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Autonomous Problems

• As a special case of problem

Maximize V = 0
𝑇
𝐺 𝑡, 𝑦, 𝑢 𝑒−𝜌𝑡𝑑𝑡

Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢

and boundary conditions

• Both the 𝐺 and 𝑓 functions may contain no 𝑡 argument. Therefore,
the problem above may take the form

Maximize V = 0
𝑇
𝐺 𝑦, 𝑢 𝑒−𝜌𝑡𝑑𝑡

(24) Subject to ሶ𝑦 = 𝑓 𝑦, 𝑢

and boundary conditions



Autonomous Problems

• Since the integrand 𝐺 𝑦, 𝑢 𝑒−𝜌𝑡 still explicitly contains 𝑡, the problem
is, strictly speaking, nonautonomous.

• However, by using the current-value Hamiltonian, we can in effect
take the discount factor 𝒆−𝝆𝒕 out of consideration.

• All the revised maximum-principle conditions of the general current-
value Hamiltonian still hold.

• But the current-value Hamiltonian of the autonomous problem (24)
has an additional property not available in problem (13).

• Since 𝐻𝑐 now specializes to the form

(25) 𝐻𝑐 = 𝐺 𝑦, 𝑢 + 𝑚 𝑡 𝑓 𝑦, 𝑢



Autonomous Problems

• which is free of the 𝑡 argument, its value evaluated along the
optimal paths of all variables must be constant over time. That is,

(26)
𝑑𝐻𝑐

∗

𝑑𝑡
= 0 or 𝐻𝑐

∗ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [autonomous problem]

• This result is, of course, nothing but a replay of the previous
autonomous problem result.



Sufficient Conditions

• A basic sufficiency theorem due to 0. L. Mangasarian states that for
the optimal control problem

Maximize 𝑉 = 0
𝑇
𝐹 𝑡, 𝑦, 𝑢 𝑑𝑡

(27) Subject to ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢

and 𝑦 0 = 𝑦0 𝑦0, 𝑇 𝑔𝑖𝑣𝑒𝑛

• The necessary conditions of the maximum principle are also sufficient
for the global maximization of 𝑉 if

1. the 𝑭 and 𝒇 functions are differentiable and concave in the
variables 𝒚, 𝒖 jointly, and

2. in the optimal solution it is true that



Sufficient Conditions

(28) λ 𝑡 ≥ 0 for all 𝑡 ∈ 0, 𝑇 if 𝑓 is no linear in 𝑦 or in 𝑢

• If 𝒇 is linear in 𝒚 and in 𝒖, then 𝝀 𝒕 needs no sign restriction.

• With the Hamiltonian

(29) 𝐻 = 𝐹 𝑡, 𝑦, 𝑢 + λ 𝑡 𝑓 𝑡, 𝑦, 𝑢

• the optimal control path 𝒖∗ 𝒕 - along with the associated 𝒚∗ 𝒕 and
𝝀∗ 𝒕 paths - must satisfy the maximum principle, so that

(30) ቚ
𝜕𝐻

𝜕𝑢 𝑢∗
= 𝐹𝑢 𝑡, 𝑦∗, 𝑢∗ + λ∗𝑓𝑢 𝑡, 𝑦∗, 𝑢∗ = 0

• This implies that



Sufficient Conditions

(31) 𝐹𝑢 𝑡, 𝑦∗, 𝑢∗ = −λ∗𝑓𝑢 𝑡, 𝑦∗, 𝑢∗

• Moreover, from the costate equation of motion, ሶ𝝀 = − Τ𝝏𝑯 𝝏𝒚, we
should have

ሶλ∗ = −𝐹𝑦 𝑡, 𝑦∗, 𝑢∗ − λ∗𝑓𝑦 𝑡, 𝑦∗, 𝑢∗

• which implies that

(32) 𝐹𝑦 𝑡, 𝑦∗, 𝑢∗ = − ሶλ∗ − λ∗𝑓𝑦 𝑡, 𝑦∗, 𝑢∗

• Finally, assuming for that the problem has a vertical terminal line,
the initial condition and the transversality condition should give us

(33) 𝑦0
∗ = 𝑦0 𝑔𝑖𝑣𝑒𝑛 and λ∗ 𝑇 = 0



Concavity



Concavity

➢ 𝐹 𝑦∗ − 𝐹 𝑦 ≥ 𝐹𝑦 𝑦∗ 𝑦∗ − 𝑦

➢ 𝐹 𝑦 − 𝐹 𝑦∗ ≤ 𝐹𝑦 𝑦∗ 𝑦 − 𝑦∗



Sufficient Conditions

• Now let both the 𝑭 and 𝒇 functions be concave in 𝒚, 𝒖 . Then, for
two distinct points 𝑡, 𝑦∗, 𝑢∗ and 𝑡, 𝑦, 𝑢 in the domain, we have:

(34) 𝐹 𝑡, 𝑦, 𝑢 − 𝐹 𝑡, 𝑦∗, 𝑢∗ ≤ 𝐹𝑦 𝑡, 𝑦∗, 𝑢∗ 𝑦 − 𝑦∗ + 𝐹𝑢 𝑡, 𝑦∗, 𝑢∗ 𝑢 − 𝑢∗

(34’) 𝑓 𝑡, 𝑦, 𝑢 − 𝑓 𝑡, 𝑦∗, 𝑢∗ ≤ 𝑓𝑦 𝑡, 𝑦∗, 𝑢∗ 𝑦 − 𝑦∗ + 𝑓𝑢 𝑡, 𝑦∗, 𝑢∗ 𝑢 − 𝑢∗

• Upon integrating both sides of (34) over 0, 𝑇 , that inequality becomes

(35)

න
0

𝑇

𝐹 𝑡, 𝑦, 𝑢 𝑑𝑡 − න
0

𝑇

𝐹 𝑡, 𝑦∗, 𝑢∗ 𝑑𝑡 ≤ න
0

𝑇

𝐹𝑦 𝑡, 𝑦∗, 𝑢∗ 𝑦 − 𝑦∗ + 𝐹𝑢 𝑡, 𝑦∗, 𝑢∗ 𝑢 − 𝑢∗ 𝑑𝑡

• By (31) 𝐹𝑢 𝑡, 𝑦∗, 𝑢∗ = −λ∗𝑓𝑢 𝑡, 𝑦∗, 𝑢∗ and (32) 𝐹𝑦 𝑡, 𝑦∗, 𝑢∗ = − ሶλ∗ − λ∗𝑓𝑦 𝑡, 𝑦∗, 𝑢∗ :

(36)

𝑉 − 𝑉∗ ≤ 0
𝑇
− ሶλ∗ 𝑦 − 𝑦∗ − λ∗𝑓𝑦 𝑡, 𝑦∗, 𝑢∗ 𝑦 − 𝑦∗ − λ∗𝑓𝑢 𝑡, 𝑦∗, 𝑢∗ 𝑢 − 𝑢∗ 𝑑𝑡



Sufficient Conditions

• Let 𝒘 = −𝝀∗ and 𝒗 = 𝒚 − 𝒚∗. Then 𝒅𝒘 = − ሶ𝝀∗𝒅𝒕 and 𝒅𝒗 = ሶ𝒚 − ሶ𝒚∗ 𝒅𝒕.
So,

0
𝑇
− ሶλ∗ 𝑦 − 𝑦∗ 𝑑𝑡 = 0

𝑇
𝑣𝑑𝑤

= −λ∗ 𝑦 − 𝑦∗ 0
𝑇 − 0

𝑇
−λ∗ ሶ𝑦 − ሶ𝑦∗ 𝑑𝑡 = 𝑤𝑣 0

𝑇 − 0
𝑇
𝑤𝑑𝑣

= −λ∗ 𝑇 𝑦𝑇 − 𝑦𝑇
∗ + λ∗ 0 𝑦0 − 𝑦0

∗ + 0
𝑇
λ∗ ሶ𝑦 − ሶ𝑦∗ 𝑑𝑡

= 0
𝑇
λ∗ ሶ𝑦 − ሶ𝑦∗ 𝑑𝑡 since 𝒚𝟎

∗ = 𝒚𝟎 𝑔𝑖𝑣𝑒𝑛 and 𝝀∗ 𝑻 = 𝟎

(37) 0
𝑇
− ሶλ∗ 𝑦 − 𝑦∗ 𝑑𝑡 = 0

𝑇
λ∗ 𝑓 𝑡, 𝑦, 𝑢 − 𝑓 𝑡, 𝑦∗, 𝑢∗ 𝑑𝑡

• by the equation of motion ሶ𝑦 = 𝑓 𝑡, 𝑦, 𝑢



Sufficient Conditions

• Using (37) 0
𝑇
− ሶλ∗ 𝑦 − 𝑦∗ 𝑑𝑡 = 0

𝑇
λ∗ 𝑓 𝑡, 𝑦, 𝑢 − 𝑓 𝑡, 𝑦∗, 𝑢∗ 𝑑𝑡 into (36) yield:

(36) 𝑉 − 𝑉∗ ≤ 0
𝑇
− ሶλ∗ 𝑦 − 𝑦∗ − λ∗𝑓𝑦 𝑡, 𝑦∗, 𝑢∗ 𝑦 − 𝑦∗ − λ∗𝑓𝑢 𝑡, 𝑦∗, 𝑢∗ 𝑢 − 𝑢∗ 𝑑𝑡

(38)

𝑉 − 𝑉∗ ≤ න
0

𝑇

λ∗ 𝑓 𝑡, 𝑦, 𝑢 − 𝑓 𝑡, 𝑦∗, 𝑢∗ − 𝑓𝑦 𝑡, 𝑦∗, 𝑢∗ 𝑦 − 𝑦∗ + 𝑓𝑢 𝑡, 𝑦∗, 𝑢∗ 𝑢 − 𝑢∗ 𝑑𝑡 ≤ 0

• The last inequality follows from the assumption of λ∗ 𝑡 ≥ 0 in (28), and the
fact that the bracketed expression in the integrand is ≤ 0 by (34’).

(34’) 𝑓 𝑡, 𝑦, 𝑢 − 𝑓 𝑡, 𝑦∗, 𝑢∗ ≤ 𝑓𝑦 𝑡, 𝑦∗, 𝑢∗ 𝑦 − 𝑦∗ + 𝑓𝑢 𝑡, 𝑦∗, 𝑢∗ 𝑢 − 𝑢∗

• Consequently, the final result is

(39) 𝑉 ≤ 𝑉∗



Sufficient Conditions

• Which establishes 𝑽∗ to be a (global) maximum, as claimed in the
theorem.

• The above theorem is based on the 𝐹 and 𝑓 functions being concave.

• If those functions are strictly concave, the weak inequalities in (34)
and (34') will become strict inequalities, as will the inequalities in (36),
(38), and (39).

• The maximum principle will then be sufficient for a unique global
maximum of 𝑉.

• Although the proof of the theorem has proceeded on the assumption of
a vertical terminal line, the theorem is also valid for other problems
with a fixed 𝑻 (fixed terminal point or truncated vertical terminal line).



The Arrow Sufficiency Theorem

• Another sufficiency theorem, due to Kenneth J. Arrow, uses a
weaker condition than Mangasarian's theorem, and can be
considered as a generalization of the latter.

• Here, we shall describe its essence without reproducing the proof.

• At any point of time, given the values of the state and costate
variables 𝒚 and 𝝀, the Hamiltonian function is maximized by a
particular 𝑢 , 𝒖∗, which depends on 𝑡, 𝑦, and λ.

(40) 𝑢∗ = 𝑢∗ 𝑡, 𝑦, λ

• When (40) is substituted into the Hamiltonian, we obtain what is
referred to as the maximized Hamiltonian function



The Arrow Sufficiency Theorem

(41) 𝐻0 𝑡, 𝑦, λ = 𝐹 𝑡, 𝑦, 𝑢∗ + λ𝑓 𝑡, 𝑦, 𝑢∗

• Note that the concept of 𝑯𝟎 is different from that of the optimal
Hamiltonian 𝑯∗. Since 𝑯∗ denotes the Hamiltonian evaluated along
all the optimal paths, that is, evaluated at 𝒚∗ 𝒕 , 𝒖∗ 𝒕 , and 𝝀∗ 𝒕 for
every point of time, the 𝑦, 𝑢, and λ arguments can all be substituted
out, leaving 𝐻∗ as a function of t alone: 𝑯∗ = 𝑯∗ 𝒕 .

• In contrast, 𝑯𝟎 is evaluated along 𝒖∗ 𝒕 only; thus, while the 𝒖
argument is substituted out, the other arguments remain, so that
𝑯𝟎 𝒕, 𝒚, 𝝀 is still a function with three arguments.



The Arrow Sufficiency Theorem

• The Arrow theorem states that, in the optimal control problem (27),
the conditions of the maximum principle are sufficient for the global
maximization of 𝑽, if the maximized Hamiltonian function 𝑯𝟎 defined
in (41) is concave in the variable 𝒚 for all 𝒕 in the time interval 0, 𝑇 ,
for given 𝝀.

• If both the 𝑭 and 𝒇 functions are concave in 𝒚, 𝒖 and 𝝀 ≥ 𝟎, as
stipulated by Mangasarian, then 𝑯 ≡ 𝑭 + 𝝀𝒇 is also concave in
𝒚, 𝒖 , and from this it follows that 𝑯𝟎 is concave in 𝒚, as stipulated

by Arrow.

• But 𝑯𝟎 can be concave in 𝒚 even if 𝑭 and 𝒇 are not concave in
𝒚, 𝒖 , which makes the Arrow condition a weaker requirement.



Example

Maximize V = 0
𝑇
− 1 + 𝑢2 Τ1 2𝑑𝑡

Subject to ሶ𝑦 = 𝑢

and 𝑦 0 = 𝐴; 𝑦𝑇 = 𝑓𝑟𝑒𝑒; 𝐴, 𝑇 𝑔𝑖𝑣𝑒𝑛

• For the Mangasarian theorem, we note that neither the 𝐹 function
nor the 𝑓 function depends on 𝑦, so the concavity condition relates
to 𝒖 alone.

• From the 𝐹 = − 1 + 𝑢2 Τ1 2 function, we obtain

𝐹𝑢 = −
1

2
1 + 𝑢2 − Τ1 22𝑢 = −𝑢 1 + 𝑢2 − Τ1 2

𝐹𝑢𝑢 =− 1 + 𝑢2 − Τ1 2 +
1

2
𝑢 1 + 𝑢2 − Τ3 22𝑢



Example

𝐹𝑢𝑢 =− 1 + 𝑢2 − Τ1 2 + 𝑢2 1 + 𝑢2 −1 1 + 𝑢2 − Τ1 2

𝐹𝑢𝑢 = 1 + 𝑢2 − Τ1 2 𝑢2 1 + 𝑢2 −1 − 1 =

𝐹𝑢𝑢 = 1 + 𝑢2 − Τ1 2 𝑢2− 1+𝑢2

1+𝑢2
= − 1 + 𝑢2 − Τ3 2 < 0

• Thus 𝑭 is concave in 𝒖. As to the 𝑓 function, 𝒇 = 𝒖, since it is linear
in 𝒖, it is automatically concave in 𝒖.

• Besides, the fact that 𝑓 is linear makes condition (28) λ 𝑡 ≥
0 irrelevant. Consequently, the conditions of Mangasarian are
satisfied, and the optimal solution found earlier does maximize 𝑽
(and minimize the distance) globally.



Example

• In the present example, the Hamiltonian is

𝐻 = − 1 + 𝑢2 Τ1 2 + 𝜆𝑢
𝜕𝐻

𝜕𝑢
= −

1

2
1 + 𝑢2 − Τ1 22𝑢 + 𝜆 = 0

⇒ 𝑢 1 + 𝑢2 Τ−1 2 = 𝜆 ⇒ 𝑢2= 𝜆2 1 + 𝑢2 ⇒ 𝑢2 = 𝜆2 + 𝜆2𝑢2

⇒ 𝑢2 1 − 𝜆2 = 𝜆2 ⇒ 𝑢 =
𝜆

1−𝜆2 Τ1 2 ⇒ 𝒖 = 𝝀 𝟏 − 𝝀𝟐
Τ−𝟏 𝟐

• is substituted into 𝑯 to eliminate 𝒖, the resulting 𝑯𝟎 expression
contains 𝝀 alone, with no 𝒚. Thus 𝑯𝟎 is linear and hence concave in
𝒚 for given 𝜆, and it satisfies the Arrow sufficient condition.


