal with.

Inequality Constraints

- We first remark that when the g constraints are in the inequality form, there is no need to insist that the number of control variables exceed the number of constraints.
- For simplicity, we shall illustrate this type of problem with two control variables and two inequality constraints:

Maximize

$$
\begin{aligned}
& \mathrm{V}=\int_{0}^{T} F\left(t, y, u_{1}, u_{2}\right) d t \\
& \dot{y}=f\left(t, y, u_{1}, u_{2}\right) \\
& g^{1}\left(t, y, u_{1}, u_{2}\right) \leq c_{1} \\
& g^{2}\left(t, y, u_{1}, u_{2}\right) \leq c_{2} \\
& \text { boundary conditions }
\end{aligned}
$$

(9) Subject to
and

Inequality Constraints

- The Hamiltonian defined in (3) is still valid for the present problem.
- But since the Hamiltonian is now to be maximized with respect to u_{1} and u_{2} subject to the two inequality constraints, we need to invoke the Kuhn-Tucker conditions.
- Besides, for these conditions to be necessary, a constraint qualification must be satisfied.
- According to a theorem of Arrow, Hurwicz, and Uzawa, any of the following conditions will satisfy the constraint qualification:

1) All the constraint functions $\boldsymbol{g}^{\boldsymbol{i}}$ are concave in the control variables $\boldsymbol{u}_{\boldsymbol{j}}$ [here, concave in $\left(u_{1}, u_{2}\right)$].

Inequality Constraints

2) All the constraint functions $\boldsymbol{g}^{\boldsymbol{i}}$ are linear in the control variables $\boldsymbol{u}_{\boldsymbol{j}}$ [here, concave in $\left(u_{1}, u_{2}\right)$] - a special case of (1).
3) All the constraint functions $\boldsymbol{g}^{\boldsymbol{i}}$ are convex in the control variables $\boldsymbol{u}_{\boldsymbol{j}}$. In addition, there exists a point in the control region $\boldsymbol{u}_{\mathbf{0}} \in \boldsymbol{U}$ [here, u_{0} is a point $\left(u_{10}, u_{20}\right)$] such that, when evaluated at u_{0}, all constraints $\boldsymbol{g}^{\boldsymbol{i}}<\boldsymbol{c}$ (That is, the constraint set has a nonempty interior.)
4) The g^{i} functions satisfy the rank condition: Taking only those constraints that turn out to be effective or binding (satisfied as strict equalities), form the matrix of partial derivative $\left[\boldsymbol{\partial} \boldsymbol{g}^{i} / \boldsymbol{\partial} \boldsymbol{u}_{j}\right]_{e}$ (where e indicates "effective constraints only"), and evaluate the partial derivatives at the optimal values of the y and u variables.

Inequality Constraints

4) The rank condition is that the rank of this matrix be equal to the number of effective constraints.

- We now augment the Hamiltonian into a Lagrangian function:
(10) $\mathcal{L}=F\left(t, y, u_{1}, u_{2}\right)+\lambda(t) f\left(t, y, u_{1}, u_{2}\right)+\theta_{1}(t)\left[c_{1}-g^{1}\left(t, y, u_{1}, u_{2}\right)\right]+$ $\theta_{2}(t)\left[c_{2}-g^{2}\left(t, y, u_{1}, u_{2}\right)\right]$
- The essence of \mathcal{L} may become more transparent if we suppress all the arguments and simply write

$$
\text { (10') } \mathcal{L}=F+\lambda f+\theta_{1}\left[c_{1}-g^{1}\right]+\theta_{2}\left[c_{2}-g^{2}\right]
$$

- The first-order condition for maximizing \mathcal{L}, assuming interior solutions
(11) $\frac{\partial \mathcal{L}}{\partial u_{j}}=0$

Inequality Constraints

- as well as
(12) $\frac{\partial \mathcal{L}}{\partial \theta_{i}}=c_{i}-g^{i} \geq 0 ; \quad \theta_{i} \geq 0 ; \quad \theta_{i} \frac{\partial \mathcal{L}}{\partial \theta_{i}}=0$
- for all $t \in[0, T]$; $(i=1,2$ and $j=1,2)$.
- Condition (12) differs from (6) because the constraints in the present problem are inequalities.
- The $\boldsymbol{\partial L} / \partial \theta_{i} \geq \mathbf{0}$ condition merely restates the ith constraint.
- The complementary-slackness condition $\boldsymbol{\theta}_{\boldsymbol{i}}\left(\boldsymbol{\partial} \mathcal{L} / \boldsymbol{\partial} \boldsymbol{\theta}_{\boldsymbol{i}}\right)=\mathbf{0}$ ensures that those terms in (10) $\boldsymbol{\theta}_{\boldsymbol{i}}\left[c_{\boldsymbol{i}}-\boldsymbol{g}^{i}\right]$ will vanish in the solution, so that the value of \mathcal{L} will be identical with that of $\boldsymbol{H}=\boldsymbol{F}+\lambda \boldsymbol{f}$ after maximization.

Inequality Constraints

- If the latter problem contains additional nonnegativity restrictions

$$
u_{j} \geq 0
$$

- then, by the Kuhn-Tucker conditions, we should replace the $\partial \mathcal{L} / \partial u_{j}=0$ conditions in (11) with

$$
\text { (13) } \frac{\partial \mathcal{L}}{\partial u_{j}} \leq 0 ; \quad u_{j} \geq 0 ; \quad u_{j} \frac{\partial \mathcal{L}}{\partial u_{j}}=0
$$

- It should be pointed out that the symbol \mathcal{L} in (13) denotes the same Lagrangian as defined in (10), without separate $\theta(t)$ type of multiplier terms appended on account of the additional constraints $u_{j}(t) \geq 0$.
- Other maximum-principle conditions include the equations of motion for y and λ. These are the same as in (7) and (8):

Inequality Constraints

(14) $\dot{y}=\frac{\partial \mathcal{L}}{\partial \lambda^{\prime}} ; \quad$ and $\dot{\lambda}=-\frac{\partial \mathcal{L}}{\partial y} \quad$ [equations of motion for y and λ]

- Wherever appropriate, of course, transversality conditions must be added, too.

Isoperimetric Problem

- When an equality integral constraint is present, the control problem is known as an isoperimetric problem.
- Two features of such a problem are worth noting:

1. The costate variable associated with the integral constraint is, as in the calculus of variations, constant over time.
2. Although the constraint is in the nature of a strict equality, the integral aspect of it obviates the need to restrict the number of constraints relative to the number of control variables.

- We shall illustrate the solution method with a problem that contains one state variable, one control variable, and one integral constraint:

Isoperimetric Problem

Maximize

$$
\mathrm{V}=\int_{0}^{T} F(t, y, u) d t
$$

(15) Subject to

$$
\dot{y}=f(t, y, u)
$$

$$
\begin{array}{ll}
\int_{0}^{T} G(t, y, u) d t=k ; & (k \text { given }) \\
y(0)=y_{0} ; y(T)=\text { free } ; & \left(y_{0}, T \text { given }\right)
\end{array}
$$

and

- The approach to be used here is to introduce a new state variable $\boldsymbol{\Gamma}(\boldsymbol{t})$ into the problem such that the integral constraint can be replaced by a condition in terms of $\Gamma(t)$. To this end, let us define
(16) $\Gamma(t)=-\int_{0}^{t} G(t, y, u) d t$
- Where the upper limit of integration is \boldsymbol{t} not the terminal time T.

Isoperimetric Problem

- The derivative of this variable $\left[\Gamma(t)=-\int_{0}^{t} G(t, y, u) d t\right]$ is (17) $\dot{\Gamma}(t)=-G(t, y, u) d t \quad$ [equation of motion for $\Gamma(t)$]
- and the initial and terminal values of $\Gamma(t)$ in the planning period are (18) $\Gamma(0)=-\int_{0}^{0} G(t, y, u) d t=0$
- And
(19) $\Gamma(T)=-\int_{0}^{T} G(t, y, u) d t=-k \quad$ from (15)
- From (19), it is clear that we can replace the given integral constraint by a terminal condition on the $\Gamma(t)$ variable.

Isoperimetric Problem

- By incorporating $\Gamma(\boldsymbol{t})$ into the problem as a new state variable, we can restate (15) as

Maximize

$$
\mathrm{V}=\int_{0}^{T} F(t, y, u) d t
$$

(20) Subject to

$$
\dot{y}=f(t, y, u)
$$

$$
\dot{\Gamma}(t)=-G(t, y, u) d t
$$

and

$$
\begin{aligned}
y(0)=y_{0} ; \quad y(T)=\text { free } ; & \left(y_{0}, T \text { given }\right) \\
\Gamma(0)=0 ; \quad \Gamma(T)=-k ; & (k \text { given })
\end{aligned}
$$

- This new problem is an unconstrained problem with two state variables, y and Γ.

Isoperimetric Problem

- While the y variable has a vertical terminal line, the new Γ variable has a fixed terminal point.
- Inasmuch as this problem is now an unconstrained problem, we can work with the Hamiltonian without first expanding it into a Lagrangian function.
- Defining the Hamiltonian as
(21) $H=F(t, y, u)+\lambda(t) f(t, y, u)-\mu G(t, y, u)$
- we have the following conditions from the maximum principle:

$$
\operatorname{Max}_{u} H(t, y, u, \lambda, \mu)
$$

$$
\text { for all } t \in[0, T]
$$

Isoperimetric Problem

(22) Subject to

$$
\begin{array}{ll}
\dot{y}=\frac{\partial H}{\partial \lambda} & \text { [equation of motion for } y] \\
\dot{\lambda}=-\frac{\partial H}{\partial y} & \text { [equation of motion for } \lambda] \\
\dot{\Gamma}=\frac{\partial H}{\partial \mu} & \text { [equation of motion for } \Gamma] \\
\dot{\mu}=-\frac{\partial H}{\partial \Gamma} & \text { [equation of motion for } \mu] \\
\lambda(T)=0 & \text { [transversality condition] }
\end{array}
$$

- What distinguishes (22) from the conditions for the usual unconstrained problem is the presence of the pair of equations of motion for Γ and μ.

Isoperimetric Problem

- Since the Γ variable is an artifact whose mission is only to guide us to add the $\boldsymbol{\mu} G(\boldsymbol{t}, \boldsymbol{y}, \boldsymbol{u})$ term to the Hamiltonian, we can safely omit its equation of motion from (22) at no loss.
- On the other hand, the equation of motion for $\boldsymbol{\mu}$ does impart a significant piece of information.
- Since the $\boldsymbol{\Gamma}$ does not appear in the Hamiltonian, it follows that

$$
\text { (23) } \dot{\mu}=-\frac{\partial H}{\partial \Gamma}=0 \quad \Rightarrow \quad u(t)=\text { constant }
$$

- The costate variable associated with the integral constraint is constant over time.

Inequality Integral Constraint

- Consider the case where the integral constraint enters the problem as an inequality

Maximize

$$
\mathrm{V}=\int_{0}^{T} F(t, y, u) d t
$$

(24) Subject to

$$
\begin{array}{ll}
\dot{y}=f(t, y, u) & \\
\int_{0}^{T} G(t, y, u) d t \leq k ; & (k \text { given }) \\
y(0)=y_{0} ; y(T)=\text { free } ; & \left(y_{0}, T \text { given }\right)
\end{array}
$$

and

- Define a new state variable $\boldsymbol{\Gamma}(\boldsymbol{t})$ the same as in (16):

$$
\Gamma(t)=-\int_{0}^{t} G(t, y, u) d t
$$

Inequality Integral Constraint

- The derivative of $\Gamma(\boldsymbol{t})=-\int_{\mathbf{0}}^{\boldsymbol{t}} \boldsymbol{G}(\boldsymbol{t}, \boldsymbol{y}, \boldsymbol{u}) d \boldsymbol{t}$ is simply
(25) $\dot{\Gamma}(t)=-G(t, y, u) d t \quad$ [equation of motion for $\Gamma(t)]$
- and its initial and terminal values are [(24) $\left.\int_{0}^{T} G(t, y, u) d t \leq k\right]$
(26) $\boldsymbol{\Gamma}(\mathbf{0})=-\int_{0}^{0} G(t, y, u) d t=\mathbf{0}$ and

$$
\begin{equation*}
\boldsymbol{\Gamma}(\boldsymbol{T})=-\int_{0}^{T} G(t, y, u) d t \geq-\boldsymbol{k} \tag{24}
\end{equation*}
$$

- Using (25) and (26), we can restate problem (24) as

Inequality Integral Constraint

$$
\left.\left.\begin{array}{cl}
\text { (27) Subject to } & \mathrm{V}=\int_{0}^{T} F(t, y, u) d t \\
& \dot{y}=f(t, y, u) \\
\text { and } & \dot{\Gamma}(t)=-G(t, y, u) d t \\
& y(0)=y_{0} ; \quad y(T)=\text { free; } \\
& \Gamma(0)=0 ; \quad \boldsymbol{\Gamma}(\boldsymbol{T}) \geq-\boldsymbol{k} ; \quad
\end{array} \quad \text { (k given }\right) \text { given }\right) ~ \$
$$

- Like the problem in (20), this is an unconstrained problem with two state variables.
- But, unlike (20), the new variable Γ in (27) has a truncated vertical terminal line.

Inequality Integral Constraint

- The Hamiltonian of problem (27) is simply
(28) $H=F(t, y, u)+\lambda(t) f(t, y, u)-\mu G(t, y, u) \quad$ [same as (21)]
- If the constraint qualification is satisfied, then the maximum principle requires

$$
\operatorname{Max}_{u} H(t, y, u, \lambda, \mu) \quad \text { for all } t \in[0, T]
$$

(29) Subject to

$$
\begin{array}{ll}
\dot{y}=\frac{\partial H}{\partial \lambda} & \text { [equation of motion for } y \text {] } \\
\dot{\lambda}=-\frac{\partial H}{\partial y} & \text { [equation of motion for } \lambda] \\
\dot{\Gamma}=\frac{\partial H}{\partial \mu} & \text { [equation of motion for } \Gamma] \\
\dot{\mu}=-\frac{\partial H}{\partial \Gamma} & \text { [equation of motion for } \mu]
\end{array}
$$

Inequality Integral Constraint

$$
\begin{array}{llc}
\text { and to } & \lambda(T)=0 & \text { [transversality condition for } y] \\
& \mu(T) \geq 0 ; & {[\Gamma(T)+k] \geq 0 ;}
\end{array} \quad \mu(T)[\Gamma(T)+k]=0
$$

[transversality condition for Γ]

- Note, again, that because the Hamiltonian is independent of $\Gamma(\boldsymbol{T})$, we have

$$
\text { (30) } \dot{\mu}=-\frac{\partial H}{\partial \Gamma}=0 \quad \Rightarrow \quad \mu(t)=\text { constant }
$$

- Therefore, the multiplier associated with any integral constraint, whether equality or inequality, is constant over time.
- As in (22), we can omit from (29) the equations of motion for Γ and $\boldsymbol{\mu}$, as long as we bear in mind that μ is a nonnegative constant.

Inequality Integral Constraint

- In sum, the conditions in (29) can be restated without reference to Γ as follows:
(29') Subject to
and

$$
\begin{array}{ll}
\operatorname{Max}_{u} H(t, y, u, \lambda, \mu) & \text { for all } t \in[0, T] \\
\dot{y}=\frac{\partial H}{\partial \lambda} & \text { [equation of motion for } y \text {] } \\
\dot{\lambda}=-\frac{\partial H}{\partial y} & \text { [equation of motion for } \lambda] \\
\dot{\mu}=-\frac{\partial H}{\partial \Gamma} & \text { [equation of motion for } \mu \text {] } \\
\mu=\text { constant } \geq 0 ; k-\int_{0}^{T} G(t, y, u) d t \geq 0 \\
\mu\left[k-\int_{0}^{T} G(t, y, u) d t\right]=0 \quad[\text { by 26] }
\end{array}
$$

