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Example

Maximize V = 0׬
1
−𝑢2𝑑𝑡

Subject to ሶ𝑦 = 𝑦 + 𝑢

𝑦 0 = 1, y 1 = 0

• With fixed endpoints, we need no transversality condition in this
problem.

• Step I - Since the Hamiltonian function is nonlinear:

𝐻 = −𝑢2 + 𝜆 𝑦 + 𝑢

• and since 𝑢 is unconstrained, we can apply the first-order condition:

•
𝜕𝐻

𝜕𝑢
= −2𝑢 + 𝜆 = 0 Therefore 𝒖 𝒕 =

𝟏

𝟐
𝝀 𝒕



Example
• Since

𝜕2𝐻

𝜕𝑢2
= −2

• 𝑢 𝑡 solution does maximize rather than minimize 𝐻.

• But since this solution is expressed in terms of 𝜆 𝑡 , we must find the 
latter path before 𝑢 𝑡 becomes determinate.

• Step II - From the costate equation of motion

ሶ𝜆 = −
𝜕𝐻

𝜕𝑦
= −𝜆 𝑡

ሶ𝜆

𝜆
= −1 ׬

ሶ𝜆

𝜆
𝑑𝑡 = 1𝑑𝑡׬−

𝑙𝑛𝜆 = −𝑡 + 𝑐 𝜆 𝑡 = 𝑒−𝑡+𝑐 𝜆 𝑡 = 𝑘𝑒−𝑡

• Where 𝑘 = 𝑒𝑐 [𝑘 arbitrary]. Therefore 𝒖 𝒕 =
𝟏

𝟐
𝝀 𝒕 =

𝟏

𝟐
𝒌𝒆−𝒕



Example

• Step III - The equation of motion for 𝑦 is ሶ𝒚 = 𝒚 + 𝒖. 

• We can rewrite this equation as:

ሶ𝑦 − 𝑦 =
1

2
𝑘𝑒−𝑡

• This is a first-order linear differential equation with a variable
coefficient and a variable term, of the type
𝑑𝑦

𝑑𝑡
+ 𝑢 𝑡 𝑦 = 𝑤 𝑡

• here with 𝑢 𝑡 = −1 and 𝑤 𝑡 =
1

2
𝑘𝑒−𝑡

• Via a standard formula, its solution can be found as follows



Example

𝑦 𝑡 = 𝑒− ׬ −1𝑑𝑡 𝑐 + ׬
1

2
𝑘𝑒−𝑡𝑒׬ −1𝑑𝑡𝑑𝑡

= 𝑒𝑡 𝑐 + ׬
1

2
𝑘𝑒−𝑡𝑒−𝑡𝑑𝑡 = 𝑒𝑡 𝑐 +

1

2
𝑘 ׬ 𝑒−2𝑡𝑑𝑡

= 𝑒𝑡 𝑐 −
1

4
𝑘𝑒−2𝑡 = 𝑐𝑒𝑡 −

1

4
𝑘𝑒−𝑡 [𝑐 arbitrary]

• Step IV - The boundary conditions 𝑦 0 = 1 and 𝑦 1 = 0 are directly
applicable, and they give definite values for 𝑐 and 𝑘:

𝑦 0 = 𝑐 −
1

4
𝑘 = 1; 𝑦 1 = 𝑐𝑒 −

1

4
𝑘𝑒−1 = 0 𝑐𝑒2 −

1

4
𝑘 = 0 𝑘 = 4𝑐𝑒2

𝑐 −
1

4
4𝑐𝑒2 = 1 𝑐 1 − 𝑒2 = 1 𝑐 =

1

1−𝑒2
; 𝑘 = 4𝑐𝑒2 𝑘 =

4𝑒2

1−𝑒2



Example

• Therefore:   

𝑦∗ 𝑡 = 𝑐𝑒𝑡 −
1

4
𝑘𝑒−𝑡 =

1

1−𝑒2

𝑐

𝑒𝑡 −
𝑒2

1−𝑒2

Τ𝑘 4

𝑒−𝑡

𝜆∗ 𝑡 = 𝑘𝑒−𝑡 =
4𝑒2

1−𝑒2
𝑒−𝑡

𝑢∗ 𝑡 =
1

2
𝑘𝑒−𝑡 =

2𝑒2

1−𝑒2
𝑒−𝑡

• The search for the 𝑢∗ 𝑡 , 𝑦∗ 𝑡 , and 𝜆∗ 𝑡 paths in the present problem turns
out to be an intertwined process. This is because, unlike the simplest
problem of optimal control, where the transversality condition 𝜆 𝑡 = 0 may
enable us to get a definite solution of the costate path 𝜆∗ 𝑡 at an early stage.



The Constancy of the Hamiltonian in Autonomous 
Problems

• The example discussed previously share the common feature that the
problems are "autonomous;" that is, the functions in the integrand
and 𝒇 in the equation of motion do not contain 𝒕 as an explicit
argument.

• An important consequence of this feature is that the optimal
Hamiltonian - the Hamiltonian evaluated along the optimal paths of
𝑦, 𝑢, and λ - will have a constant value over time.

• To see this, let us first examine the time derivative of the Hamiltonian 
𝐻 𝑡, 𝑦, 𝑢, λ in the general case:

(41)   
𝑑𝐻 𝑡,𝑦,𝑢,λ

𝑑𝑡
=

𝜕𝐻

𝜕𝑡
+

𝜕𝐻

𝜕𝑦
ሶ𝑦 +

𝜕𝐻

𝜕𝑢
ሶ𝑢 +

𝜕𝐻

𝜕λ
ሶλ



The Constancy of the Hamiltonian in Autonomous 
Problems

• When 𝑯 is maximized, we have Τ𝝏𝑯 𝝏𝒖 = 𝟎 (for an interior solution)
or 𝑢 = 0 (for a boundary solution). Thus the third term on the right
drops out.

• Moreover, the maximum principle also stipulates that ሶ𝒚 = Τ𝝏𝑯 𝝏𝝀
and ሶ𝝀 = Τ−𝝏𝑯 𝝏𝒚. So the second and fourth terms on the right
exactly cancel out.

• The net result is that 𝑯∗, the Hamiltonian evaluated along the optimal
paths of all variables, satisfies the equation

(42)
𝑑𝐻

𝑑𝑡
=

𝜕𝐻

𝜕𝑡

• This result holds generally, for both autonomous and nonautonomous
problems.



The Constancy of the Hamiltonian in Autonomous 
Problems

• In the special case of an autonomous problem, since 𝒕 is absent from
the 𝐹 and 𝑓 functions as an explicit argument, the Hamiltonian must
not contain the 𝑡 argument either.

• Consequently, we have Τ𝝏𝑯∗ 𝝏𝒕 = 𝟎, so that

• (43)
𝑑𝐻∗

𝑑𝑡
= 0 or 𝑯∗ is constant [for autonomous problems]

• This result is of practical use in an autonomous problem with a
horizontal terminal line.

• The transversality condition 𝑯 𝒕=𝑻 = 𝟎 is normally expected to hold
at the terminal time only. But if the Hamiltonian is a constant in the
optimal solution, then it must be zero for all 𝒕.



The Calculus of Variations and Optimal Control Theory 
Compared

• Before, we state a special problem of optimal control as:

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, 𝑢 𝑑𝑡

Subject to ሶ𝑦 = 𝑢

𝑦 0 = 𝐴, y 𝑇 = 𝑓𝑟𝑒𝑒 𝐴, 𝑇 𝑔𝑖𝑣𝑒𝑛

• By substituting the equation of motion into the integrand function:

Maximize V = 0׬
𝑇
𝐹 𝑡, 𝑦, ሶ𝑦 𝑑𝑡

Subject to 𝑦 0 = 𝐴, y 𝑇 = 𝑓𝑟𝑒𝑒 𝐴, 𝑇 𝑔𝑖𝑣𝑒𝑛

• For this problem, the Hamiltonian function is



The Calculus of Variations and Optimal Control Theory 
Compared

(44) 𝐻 = 𝐹 𝑡, 𝑦, 𝑢 + 𝜆𝑢

• Assuming this function to be differentiable with respect to 𝑢, we may
list the following conditions by the maximum principle:

𝜕𝐻

𝜕𝑢
= 𝐹𝑢 + 𝜆 = 0 𝜆 = −𝐹𝑢

(45) ሶ𝑦 =
𝜕𝐻

𝜕λ
= 𝑢 𝐹 ሶ𝑦 = 𝐹𝑢 [ ሶ𝑦 = 𝑢]

ሶλ = −
𝜕𝐻

𝜕𝑦
= −𝐹𝑦 and 𝜆 𝑡 = 0

• From (45), we have

(46) 𝜆 = −𝐹 ሶ𝑦



The Calculus of Variations and Optimal Control Theory 
Compared

• Differentiation of (46) with respect to 𝑡 yields

(47) ሶλ = −
𝑑

𝑑𝑡
𝐹 ሶ𝑦

• In addition, since ሶλ = −𝐹𝑦, (47) may be expressed as

(48) 𝐹𝑦 −
𝑑

𝑑𝑡
𝐹 ሶ𝑦 = 0

• which is identical with the Euler equation.

• Further differentiation of the Τ𝜕𝐻 𝜕𝑢 expression in (45) yields

(49)
𝜕2𝐻

𝜕𝑢2
= 𝐹𝑢𝑢 = 𝐹 ሶ𝑦 ሶ𝑦 ≤ 0

• Equation (49) is the Legendre necessary condition for maximum in
the Calculus of Variations.



The Calculus of Variations and Optimal Control Theory 
Compared

• Thus the maximum principle is perfectly consistent with the
conditions of the calculus of variations.

• For a control problem with a vertical terminal line, the transversality
condition is 𝜆 𝑇 = 0.

• By (46) 𝜆 = −𝐹 ሶ𝑦 , this may be written as −𝐹 ሶ𝑦 𝑡=𝑇
= 0 , or,

equivalently,

(50) 𝐹 ሶ𝑦 𝑡=𝑇
= 0

• This is precisely the transversality condition in the calculus of
variations in the vertical terminal line problem.
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An Economic Interpretation of the Maximum Principle

• Consider a firm that seeks to maximize its profits over the time
interval 𝟎, 𝑻 .

• There is a single state variable, capital stock 𝑲.

• And there is a single control variable 𝒖, representing some business
decision the firm has to make at each moment of time (such as its
advertising budget or inventory policy).

• The firm starts out at time 0 with capital 𝑲𝟎, but the terminal capital
stock is left open.

• At any moment of time, the profit of the firm depends on the
amount of capital it currently holds as well as on the policy 𝒖 it
currently selects.



An Economic Interpretation of the Maximum Principle

• It follows that the optimal control problem is to

Maximize Π = 0׬
𝑇
𝜋 𝑡, 𝐾, 𝑢 𝑑𝑡

(1) Subject to ሶ𝐾 = 𝑓 𝑡, 𝐾, 𝑢

K 0 = 𝐾0, K 𝑇 = 𝑓𝑟𝑒𝑒 𝐾0, 𝑇 𝑔𝑖𝑣𝑒𝑛

• The maximum principle places conditions on three types of variables:

1. Control.

2. State.

3. Costate.

The control variable 𝑢 and the state variable 𝐾 have already been assigned
their economic meanings. What about the costate variable 𝝀?



An Economic Interpretation of the Maximum Principle

• Remember that:

𝒱 = 0׬
𝑇
𝐻 𝑡, 𝑦, 𝑢, 𝜆 + 𝑦(𝑡) ሶ𝜆(𝑡)

Ω1

𝑑𝑡 − λ 𝑇 𝑦𝑇
Ω2

+ λ 0 𝑦0
Ω3

• Thefore:

(2) Π∗ = 0׬
𝑇
𝐻 𝑡, 𝐾∗, 𝑢∗, 𝜆∗ + 𝐾∗(𝑡) ሶ𝜆∗(𝑡) 𝑑𝑡 − 𝜆∗ 𝑇 𝐾∗ 𝑇 + 𝜆∗ 0 𝐾0

• Partial differentiation of Π∗ with respect to the (given) initial capital and
the (optimal) terminal capital yields

(3)
𝜕Π∗

𝜕𝐾0
= 𝜆∗ 0 and

𝜕Π∗

𝜕𝐾∗ 𝑇
= −𝜆∗ 𝑇



An Economic Interpretation of the Maximum Principle

• Thus, 𝜆∗ 0 , the optimally determined initial costate value, is a measure of
the sensitivity of the optimal total profit Π∗ to the given initial capital.

• If we had one more (infinitesimal) unit of capital initially, Π∗ would be larger
by the amount 𝜆∗ 0 .

• Therefore, the latter expression can be taken as the imputed value or shadow
price of a unit of initial capital.

• In the other partial derivative in (3), the terminal value of the optimal costate
path, 𝜆∗ 𝑇 is seen to be the negative of the rate of change of Π∗ with respect
to the optimal terminal capital stock.

• If we wished to preserve one more unit (use up one less unit) of capital stock
at the end of the planning period, then we would have to sacrifice our total
profit by the amount 𝜆∗ 𝑇 .



The Hamiltonian and the Profit Prospect

• The Hamiltonian of problem (1) is

(4) 𝐻 = 𝜋 𝑡, 𝐾, 𝑢 𝑑𝑡 + 𝜆 𝑡 𝑓 𝑡, 𝐾, 𝑢

• The first component on the right is simply the profit function at time 𝒕,
based on the current capital and the current policy decision taken at
that time.

• In the second component of (4), the 𝑓 𝑡, 𝐾, 𝑢 function indicates the
rate of change of (physical) capital, 𝑲, corresponding to policy 𝒖.

• When the 𝒇 function is multiplied by the shadow price, 𝝀 𝒕 , it is
converted to a monetary value.

• Hence, the second component of the Hamiltonian represents the "rate
of change of capital value corresponding to policy 𝒖."



The Hamiltonian and the Profit Prospect

• Unlike the first term, which relates to the current-profit effect of 𝑢, the
second term can be viewed as the future-profit effect of 𝒖, since the
objective of capital accumulation is to pave the way for the production
of profits for the firm in the future.

• In sum, then, the Hamiltonian represents the overall profit prospect of
the various policy decisions, with both the immediate and the future
effects taken into account.

• The maximum principle requires the maximization of the Hamiltonian
with respect to 𝑢. What this means is that the firm must try at each
point of time to maximize the overall profit prospect by the proper
choice of 𝑢.



The Hamiltonian and the Profit Prospect

• To see this more clearly, examine the weak version of the "𝑀𝑎𝑥 𝐻"
condition:

(5)
𝜕𝐻

𝜕𝑢
=

𝜕𝜋

𝜕𝑢
+ 𝜆 𝑡

𝜕𝑓

𝜕𝑢
= 0

• it is rewritten into the form

(6)   
𝜕𝜋

𝜕𝑢
= −𝜆 𝑡

𝜕𝑓

𝜕𝑢

• This condition shows that the optimal choice 𝒖∗ must balance any
marginal increase in the current profit made possible by the policy [the
left-hand-side expression in (6)] against the marginal decrease in the
future profit that the policy will induce via the change in the capital
stock [the right-hand-side expression in (6)].


