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Autonomous Problems

* As a special case of problem
Maximize V= fOT G(t,y,u)e Ptdt
Subject to y = f(t,y,u)
and boundary conditions

* Both the G and f functions may contain no t argument. Therefore,
the problem above may take the form

Maximize V= fOT G(y,u)e Ptdt
(24) Subject to y = f(y,u)
and boundary conditions



Autonomous Problems

* Since the integrand G (y, u)e Pt still explicitly contains t, the problem
is, strictly speaking, nonautonomous.

* However, by using the current-value Hamiltonian, we can in effect
take the discount factor e Pt out of consideration.

* All the revised maximume-principle conditions of the general current-
value Hamiltonian still hold.

e But the current-value Hamiltonian of the autonomous problem (24)
has an additional property not available in problem (13).

* Since H. now specializes to the form
(25) H. =G(y,u) + m(t)f(y,u)



Autonomous Problems

 which is free of the t argument, its value evaluated along the
optimal paths of all variables must be constant over time. That is,

dH}

(26) —

* This result is, of course, nothing but a replay of the previous
autonomous problem result.

=0 or H: = constant [autonomous problem]



Sufficient Conditions

* A basic sufficiency theorem due to 0. L. Mangasarian states that for
the optimal control problem

Maximize V= fOTF(t,y, u)dt
(27) Subject to y = f(t,y,u)
and y(0) =y, (Yo, T given)

* The necessary conditions of the maximum principle are also sufficient
for the global maximization of I/ if

1. the F and f functions are differentiable and concave in the
variables (y, u) jointly, and

2. in the optimal solution it is true that



Sufficient Conditions

(28) A(t) =0 forallt € |0,T]if fisnolinearinyorinu

* If fis linear in y and in u, then A(t) needs no sign restriction.
* With the Hamiltonian

(29) H = F(t,y,u) + A(t)f(t,y,u)

* the optimal control path u*(t) - along with the associated y*(t) and
A*(t) paths - must satisfy the maximum principle, so that
aH % * * * X
(30) Tl = E,(t,y ,u*) + A f,(t,y",u") =0

* This implies that




Sufficient Conditions

(31) E,(t,y",u") =-X"f,(¢,y",u")

 Moreover, from the costate equation of motion, A=— 0H/0y, we
should have

At =—E (ty u) - Ay, ul)
e which implies that

(32) E,(t,y*u") =-\"—NFf, (¢ y"u)

* Finally, assuming for that the problem has a vertical terminal line,
the initial condition and the transversality condition should give us

(33) vy = yo (given) and A(T) =0



Concavity
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Sufficient Conditions

* Now let both the F and f functions be concave in (y,u). Then, for
two distinct points (¢, y*,u*) and (t, y,u) in the domain, we have:

(34) F(t,y,u) —F(t,y"u’) < FEty,u )y —y)+E{y,u)(u—u)
(34) ft,y,w)—f(t,y u") <,y u)y—y") + fult,y', u)(u—u’)
* Upon integrating both sides of (34) over [0, T], that inequality becomes
(35)
T T T
] F(t,y,u)dt — j F(t,y*,u"dt < j E @ty u)y—y)+E @y, u)u—u)dt
0 0 0

* By (31) E,(t,y",u") = —-A"f,(t,y",u") and (32) E,(t,y",u*) = —A" — X*f, (£, y", u"):
(36)

V-V < [[[-A 0 —y) - VA6 )@ -y = Nt vyt w) u — ud)]de



Sufficient Conditions

e letw = —-2A"and v =y — y*. Then dw = —A*dt and dv = (y — y*)dLt.
So,

fOT —A*(y — y*)dt (= fOT vdw)

= [ =yI5 - f X G —yDdt (= wol] - [, wdv)
= XD (yr — ¥3) + M0 (o — ¥9) + f A" (7 — y)dt

= fOT A (y—y*)dt  since yg = yo (given) and A*(T) = 0

T 54 * T 4 * ok
(37) J, Xy —yDdt = [, X[f(ty,w) — f(&,y",u)]dt
* by the equation of motion y = f(¢t,y,u)



Sufficient Conditions

» Using (37) [, —A*(y — y*)dt = [ X[f(t,y,w) — f(t,y*, u)] dt into (36) yield:
(36) V-V"< fOT[—X* =y =Ny u)ly —y) = My u) (u —u)|de
(38)

V—V*< fo M yw) -y un) - @y, u) @ —y) + Lty u)w —u)|}dt < 0

* The last inequality follows from the assumption of A*(t) = 0 in (28), and the
fact that the bracketed expression in the integrand is < 0 by (34).

(34) ft,y,w) —f(t,y"u’) < £,y u)ly—y)+ fu(6, ¥y u)(u—u)
* Consequently, the final result is
(39) V<V~



Sufficient Conditions

 Which establishes V*to be a (global) maximum, as claimed in the
theorem.

* The above theorem is based on the F and f functions being concave.

* If those functions are strictly concave, the weak inequalities in (34)
and (34') will become strict inequalities, as will the inequalities in (36),
(38), and (39).

* The maximum principle will then be sufficient for a unique global
maximum of V.

e Although the proof of the theorem has proceeded on the assumption of
a vertical terminal line, the theorem is also valid for other problems
with a fixed T (fixed terminal point or truncated vertical terminal line).



The Arrow Sufficiency Theorem

* Another sufficiency theorem, due to Kenneth J. Arrow, uses a
weaker condition than Mangasarian's theorem, and can be
considered as a generalization of the latter.

* Here, we shall describe its essence without reproducing the proof.

At any point of time, given the values of the state and costate
variables y and A, the Hamiltonian function is maximized by a
particular u , u”, which depends on t, y, and A.

(40) u* =u*(t,y,A)

 When (40) is substituted into the Hamiltonian, we obtain what is
referred to as the maximized Hamiltonian function



The Arrow Sufficiency Theorem

(41) H°(t,y,A) = F(t,y,u") + Af(t,y,u*)

* Note that the concept of H? is different from that of the optimal
Hamiltonian H*. Since H* denotes the Hamiltonian evaluated along
all the optimal paths, that is, evaluated at y*(t), u*(t), and A*(t) for
every point of time, the y, u, and A arguments can all be substituted
out, leaving H* as a function of t alone: H* = H*(t).

* In contrast, HY is evaluated along u*(t) only; thus, while the u
argument is substituted out, the other arguments remain, so that
H°(t,y, A) is still a function with three arguments.



The Arrow Sufficiency Theorem

* The Arrow theorem states that, in the optimal control problem (27),
the conditions of the maximum principle are sufficient for the global
maximization of V, if the maximized Hamiltonian function H® defined
in (41) is concave in the variable y for all t in the time interval [0, T,
for given A.

* If both the F and f functions are concave in (y,u) and A > 0, as
stipulated by Mangasarian, then H = F + Af is also concave in
(y,u), and from this it follows that H° is concave in y, as stipulated
by Arrow.

* But H? can be concave in y even if F and f are not concave in
(y,u), which makes the Arrow condition a weaker requirement.



Example

Maximize V = fOT —(1 4+ u®)/24¢
Subject to y=u
and y(0) = A4; vy = free; (AT given)

* For the Mangasarian theorem, we note that neither the F function
nor the f function depends on y, so the concavity condition relates
to u alone.

* From the F = —(1 + u2)1/2 funCtion, we Obtain
1

F,=—-(1+ u?) 122y = —u(1 + u?)~1/?

E,=—-(1+u?>)"12+ %u(l +u?)=3/22y



Example

Fo=—1+u®) 2+ 021 +u®) ™1 (1 4+ u?)"1/2
E,=0+u>)"2[u2(1+u?>)1-1]=
u?—(1+u?)]

_ 2\—1/2 _ _ 2\—3/2
E.,=0+u°) e | (14 u®) <0
* Thus F is concave in u. As to the f function, f = u, since it is linear

in u, it is automatically concave in u.

* Besides, the fact that f is linear makes condition (28) A(t) =
0 irrelevant. Consequently, the conditions of Mangasarian are
satisfied, and the optimal solution found earlier does maximize V
(and minimize the distance) globally.



Example

* In the present example, the Hamiltonian is
H=—-1+u®Y24+ Ju

9H _ 1 2\-1/2 _

= 2(1+u) 2u+1=20

> u(l+ud) ™2 =2 = u2=21+ud) = u? =17+ 2122
A -1/2

> w(1-2) =2 = u=gomm =>u=21(1-12)

e is substituted into H to eliminate u, the resulting H? expression
contains A alone, with no y. Thus H? is linear and hence concave in
y for given A, and it satisfies the Arrow sufficient condition.



