
Article
Simultaneous Multiplexed
 Imaging of mRNA and
Proteins with Subcellular Resolution in Breast
Cancer Tissue Samples by Mass Cytometry
Graphical Abstract
Highlights
d Imaging mass cytometry enables multiplexed RNA and

protein detection in situ

d mRNA measurement in IMC enables detection of as little as

6–14 mRNA copies per cell

d Among patients, mRNA-to-protein ratios vary for CK19 but

not for HER2

d CXCL10-expressing cells form patches and are associated

with T cell abundance
Schulz et al., 2018, Cell Systems 6, 25–36
January 24, 2018 ª 2017 The Authors. Published by Elsevier Inc
https://doi.org/10.1016/j.cels.2017.12.001
Authors

Daniel Schulz,

Vito Riccardo Tomaso Zanotelli,

Jana Raja Fischer, ..., Xiao-Kang Lun,

Hartland Warren Jackson,

Bernd Bodenmiller

Correspondence
bernd.bodenmiller@imls.uzh.ch

In Brief

Here, we extend imaging mass cytometry

to enable multiplexed detection of mRNA

and protein in single cells in tissue

sections. We show rigorous validation of

the method and apply it to 70 samples

from breast cancer patients. We

investigate single-cell and population-

based RNA-to-protein correlations in

tissue and identify rare chemokine-

expressing cells in the stroma that are

associated with T cell abundance.
.

mailto:bernd.bodenmiller@imls.uzh.�ch
https://doi.org/10.1016/j.cels.2017.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2017.12.001&domain=pdf


Cell Systems

Article
Simultaneous Multiplexed Imaging of mRNA
and Proteins with Subcellular Resolution
in Breast Cancer Tissue Samples by Mass Cytometry
Daniel Schulz,1 Vito Riccardo Tomaso Zanotelli,1,2 Jana Raja Fischer,1 Denis Schapiro,1 Stefanie Engler,1 Xiao-Kang Lun,1

Hartland Warren Jackson,1 and Bernd Bodenmiller1,3,*
1Insitute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
2Systems Biology PhD Program, Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
3Lead Contact

*Correspondence: bernd.bodenmiller@imls.uzh.ch

https://doi.org/10.1016/j.cels.2017.12.001
SUMMARY

Tobuild comprehensivemodels of cellular states and
interactions in normal and diseased tissue, genetic
and proteomic information must be extracted with
single-cell and spatial resolution. Here, we extended
imaging mass cytometry to enable multiplexed
detection of mRNA and proteins in tissues. Three
mRNA target species were detected by RNAscope-
based metal in situ hybridization with simultaneous
antibody detection of 16 proteins. Analysis of 70
breast cancer samples showed that HER2 and
CK19mRNA and protein levels are moderately corre-
lated on the single-cell level, but that only HER2, and
not CK19, has strong mRNA-to-protein correlation
on the cell population level. The chemoattractant
CXCL10 was expressed in stromal cell clusters, and
the frequency ofCXCL10-expressing cells correlated
with T cell presence. Our flexible and expandable
method will allow an increase in the information con-
tent retrieved from patient samples for biomedical
purposes, enable detailed studies of tumor biology,
and serve as a tool to bridge comprehensive genomic
and proteomic tissue analysis.

INTRODUCTION

Characterization of the organization of cellular phenotypes, func-

tions, and interactions in the context of tissues is key to our under-

standing of health and disease. The function of a tissue is defined

by the cell types it contains, their arrangement (i.e., tissue

morphology), and the state of each individual cell. The state of a

cell, in turn, is defined by multiple networks that interact with

each other to continuously adjust cell state according to internal

and external inputs. Three network types that are interwoven to

achieve cellular homeostasis are transcriptional networks, protein

networks, and signaling networks. Simultaneousmeasurement of

these networks in situ would allow one to derive quantitative

models that enable understanding of these networks in a spatial

context and thus enable study of many aspects of tissue biology.
Cell Systems 6, 25–36, J
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Until recently only a few transcripts, proteins, or other mole-

cules could be imaged at one time in tissues, but now several ap-

proaches allow for spatially resolved ’omics-typemeasurements

(Bodenmiller, 2016). Immunofluorescence-based multiplexed

protein epitope detection technologies such as cyclic immuno-

fluorescence rely on cycles of epitope staining followed by

quenching and restaining to overcome spectral overlaps of fluo-

rophores (Gerdes et al., 2013; Lin et al., 2015). Alternatively,

epitope-based imaging methods that employ a mass spectrom-

eter for readout, such as multiplexed ion beam imaging and im-

aging mass cytometry (IMC), rely on the simultaneous staining

and subsequent detection of up to 7 and 32 metal-labeled anti-

bodies in tissue samples, respectively (Angelo et al., 2014; Bod-

enmiller, 2016; Giesen et al., 2014; Schapiro et al., 2017). Despite

the power of these approaches, one common limitation is that

the antibodies used must be comprehensively validated and

optimized.

Methods based on in situ mRNA sequencing and encoded

fluorescent in situ hybridization (FISH) probes have also been

developed for spatial transcriptomics using fluorescence-based

methods (Ke et al., 2013; Lee et al., 2014). These methods allow

for the simultaneous detection of hundreds of distinct mRNAs

under routine settings and in some cases over 1,000 transcripts

(Chen et al., 2015). Targeted RNA detection methods using

padlock probes, in situ hybridization chain reaction, and z-

probes coupled to branched DNA amplification (RNAscope)

also enable robust detection of RNA in tissue (Choi et al.,

2014; Larsson et al., 2010; Wang et al., 2012) and have high

signal-to-noise ratios (Battich et al., 2013), and their multiplexing

capabilities are, among other things, limited by spectral overlaps

of the detection reagents (Gaspar and Ephrussi, 2015; Wang

et al., 2012). Although methods for the global measurement of

the components of transcriptional or protein networks with

spatial resolution in tissues are rapidly developing, approaches

that enable mRNA, protein, and protein modification measure-

ments in a highly multiplexed manner have, to our knowledge,

so far not been presented.

Suchmethods, however, are necessary to study how transcrip-

tional, protein, and signaling networks relate to each other. Many

studies have investigated such relations in the form of RNA and

protein-level correlations at a global scale in bulk samples (Liu

et al., 2016). Based on these studies, it appears that protein

expression can be largely explained by transcript abundance
anuary 24, 2018 ª 2017 The Authors. Published by Elsevier Inc. 25
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(Jingyi and Biggin, 2015; Liu et al., 2016), and gene-specific con-

version factors have recently been shown to increase RNA-pro-

tein correlations to 0.93 (Edfors et al., 2016). In certain cancer

types, such as colon and rectal cancer, large variations in the cor-

relation of RNA and protein abundances were observed across

genes and patient samples (Zhang et al., 2014). The same study

also showed that gene copy-number aberrations, which are

among the leading causes of tumorigenesis (Stratton et al.,

2009), are well correlated with mRNA levels but not always with

protein levels, indicating the need for further investigations. In sin-

gle cells, proof-of-principle approaches based on proximity liga-

tion assays and DNA-tagged antibody sequencing indicate that

RNA-to-protein correlations are typically poor, but suchmeasure-

ments can be challenging and are restricted to cells in suspension

(Albayrak et al., 2016; Darmanis et al., 2016; Frei et al., 2016;

Stoeckius et al., 2017). The relationship of RNA-to-protein levels

in situ on the single-cell level and across tumor samples with

copy-number alterations has not been studied so far.

Here, we present an approach for the simultaneous detection

of proteins, protein phosphorylations, and transcripts using IMC.

The approach is a modification of the RNAscope-based in situ

hybridization protocol (Wang et al., 2012) coupled with antibody

staining. We rigorously validated the approach in sections of

human HeLa cell pellets and showed excellent agreement

with FISH measurements. Furthermore, we characterized the

mRNA expression of HER2, CK19, and CXCL10 (also known

as IP-10) in combination with 16 antibodies in 70 samples from

breast cancer patients. The HER2 gene is frequently genetically

amplified in breast cancer patients, andHER2mRNA expression

levels have been shown to be highly correlated to genetic status

and protein levels (Vassilakopoulou et al., 2014; Wang et al.,

2013), making HER2 an ideal gene for validation of the system.

CK19 is a type-1 cytokeratin often expressed in breast cancer

that can be used as a marker to detect disseminated tumor cells

in lymph nodes by mRNA or protein detection methods, but the

mRNA-to-protein correlation in tissues is unknown (Visser et al.,

2008). CXCL10 is a secreted protein that recruits T cells to the

tumor microenvironment, yet its role in cancer needs to be

further refined (Liu et al., 2011; Luster and Ravetch, 1987; Mulli-

gan et al., 2013). We found thatHER2mRNA and protein expres-

sion correlated well across patients on a population level,

although this correlation was weak on the single-cell level in

most cases. For CK19, we found a strong patient-dependent

heterogeneity in mRNA-to-protein ratios. The expression of

CXCL10 was correlated with T cell presence in the tumor micro-

environment, and, interestingly, cells expressing CXCL10 were

found to form clusters. We expect that the ability to simulta-

neously quantify mRNAs, proteins, and post-translational modi-

fications will broaden our understanding of cellular networks in

healthy and diseased tissues, enable measurement of markers

not readily accessible via antibodies such as cytokines, and

result in more accurate single-cell resolved tissue model gener-

ation to advance tissue biology and diagnostics.

RESULTS

RNA Detection with IMC
To enable RNA detection using IMC, we adapted thewidely used

RNAscope technique (Wang et al., 2012) for detection with metal
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tags. The approach makes use of serial hybridization steps to

build multiple, large DNA structures across an RNA molecule

of interest (Figure 1A). Each of these structures can then be hy-

bridized to hundreds of oligonucleotides bound to reporters. For

mass-cytometric detection we conjugated oligonucleotides with

metal-chelated polymer reporters and used these probes in the

final hybridization step of the RNA detection protocol. After

mRNA tagging by RNAscope-based in situ hybridization, an

additional staining step with metal-labeled antibodies can be

performed (Figure 1A, right) for the simultaneous detection of

RNAs and proteins by IMC (Figure 1B).

Proof-of-principle experiments were carried out using sec-

tions of formalin-fixed and paraffin-embedded (FFPE) HeLa cell

pellets. Sections were stained for mRNAs of three housekeeping

genes POLR2A, PPIB, and UBC (Figure 1C). As a negative con-

trol we used probes designed to hybridize to the DapB transcript

from Bacillus subtilis. Comparing the mean intensities per image

for eachmeasured transcript resulted in reproducible staining in-

tensities with signal-to-noise ratios (S/N) of 18, 61, and 62 for

POLR2A, PPIB, and UBC, respectively (Figure 1D; note that

the S/N values of PPIB andUBC are similar due to slightly higher

background signal for UBC). Comparing our measured expres-

sion levels with reported results from the literature (POLR2A

expressed at low levels and PPIB and UBC expressed at high

levels) revealed similar trends. When we compared for multiplex

or single-plex detections of targets no obvious differences were

observed in signals, indicating negligible cross-hybridization be-

tween RNA channels (Figure S1A).

Previously POLR2A transcripts were quantified using

RNAscope and shown to be present at 14 copies per single

HeLa cell with the section thickness used here (Anderson

et al., 2016;Wang et al., 2012). For comparison of these numbers

with our IMC data, we had to define mRNA signals from single

cells. We used a DNA intercalator and a pan-keratin antibody

to detect nuclei and cytoplasm, respectively, in combination

with the three RNA species. Semi-supervised segmentation of

the images was employed to obtain RNA data from individual

cells (see STAR Methods). The IMC single-cell data showed

that there were large variations in POLR2A, PPIB, and UBC

amounts across cells (Figure 1E). POLR2A mRNA was detected

with a mean signal of 207 ion counts per cell. To determine the

detection limit of our approach we measured TBP, which is pre-

sent at approximately six mRNA copies per cell. We were not

able to detect TBPmRNA (Figure S1B), indicating that our detec-

tion threshold lies between 6 and 14 mRNA molecules per HeLa

cell section. In summary, these results show that we can detect

transcripts with IMC using an adapted RNAscope-based proto-

col with high sensitivity.

Validation Using FISH
The standard application of multiplexed RNAscope in situ hy-

bridization is mRNA detection using fluorescence microscopy

(Wang et al., 2012). Thus to benchmark the IMC-based RNA

detection against the standard in the field, we devised an

approach whereby mRNAs were simultaneously labeled with

metals and fluorochromes for direct comparison of the labeling

methods.

We applied a 1:1 mix of fluorochrome-labeled and metal-

labeled oligonucleotides in the last hybridization step for the



Figure 1. RNA Detection Using Imaging Mass Cytometry

(A) Up to 20 z-probe pairs per target RNA (up to three mRNAs may be detected simultaneously; red, green, blue) are incubated with the tissue sample. Through

pre-amplifier and amplifier hybridization, a large DNA tree is assembled that is then hybridized by oligonucleotides labeled with metals. Metal-conjugated

antibodies are added to enable co-detection of RNA and protein in single cells.

(B) After incubation with metal-labeled oligonucleotides for RNA detection and antibodies for protein detection, tissues are subjected to laser ablation and

mass-cytometric measurement of the metal abundances. The metal abundances per laser shot (in pixels) are then assembled into a high-dimension image.

(C) Representative images stained for POLR2A in channel 1 (green, dynamic range 2–10 ion counts per pixel), PPIB in channel 2 (red, dynamic rage 2–20 ion

counts per pixel), and UBC in channel 3 (yellow, dynamic range 2–30 ion counts per pixel) are shown separately and overlaid. An image of the negative control

probe set is shown on the bottom right for the three channels. The dynamic range for the negative control in each channel is 2–10 ion counts per pixel. Scale

bars 50 mm.

(D) Quantifications of the mean pixel intensities per image of three technical replicates for POLR2A, PPIB, andUBC and corresponding negative controls for each

channel.

(E) Mean pixel intensities per cell after single-cell segmentation are plotted for POLR2A, PPIB, and UBC and corresponding negative controls. Box plots are

overlaid with the single-cell data (black circles), and the single-cell data distributions are indicated.
detection of PPIB and POLR2A mRNA in HeLa cell sections

(Figure 2A). Fluorescent images of the HeLa cell sections

were recorded, and the same area was subsequently analyzed

using IMC to detect metal abundances (Figure 2B). Overlay of

data from the two imaging modalities enabled direct per-cell

comparison of the ion counts from IMC with absolute copy

numbers of RNA molecules from the fluorescent images (Fig-

ures 2C and 2D) (Battich et al., 2013). Comparison of the sin-

gle-cell RNA copy numbers with the corresponding ion count

signal per cell revealed a correlation of 0.89 for PPIB (Figure 2E).

For the comparison of FISH and IMC detection, a pixel-level

correlation was not feasible as FISH imaging was performed

in wet samples and IMC imaging was performed after the sam-

ples were dried, which resulted in slight shifts of the imaged

structures in IMC compared with FISH. For the POLR2A tran-

script, which is expressed at lower levels, we found a correla-

tion of 0.80 between fluorescence and IMC (Figure 2F). IMC
and FISH signals were similarly distributed, and no signal

accumulation occurred around zero. We concluded from these

experiments that the adapted RNAscope-based in situ hybrid-

ization protocol yields results comparable with those for fluo-

rescence microscopy, and thus is well suited for IMC-based

single-cell RNA measurements.

The IMC RNA Detection Protocol Enables Simultaneous
Multiplexed Detection of Proteins and Their
Modifications
The many measurement channels available in IMC make it

possible to interrogate the interplay of components of tran-

scriptional, protein, and signaling networks in tissues in single

cells by measuring mRNA and protein epitopes simultaneously.

We therefore investigated simultaneous mRNA detection and

antibody-based epitope detection with IMC in human FFPE

breast cancer samples. The RNA detection protocol involves a
Cell Systems 6, 25–36, January 24, 2018 27



Figure 2. Validation of IMC-Based RNA Measurements Using FISH

(A) A 1:1 mix of metal-labeled and fluorophore-labeled oligonucleotide probes was applied to the sample to enable detection of the same transcript by fluo-

rescence microscopy and IMC.

(B) False-color images from fluorescence microscopy (red, PPIB; blue, DAPI) and IMC (green, PPIB; blue, iridium DNA intercalator) of the same area are shown.

Scale bars, 100 mm.

(C) Image of overlaid fluorescent and IMC images after registration (green, PPIB from IMC; red, PPIB from FISH). Scale bar, 100 mm.

(D) Zoom-in of overlay. White dots mark spots from the fluorescent image that were counted to obtain absolute RNA counts per cell (see STAR Methods). Cell

outlines from segmentation are shown in white. Scale bar, 10 mm.

(E) Scatterplot of PPIB FISH mRNA spots versus IMC ion counts per cell. One representative replicate of the three technical replicates is shown.

(F) Scatterplot of POLR2A FISH mRNA spots versus IMC ion counts per cell. One representative replicate of two technical replicates is shown.
protease digestion step with multiple hybridization steps at

40�C that may destroy epitopes. We therefore compared anti-

body staining of 4-mm-thick serial sections of a breast cancer tis-

sue that were processed using either a standard heat-induced

epitope retrieval (HIER) protocol (STAR Methods) or the RNA

detection protocol (Wang et al., 2012).

The images derived from the two protocols were similar, sug-

gesting that protease treatment did not strongly interfere with

detection of the antibodies used here (Figure 3A). We did, how-

ever, observe differences in CD44 staining. After HIER buffer

antigen retrieval, CD44 staining was strongest in epithelial cells,

whereas after the RNA protocol treatment the strongest staining

was observed in stromal cells (Figure S2A). For a comprehensive

and quantitative comparison we segmented the images to

generate single-cell data and clustered the single-cell data

based on the co-occurrence of marker expression (Figure 3B).

Comparing the co-expression of cellular markers in images

from the HIER protocol with co-expression in images from

the RNA detection protocol revealed a correlation of 0.82,

which increased to 0.92 when CD44 data were excluded. This
28 Cell Systems 6, 25–36, January 24, 2018
confirmed that the protease treatment used in our protocol

does not destroy antibody-based epitope detection; however,

the performance of each antibody to be used with the RNA

detection protocol should be assessed.

Analysis of HER2 and CK19 mRNA and Protein
Expression in Breast Cancer Tissueswith Non-amplified
and Amplified HER2 Loci
Copy-number aberrations are among the main drivers of tumor-

igenesis (Stratton et al., 2009). How these copy-number aberra-

tions affect transcript and the corresponding protein levels in

single cells in tumors has so far not been analyzed (Albayrak

et al., 2016). Here we quantified HER2 and CK19, and CXCL10

mRNA levels simultaneously with the analysis of 16 anti-

bodies including antibodies against HER2 and CK19 protein

(Table S1). These markers were measured in a previously

described breast cancer tissue microarray (TMA) (Carvajal-

Hausdorf et al., 2015). The amplification status of the HER2

gene is known for each of the samples on the microarray

(Table S2). In the 70 samples analyzed, HER2 expression as
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Figure 3. Multiplexed mRNA and Antibody Detection Using IMC
(A) False-color images for smooth muscle actin (red), E-/N-cadherin (cyan), Ki-67 (magenta), FSP1 (green), CK5 (yellow), and DNA (blue) antibody stains are

shown for standard HIER and the RNA co-detection protocol. Consecutive tissue sections of the same region of the tumor were analyzed. Scale bars, 150 mm.

(B) Heatmap of Pearson correlations between signals in single cells for indicated markers in samples prepared with HIER buffer and RNA detection buffer.

Correlations are shown for one biological replicate of a total of two biological and two technical replicates.
defined previously ranged from undetectable (score = 0) to

strong HER2 overexpression (score = 3+) (Carvajal-Hausdorf

et al., 2015).

To verify the specificity of themRNAdetection probes used for

human TMA analysis, we overexpressed and detected CK19,

CXCL10, and ERBB2 in A431 cells using the RNAscope-based

IMC method (Figures S2B–S2D). We observed strong staining

for CK19, CXCL10, and HER2 only in cells in which the mRNAs

were overexpressed, demonstrating specificity of the probes

(Figure S2E).

After staining and data acquisition of the HER2 TMA, visual

inspection of the images revealed heterogeneous staining for

HER2 and CK19 mRNAs and proteins across single cells (Fig-

ure 4A). Analysis of theHER2mRNA expression in epithelial cells
revealed that 21 of the 26 samples with HER2 amplification

showed significant upregulation of the HER2 mRNA compared

with control tissues (Figure 4B). Of the amplified samples,

16 had levels of HER2 mRNA that were more than 10-fold

higher than levels in control tissues. Of the 35 samples without

HER2 amplification, 21 also had significant upregulation of

HER2 mRNA compared with control tissues, albeit with a lower

(2- to 7-fold) induction than in the majority of HER2-amplified

samples (Figure 4B).

For HER2 protein, 19 of the 26 samples with HER2 amplifica-

tion showed significant expression of HER2 compared with con-

trol tissues. Three of these 19 HER2-amplified samples showed

significant overexpression of the HER2 protein but their levels of

HER2 mRNA were lower than in most other amplified samples
Cell Systems 6, 25–36, January 24, 2018 29
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Figure 4. Population and Single-Cell HER2 and CK19 mRNA and Protein Correlation Analyses

(A) Single false-color image of a representative tissue sample (E04) displaying HER2 mRNA (green) and protein (red) (top) and CK19 mRNA (green) and protein

(red) (bottom). Scale bars, 100 mm.

(B) Box plots ofHER2mRNA (left) and protein (right) expression in single epithelial cells from each sample. Samples were sorted by increasing expression ofHER2

mRNA. Red dots indicate that data were significantly different from control tissue data (see STARMethods). Blue dots indicate that the data were not significantly

different from the control tissues, and no dot means that the sample contained less than 50 epithelial cells.

(C) The median expression in all Pan-Keratin-positive epithelial cells for each sample is shown for HER2 mRNA and protein (top) and CK19 mRNA and protein

(bottom).

(D) Expression of housekeeping genes ACTB and GAPDH in the three samples in which strong HER2 protein but no HER2mRNA was detected, compared with

one sample in which mRNA and proteins were detected and one sample in which no HER2 mRNA and protein were detected.

(E) Spearman correlations of mRNA and protein levels for single epithelial cells for HER2 and CK19. Samples were grouped by pathological scoring and genetic

status of HER2.

(F) Single-cell scatterplots of samples A01, A05, and F05 for HER2 (left) and CK19 (right) mRNA and protein. The colored horizontal and vertical lines equal the

respective median protein and median mRNA values of the epithelial population in each sample, which were used to calculate the protein-to-RNA ratios.

(G) Density distributions of the HER2 (solid line) and CK19 (dashed line) protein-to-mRNA ratios from the data in (C).

Data in (C) and (D) are colored according to pathological scoring and genetic status of HER2 locus: 0, red; 1+, not amplified, yellow; 2+, amplified, green; 2+, not

amplified, brown; 3+, amplified, blue; non-diseased control tissue, pink.
(Figure 4B). Neither mRNA nor protein measurements fully re-

flected the 2+ and 3+ pathological scoring of the samples. For

example, samples scored as HER2 2+ and not genetically ampli-
30 Cell Systems 6, 25–36, January 24, 2018
fied showed generally low levels of HER2 mRNA and protein

(Figure 4B). The discrepancy between the pathological scoring

and our measurement is likely due to use of different antibodies



and evaluation of different areas of the tumor. It should be noted

that the pathological HER2 scoring was also not reproduced in

previous studies of this TMA (Carvajal-Hausdorf et al., 2015).

The correlation of the median signals of HER2mRNA and pro-

tein for all samples was 0.68 (Figure 4C). In the same samples,

the same analysis for CK19 revealed essentially no correlation

(Spearman correlation 0.16) despite a dynamic range similar to

that of HER2 (Figure 4C). Across all samples for HER2 we found

an approximately 8-fold increase in protein for a 10-fold increase

in RNA, whereas CK19 protein levels varied by 10-fold for sam-

ples with virtually identical mRNA levels. Among our cohort of

samples E05, F04, and I01 stood out, as they showed high

HER2 protein levels but no or very low HER2mRNA expression.

Therefore, we also investigated the expression of ACTB and

GAPDH housekeeping genes in serial sections of these samples

and found no expression of ACTB orGAPDH in these three sam-

ples, suggesting that in these cores the mRNA was degraded

(Figure 4D).

In sum, these results show that our approach enables the

multiplexed analysis of transcript and protein levels in tissue

samples. In a majority of cases (but not always) the mRNA and

protein levels of HER2 reflected the amplification status. The

population-level analysis also revealed a good correlation

between mRNA and protein levels for HER2 but not for CK19

in the same cells, suggesting that these two genes have different

post-transcriptional regulatory mechanisms.

Single-Cell Correlations of HER2 and CK19 mRNAs with
Protein Levels
Population-based analysis can mask relationships that exist

on the single-cell level within a sample (Altschuler and Wu,

2010). Thus, we next examined the correlation between mRNA

and protein abundances of HER2 and CK19 on the single-cell

level. Both HER2 and CK19 are expressed in epithelial cells, so

we first studied the single-cell correlation in the epithelial cell

compartment.

For HER2, weak correlations between mRNA and protein

levels were observed for the amplified 2+ and 3+ samples with

correlation values of 0.43 and 0.53, respectively (Figure 4E).

For CK19 the correlation of mRNA and protein in epithelial cells

was independent of the amplification status ofHER2, with corre-

lations ranging from 0.28 to 0.45 across all sample groups (Fig-

ure 4E). Analyses including the stromal cells showed higher

correlations for HER2 and CK19 than when epithelial cells were

considered alone, ranging from 0.42 to 0.67 for HER2 and from

0.56 to 0.81 for CK19 (Figures 4E, S3, and S4). Interestingly,

we found that while the single-cell mRNA and protein correla-

tions for HER2 and CK19 were somewhat similar, the ratios of

mRNA to protein for CK19 varied considerably among samples

even though the same samples had very little variation in their

HER2 mRNA-to-protein ratio (Figure 4F). Analysis of the ratios

across all samples revealed that the variation of mRNA-to-pro-

tein ratios was 1.8-fold higher for CK19 than for HER2 and

showed a somewhat bimodal distribution (Figure 4G). This ex-

plains at least partially the discrepancy between the popula-

tion-based mRNA and protein correlations between HER2 and

CK19 (Figure 4C). From the combined observations of either

CK19 or HER2 mRNA expression (Figures S3 and S4), we

observed only 7 samples (including E05, F04, and I01) that had
very low levels of mRNA, suggesting that these cores may

have suffered from mRNA degradation. This corresponded to

11% of all samples, suggesting that the majority of samples in

this cohort were intact.

In summary, the single-cell correlations between mRNA and

protein levels for HER2 andCK19were generally weak in epithe-

lial cells, indicating that we cannot predict protein levels from

mRNA levels in these cells. However, mRNA presence, with

some exceptions, always resulted in the corresponding protein

presence as indicated by the analysis of all cell types. The

single-cell data also suggest sample-specific differences in the

extent of mRNA-to-protein ratio for CK19, whereas the ratio of

mRNA to protein wasmore consistent across samples forHER2.

Cell Phenotype Analysis Identifies Rare Cells that
Express CXCL10 mRNA
CXCL10 is produced upon interferon-g (IFN-g) stimulation and is

secreted by various cell types into the extracellular matrix, where

it functions as a chemoattractant for T cells (Luster and Ravetch,

1987). To identify cell phenotypes that produce CXCL10 and to

gain a global overview of all cell phenotypes present in the

81,974 human breast cancer cells in our dataset, we used the

PhenoGraph algorithm to assign cells to phenotype clusters

(Levine et al., 2015).

PhenoGraph clustering identified four major phenotypic

branches: (1) immune cells and other cells residing in the stroma,

(2) basal epithelial cells andmyoepithelial cells, (3) epithelial cells

not expressing HER2, and (4) epithelial cells expressing HER2

(Figure 5A). Within these branches were cells that overexpress

HER2 protein (clusters 14, 16, and 32), cells that overexpress

HER2 mRNA and protein (clusters 9 and 10), and two clusters

with high levels of HER2 mRNA but low HER2 protein levels

(clusters 27 and 31). PhenoGraph also revealed two clusters of

T cells (as indicated by high levels of CD3), one of which co-

expressed CD44 and FSP1 (potentially memory T cells [Weath-

erly et al., 2015], cluster 4) and one solely expressing CD3

(cluster 33). Three CD68-expressing clusters (17, 18, and 22)

were identified, which are monocytes, macrophages, and/or

fibroblasts (Duncan et al., 2002; Österreicher et al., 2011; Pilling

et al., 2009). For additional clusters of stromal cells no clear cell

type assignment was possible given the markers used in our

analysis.

Importantly, PhenoGraph identified a cluster of 2,300 cells

characterized by the expression of CXCL10 mRNA. The

CXCL10 cluster was also characterized by expression of

different markers from the stromal compartment, indicating

mixed sources of CXCL10 expression (Figure 5A, cluster 20).

Close inspection of the CXCL10-positive cluster 20 revealed

that the cluster contained cells with medium and high levels of

CXCL10 expression (Figure S5A). Subsequent manual gating

identified 706 cells with high CXCL10 expression (0.86% of all

cells) (Figure S5A). Clustering of these cells using PhenoGraph

revealed that the majority of cells expressing high levels of

CXCL10 are macrophages, fibroblasts, T cells, and other un-

identified cells in the stroma; only about 20% of cells with high

CXCL10 expression were epithelial cells (Figure S5B). Thus,

the mRNA and protein IMC data could be used to cluster cells

into known subsets in the tumor microenvironment including

T cells, macrophages, and different lineages of breast cancer
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Figure 5. mRNA Analysis Coupled with Cell Neighborhood Analysis Reveals Correlation between CXCL10 Expression and T Cell Frequency

(A) Heatmap of mean marker expression for PhenoGraph clusters of all samples. Cell numbers in each cluster are plotted on the right side of the heatmap.

(B) Example false-color images of four samples that contain cells of cluster-20 CXCL10-expressing cells. Scale bars, 50 mm.

(C) For samples with CXCL10-expressing cells, the percentages of CXCL10high cells are plotted. Each bar is colored according to neighborhood analysis

indicating whetherCXCL10high cells are clustered in patches of at least three cells (red, p < 0.005; light red, p < 0.05; blue, not significant [pR 0.05]). Below are the

neighborhood analysis results presented for standard histoCAT neighborhood interactions among CXCL10high cells (cluster size = 2) and for larger patches

consisting of minimally 3, 4, or 5 cells.

(D) Percent totalCXCL10high cells versus percent stromal T cells for every sample. Data are colored according to pathological scoring of HER2 protein and genetic

status of HER2 locus: 0, red; 1+, not amplified, yellow; 2+, amplified, green; 2+, not amplified, turquoise; 3+, amplified, blue; non-diseased control tissue, pink.

Gray shaded area indicates the region devoid of CXCL10high cells (<1%) and T cells (<10%).
cells, and suggest that cells residing in the stroma are the major,

but not exclusive, producers of CXCL10.

CXCL10-Expressing Cells Form Patches and Correlate
with an Increased T Cell Presence
CXCL10 and its receptor CXCR3 have been comprehensively

studied, and expression of these two factors has mostly been

associated with poor survival and metastasis in different cancer

types, although anti-tumor effects through immunomodulation

have also been described (Bai et al., 2016; Bronger et al.,

2016; Liu et al., 2011; Mulligan et al., 2013; Wightman et al.,
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2015). Visual inspection of images with many cells expressing

high levels of CXCL10 confirmed that CXCL10high cells reside

mostly in the stroma and seemed unevenly distributed (Fig-

ure 5B). To explore the spatial distribution of cells that express

high levels of CXCL10 and their neighborhoods, we used our

recently developed software histoCAT (Schapiro et al., 2017).

A permutation test implemented in histoCAT determineswhether

cell types significantly more or less often neighbor each other

than expected by chance. This test revealed no significant inter-

actions of CXCL10high cells with other cell types, but CXCL10high

cell interactions with other CXCL10high cells were significant,



which can be indicative of a patchy distribution (Figure 5C, bot-

tom; patch size = 2). We thus extended the permutation test to

determine whether particular cell types form patches. We

defined patches as motifs in which a cell of a certain phenotype

neighbors at least two other cells of the same phenotype. We

then used the permutation test to identify images with signifi-

cantly increased frequencies of this motif, indicating an occur-

rence of the tested cell type in patches. Applying this test to

the CXCL10high cells in all images revealed a patchy distribution

of CXCL10high cells across many images, especially in those

with high numbers of CXCL10high cells (Figure 5C). Gradually

increasing the minimum number of cells in the patch motif

to five cells revealed those images with bigger clusters of

CXCL10high cells (Figure 5C, bottom; cluster size 3–5). This

confirmed that CXCL10high cells tend to cluster together and

may form locally distinct microenvironments.

Since CXCL10 is a chemoattractant for T cells (Khan et al.,

2000), we next analyzed whether there was a relationship be-

tween the presence of CXCL10high cells and the presence of

T cells in the same sample. We compared the frequency of

CXCL10high cells with the frequency of T cells (CD3-positive

gate, Figure S5C) in the stroma of all samples (Figure 5D).

This analysis revealed samples with stromal T cell frequencies

of up to 80%, and for samples with high numbers of

CXCL10high cells we always observed an enrichment of

T cells in the stroma. Importantly, although images with high

T cell frequencies but no CXCL10high cells were present, we

did not identify samples with CXCL10high cells and no T cells

(Figure 5D, gray shaded box). The absence of T cells when

there are no CXCL10high cells (Figure 5D, gray shaded box)

was also found to be significant (p = 0.001, Barnard test), indi-

cating the functionality of CXCL10 expression and attraction of

T cells by CXCL10high cells. These data also display how the

mRNA-based measurements can be used to detect markers

that are difficult to detect with antibodies in tissues and how,

when coupled with automated detection of cellular patches,

the data can be used to define local microenvironments driven

by a factor of interest.

DISCUSSION

Here we describe the validation and application of a strategy for

multiplexed simultaneous RNA and protein measurements in

single cells in human FFPE tissue by IMC. Co-detection of tran-

scripts and proteins in tissue will be a powerful tool for studies of

mRNA, protein, and signaling network relationships across a

wide range of different cell types in a spatial context in tissue,

with broad applicability to biological and biomedical questions.

Additionally, mRNA readouts may be used to detect cells that

produce secreted factors and targets for which an appropriate

antibody is not available. Our comparison of IMC with FISH re-

vealed very good agreement on a cellular level and a detection

limit between 6 and 14 RNA copies in cross-sections of cells.

Our method is a modification of a widely used approach for

mRNA detection using RNAscope (Wang et al., 2012) that en-

ables detection of metal tags by mass cytometry. In this work,

we detected 3 mRNAs and 16 proteins simultaneously with sin-

gle-cell resolution in FFPE tissue sections. In our overexpression

experiments (Figure S2) we observed single cells with staining
intensities 40-fold higher than what we observed here for

UBC, which is endogenously expressed at high levels (Figure 1E).

Such high expression levels suggest that manymore probes can

be accommodated and indicate that higher multiplexing will not

be limited by the cellular space.

The RNA co-detection protocol presented here involves a pro-

tease digestion step that may interfere with epitope detection for

certain antibodies. We did observe different staining patterns for

CD44 after standard HIER buffer and after the RNA protocol

treatment. Differences may be due to alterations in the accessi-

bility of the many different isoforms of CD44 after the protease

digestion step (Mackay et al., 1994). Like all antibody-based

approaches, our method is limited by antibody availability

and specificity. mRNA signals are low compared with protein

signals, and careful panel design is required to achieve optimal

detection and avoid spillover from antibody channels (Takahashi

et al., 2016).

Here we investigated the relationship between two transcripts

(CK19 and HER2) and the corresponding proteins in 70 breast

tumor samples. On a population level, we found good correla-

tions for HER2 mRNA and protein but poor correlation between

CK19 mRNA and protein. Some amplified samples, however,

strongly expressed HER2 protein but only weakly expressed

HER2 mRNA. In three samples that had prominent expression

of HER2 protein but not HER2 mRNA (E05, F04, I01), RNA ap-

peared to be degraded. Future studies should incorporate either

up-front or simultaneous testing for RNA integrity through the

detection of housekeeping gene expression to avoid false nega-

tives due to RNA degradation. Analysis of the combined expres-

sion of CK19 and HER2 mRNA in this study suggest that only a

minority of samples (11%) have suffered RNA degradation. The

difference between HER2 and CK19 mRNA and protein correla-

tions is therefore likely due to different mechanisms of regulation

of gene expression that could be rooted in transcription, transla-

tion, or protein and mRNA stabilities. Alternatively, the differ-

ences across patient samples we identified in mRNA-to-protein

level ratios could be due to patient-specific deregulation that

might be reflected in clinical features. Such comparisons have

never been done and will be closely inspected in our future

studies. Importantly, the relationship between mRNA and pro-

tein levels for HER2 and the lack thereof for CK19 was found

within the same cells, thereby strengthening our conclusions

and demonstrating the power of multiplexed single-cell

measurements.

We also investigated the expression of the chemokine

CXCL10 in tumor tissue sections from 70 breast cancer patients.

CXCL10 has been reported to have pro-tumorigenic and tumor-

suppressive functions (Bai et al., 2016; Bronger et al., 2016;

Duruisseaux et al., 2017; Liu et al., 2011; Peng et al., 2015;

Wightman et al., 2015). Interestingly, in breast cancer samples

from patients with known genetic profiles and clinical outcomes

(Györffy et al., 2010), expression of the CXCL10 transcript on a

population level was associated with slightly but significantly

poorer prognosis in estrogen receptor-positive tumors (Fig-

ure S5D) (Györffy et al., 2010). In tumors negative for both

estrogen and progesterone receptors, expression of CXCL10

was significantly associated with longer relapse-free survival

(Figure S5E) (Györffy et al., 2010). These data suggest that

CXCL10mRNA has potential as a biomarker, and further studies
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are needed to elucidate its function in different tumor settings.

CXCL10 mRNA was not expressed in all breast cancer patient

samples examined and was expressed only in a small percent-

age of cells. We observed most of the mRNA expression in

stromal cells, in contrast to previous studies in which CXCL10

protein staining was often observed in the epithelial compart-

ment (Bai et al., 2016; Duruisseaux et al., 2017; Mulligan et al.,

2013; Peng et al., 2015).

Interestingly, CXCL10-positive cells were often located in

patches, suggesting that these cells attract each other, induce

expression in neighbors, or are found in a specific microenviron-

ment. That transcripts such as CXCL10 may be used to infer

properties of the environment could be validated through mea-

surements of additional factors such as IFN-g, the key cytokine

that leads to CXCL10 expression (Luster and Ravetch, 1987).

Information on active transcription pathways suggestive of in-

flammatory events could be used to refine phenotypes of cells

in the tumor microenvironments. CXCL10 is a chemoattractant

for T cells (Khan et al., 2000), and we observed a correlation be-

tween T cell frequencies in stroma and frequencies of cells ex-

pressing high levels of CXCL10 mRNA. The epitopes detected

in our studywere not sufficient to reveal whether increased levels

of CXCL10 correlated with increased levels of cytotoxic T cells,

CD4+ type 1 T helper (Th1) cells, or Th2 cells, all of which are

known to be attracted through CXCL10 (Groom and Luster,

2011). This will be addressed in future studies along with the

question of which factors precisely control T cell phenotypes

after recruitment into the tumor microenvironment.

In summary, the IMC protocol for simultaneous detection of

RNA and protein targets described here enables comprehensive

and detailed cellular, phenotypic, and functional characteriza-

tions of single cells in FFPE tissues. The approach is highly

robust and flexible, shown also by another group that in parallel

to this study applied the RNAscope-based RNA detection to cell

lines using mass cytometry (Mavropoulos et al., 2017). The RNA

detection protocol is scalable, and higher multiplexing will soon

be possible. Our approach will guide the development of tissue

architectural maps of health and disease in unprecedented detail

and comprehensiveness. The ability to link transcript, protein,

and signaling networks in tissues with spatial resolution will

improve our understanding of tissue biology and will enable

assessment of drug efficacy, discovery of novel routes for inter-

vention, and identification of informative biomarkers, and thus

has the potential to become a pillar for precision medicine

approaches.
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Antibodies

Histone H3 Cell Signaling Technologies (CST) Cat#: 4499; RRID: AB_10544537

Cytokeratin 5 Abcam Cat#: ab52635; RRID: AB_869890

Cytokeratin 8/18 CST Cat#: 4546; RRID: AB_2134843

Cytokeratin 14 ThermoFisher Cat#: PA5-16722; RRID: AB_10980222

Cytokeratin 19 Dev. Studies Hybridoma Bank Troma-III; RRID: AB_2133570

SMA Abcam Cat#: ab76549; RRID: AB_2223019

Vimentin CST Cat#: 5741; RRID: AB_10695459

CD68 E-Bioscience Cat#: 14-0688-82; RRID: AB_11151139

CD3 CST Cat# 85061

CD44 R&D Systems Cat#: AF3660; RRID: AB_10971655

HER2 CST Cat#: 4290; RRID: AB_10828932

FSP1 Millipore Cat#: 07-2274; RRID: AB_10807552

E-/N-cadherin Becton Dickinson Cat#: 610182; RRID: AB_397581

Pan-Keratin AE1 Millipore Cat#: MAB1612; RRID: AB_2132794

Pan-Keratin AE3 Millipore Cat#: MAB1611; RRID: AB_2134409

Pan-Keratin Dako Cat#: Z0622; RRID: AB_2650434

pS6 CST Cat#: 4858; RRID: AB_916156

Ki-67 CST Cat#: 9449

Bacterial and Virus Strains

Biological Samples

Breast cancer tissue Univeristy Hospital Zurich N/A

Breast cancer tissue micro array Yale School of Pathology N/A

Chemicals, Peptides, and Recombinant Proteins

Ir Intercalator Fluidigm Cat# 201192A

Critical Commercial Assays

MaxPar labeling kit Fluidigm Cat# 201300

RNAscope fluoresecent multiplex kit ACD N/A

Spin columns for oligonucleotide

purification

Millipore Cat# MRCF0R030

Chamber slides Ibidi Cat# 81201

Deposited Data

Images from breast cancer TMA https://doi.org/10.17632/m4b97v7myb.1

Images from IMC and IF comparison https://doi.org/10.17632/m4b97v7myb.1

Images from buffer comparison https://doi.org/10.17632/m4b97v7myb.1

Images from HeLa cell pellets https://doi.org/10.17632/m4b97v7myb.1

Images from control gene expression https://doi.org/10.17632/m4b97v7myb.1

Experimental Models: Cell Lines

A431 cell line University of Zurich Pelkman’s lab

HeLa cell pellets ACD Cat# 310045

Oligonucleotides

CK19 probes channel 1 ACD Cat# 310221

CXCL10 probes channel 2 ACD Cat# 311851-C2

ERBB2 probes channel 3 ACD Cat# 310081-C3

POLR2A probes channel 1 ACD Cat# 310451

(Continued on next page)

Cell Systems 6, 25–36.e1–e5, January 24, 2018 e1

https://doi.org/10.17632/m4b97v7myb.1
https://doi.org/10.17632/m4b97v7myb.1
https://doi.org/10.17632/m4b97v7myb.1
https://doi.org/10.17632/m4b97v7myb.1
https://doi.org/10.17632/m4b97v7myb.1


Continued
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PPIB probes channel 2 ACD Cat# 313901-C2

UBC probes channel 3 ACD Cat# 310041-C3

GAPDH probes channel 1 ACD Cat# 310321

ACTB probes channel 2 ACD Cat# 310141-C2

dapB probes channel 1/2/3 ACD Cat# 310043-C1/2/3

TBP probes channel 2 ACD Cat# 314291-C2

Recombinant DNA

CK19 overexpression vector GenScript Clone ID: OHu19117

CXCL10 overexpression plasmid Dharmacon Clone ID: 6354

ERBB2 overexpression vector Addgene Plasmid #23888

pDEST pcDNA5 FRT TO-eGFP Couzens et al., 2013; University

of Toronto

N/A

Software and Algorithms

CellProfiler Kamentsky et al., 2011 www.cellprofiler.org

Ilastik 1.1.19 Sommer et al., 2011 www.ilastik.org

HistoCAT Schapiro et al., 2017 www.bodenmillerlab.org

R 3.4.1 R Developemement Core

Team, 2015

https://www.R-project.org

Matlab 2014b MathWorks www.mathworks.com

Python 3.4.3 Python Software Foundation. www.python.org

PhenoGraph Levine et al., 2015 R implementation:

https://github.com/JinmiaoChenLab/Rphenograph
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bernd

Bodenmiller (bernd.bodenmiller@imls.uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Biological Material
Human FFPE HeLa cell pellet sections with 5 mm thickness were obtained from ACD. Human breast cancer tissue sections were

obtained from our collaborators at the University Hospital Zurich under ethics approval KEK-ZH-no.: 2012-0553. The HER2 TMA

(FFPE) was previously described (Carvajal-Hausdorf et al., 2015) and was kindly provided by David Rimm from the Yale School of

Pathology. Overexpression experiments were performed in A431 breast cancer cell lines. Cells were cultured in DMEM (D5671,

SIGMA), supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin. A431 cells were only

used for overexpression of mRNA target genes and no authentication of the cell line was performed in this study.

METHOD DETAILS

Experimental Design
The number of independent replicates is given in the respective figure legends. No sample size estimations and no blinding were

performed. The cores from the HER2 TMA were acquired in a random order to exclude bias due to long measurement times. Further

information on statistical tests is provided in the respective STAR Methods section.

Antibody Conjugation
Carrier-free antibodies were conjugated to metal tags using the MaxPar� labeling kit (Fluidigm) following themanufacturer’s instruc-

tions. The yield of each conjugation was determined photometrically, and antibodies were stored at concentrations ranging from

100-400 mg/ml in stabilizing solution (Candor Biosciences) at 4�C.
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Oligonucleotide Conjugation
Oligonucleotides were conjugated to metal tags as previously described (Frei et al., 2016). Briefly, thiol-modified C6 S-S oligonucle-

otides were obtained from ACD. Oligonucleotides (7 mmol) in ddH2O were reduced with TCEP (final concentration 50mM) for 30 min

at room temperature followed by an ethanol precipitation. The pellets were resuspended in 50 ml C-Buffer (MaxPar labeling Kit).

Simultaneously the MaxPar polymers were loaded with metals and purified in C-Buffer according to the manufacturer’s protocol.

For the oligonucleotide polymer conjugation 2 nmol of oligonucleotides were conjugated with 100 mg polymer in C-Buffer for 2 h

at room temperature. After 2 h, 5 nM TCEP was added to the reaction to reduce oligonucleotide dimers. The reaction was purified

with 30-kDa filter columns (MRCF0R030, Millipore) and washed twice with ddH2O, and the conjugated oligonucleotides were resus-

pended in 100 ml ddH2O. Conjugated and unconjugated oligonucleotides were run on a 4% agarose gel and visualized using GelRed

(Biotium). The concentration of the oligonucleotides was determined photometrically, and a 1 mM dilution in ddH2O was made and

stored at 4�C.

Sample Pre-treatment
Prior to RNA staining with RNAscope� Fluorescent Multiplex Kit, samples were pre-treated according tomanufacturer’s protocol for

FFPE samples. For the comparison with the HIER protocol consecutive sections were cut at four micrometer thickness from a FFPE

tissue block, and the sections were subsequently baked on Superfrost Plus slides at 37�C for 2 h. Sections were deparaffinized in

xylol (2x10 min). After a 10-min wash in xylol/100% ethanol (1:1) sections were rehydrated in a graded alcohol series (100%,

90%, 80%, 70%, 50%) for 10 min each step, followed by a wash in TBS for 10 min. Antigen retrieval was performed using Tris-EDTA

buffer (pH 9.2) for 20 min at 95�C. After cooling, blocking buffer (3% normal horse serum, 0.5% Trition-X-100 in TBS) was applied for

at least 1 h at room temperature. Sections were incubated with antibodies overnight at 4�C. After brief washing samples were incu-

bated with MaxPar Intercalator-Ir (1:1000; Fluidigm, Cat: 201192B) in PBS for 5 min, rinsed (3x5 min) with TBS, dried under airflow,

and stored at room temperature until measurements.

IMC and FISH Comparison
To compare IMC and FISH measurements we used HeLa cell pellets. The RNA staining was performed with the RNAscope Fluores-

centMultiplex Kit following themanufacturer’s protocols. During the final staining step of the RNAscope protocol for the hybridization

of the detection oligonucleotides a mix of 10 nM metal-labeled and fluorophore-labeled oligonucleotides was applied. The sections

were then briefly washed in TBS and then stained with antibodies in TBS-Tween overnight at 4�C. The next day the slides were

stained with DAPI for 5 min followed by a washing step in PBS and then stained with a 1:1000 dilution of 500 mM MaxPar Intercala-

tor-Ir (Fluidigm) in PBS for 5min. The samples were thenwashed twicewith PBS and imaged for fluorescence staining on a Zeiss Axio

Scan.Z1 slidescanner (ORCA-Flash 4.0 camera; objective, Plan-Apochromat 403/0.95; filter sets, DAPI, Alexa Fluor 488, and Alexa

Fluor 548). Images were acquired using Zen blue software, and data was exported as 16 bit tiff images. After fluorescence imaging

the coverslips were carefully removed and the slides dried under airflow for IMC measurements. On the IMC an area that had

previously been imaged with the fluorescent microscope was selected for ablation and metal detection.

RNA and Protein Staining
RNA staining was performed with an RNAscope Fluorescent Multiplex Kit following the manufacturer’s protocols. Metal-labeled

oligonucleotides were used at a final concentration of 20 nM. For simultaneous antibody staining, the sample slides were briefly

washed with TBS after the last wash in the RNAscope protocol. Subsequently slides were stained with antibodies (diluted in

TBS-Tween) overnight at 4�C in a wet chamber. The next day slides were washed for 5 min in TBS and then stained for 5 min in a

1:1000 dilution of 500 mM MaxPar Intercalator-Ir (Fluidigm) in PBS. Slides were washed for 5 min in PBS, dried under airflow, and

stored at room temperature until measurements.

Overexpression of CK19 and CXCL10 and ERBB2

CK19 expression-ready vector was obtained from GenScript (Clone ID: OHu19117). ERBB2 (Plasmid #23888, Addgene) (Johannes-

sen et al., 2010) and CXCL10 (Clone ID: 6354, Dharmacon) were cloned into a pDEST pcDNA5 FRT TO-eGFP vector (Couzens et al.,

2013) via Gateway Cloning for transfection. A431 cells (a kind gift form the Pelkmans lab, University of Zurich) were seeded at the

density of 50,000 per well in a 12-well chambered slide (Ibidi) 24 h before transfection and were transfected with 0.3 mg plasmid

and 0.6 ml of jetPRIME (PolyPlus) per well with the standard protocol provided by the manufacturer. After16-20 h, cells were briefly

washed with PBS and then fixed for 15 min with 10% formaldehyde. Cells were washed with PBS and then permeabilized with 0.1%

Triton in PBS for 5 min. Cells were then treated with a 1:15 dilution of Protease III (ACD) at room temperature and washed once with

PBS and twice with ddH2O. Probe hybridization was performed using the ACD multiplexed fluorescence kit following the manufac-

turer’s protocol.

Data Acquisition
For IMC, images were acquired with a beta prototype unit of the laser module from Fluidigm coupled to a Helios mass cytometer. As

the machine is under development various software developments and changes accompanied the experiments. Early versions

required manual tuning of the argon and helium gas flows before every acquisition in order to achieve optimal carriage of ablated

materials to the plasma of the mass cytometer. Therefore, a metal-coated tuning slide (Fluidigm) was used to optimize peak intensity
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and resolution as a function of helium and argon gas flow. Later software versions included automated tuning procedures performed

on a daily basis before acquisitions. The TMAdatawere acquired in a single batch over oneweek. All imageswere acquired at 200Hz,

and data are stored as MCD files as well as txt files.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image Generation
The txt files output from the IMC instrument were converted to tiff images using custom written code in Python (https://github.com/

BodenmillerGroup/imctools). False color images for visualization were prepared from the tiff images in FIJI open source software.

Pixel Classification in Ilastik for Segmentation
For single-cell analysis, tiff stacks of images from histone H3, DNA1, DNA2, panCytokeratin, E-/N-cadherin, and HER2were created.

These stackswere used for pixel classification in Ilastik open source software (Sommer et al., 2011). Using Ilastik we defined pixels as

belonging to the nuclear, cytoplasmic, or background compartments and exported these class probabilities as RGB tiff images. For

the TMA analysis randomly selected 125 x 125 pixel sections of each of the channels analyzedwere generated from the tiff stacks and

then scaled up to generate 250 x 250 pixel images, which are easier to classify. The pixel classification was trained on the random

small image stacks of all samples and was subsequently applied to the original large image stacks in batch mode to generate prob-

abilities for nuclear, cytoplasmic, and background signals. These probability images were then exported as RGB tiff files.

Single Cell Segmentation
Ilastik RGB probability images were subsequently imported into CellProfiler (Kamentsky et al., 2011) along with the original images

(all channels) and used for single-cell segmentation, mask generation, and marker quantification. From the probabilities from Ilastik

we defined nuclei as primary objects. To define cells we expanded the nuclei toward the border between cytoplasm and background

as defined from the Ilastik cytoplasm and background channel and then scaled them down to the original resolution. A mask for the

identification of single cells was generated in CellProfiler and was saved as a tiff image. The abundance of either RNA or antibody

signals for every cell was also quantified in CellProfiler and exported as a table for further use. Image segmentation from the over-

expression experiments was performed using the ‘‘IdentifyObjectsManually’’ CellProfiler module. Single cell quantifications for

roughly 50-100 cells per condition were exported for plotting in R.

Data Analysis
The generated single-cell data were then further analyzed using R and histoCAT (Schapiro et al., 2017). Log10 transformation was

applied as indicated in the figures. However, because in the RNA channels we observed cells with a mean of 0 counts we set all cells

with mean counts lower than 0.005 to aminimum value of 0.005. Quantile normalization (99th percentile) was applied for PhenoGraph

clustering (parameter k = 50) as proposed in the original publication (Levine et al., 2015). All correlation based analyses were per-

formed using Spearman correlation, which is invariant to data transformation or Pearson correlation on untransformed data for

the buffer comparison.

Statistical Tests and Data Exclusion
The TMA consisted of 88 samples, but several samples were lost during the TMA processing. Samples with fewer than 200 total cells

were excluded from the analysis which resulted in a final dataset of 70 samples. Of the 70 samples, three samples had no epithelial

cells and were also excluded. For the statistical analysis of the HER2 mRNA and protein expression in epithelial cells compared to

epithelial cells from control tissues we used a one tailed t-test. Because patient samples were only analyzed once, we assumed equal

variance as observed for the six different control tissue samples on the TMA. No significances were calculated for samples with less

than 50 epithelial cells, and correlations for RNA and protein were only calculated for samples with at least 50 epithelial cells. For RNA

integrity estimates samples with less than 50 epithelial cells were discarded. This resulted in 10 samples with 95% or less of the

epithelial cells having less than -0.5 transformed mean counts (samples C10, D03, E05, E10, F04, F06, F10, H10, I01, J10). Of these,

samples D03, C10 and J10 did not express either CK19 or HER2 protein. This resulted in 7 samples corresponding to 11%of all sam-

ples with more than 50 epithelial cells that showed protein expression but not RNA expression andmay thus have suffered from RNA

degradation. The statistical significance of the association between observing T cells (<10%) in the absence of CXCL10high cells

(<1%) was determined using a Barnard’s test on the contingency table.

Neighborhood Analysis Using histoCAT
For the standard neighborhood permutation test our recently published software histoCATwas adapted to allow studies of the neigh-

borhood of manually gated populations as well as specifically test for patches. This modified version of histoCAT (patch detection) is

available on GitHub. For the CXCL10high neighborhood, cells that expressed high levels of CXCL10 were gated manually within

histoCAT. The algorithm was adapted to calculate the occurrence of cells with two or more neighbors of the same cell phenotype,

which we define as a ‘‘patchy’’ motif. Comparing the frequency of this patchy motif in an image versus the empirical distribution of
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999 random permutations of the cell class labels in the same image, while maintaining the overall connectivity structure of the image,

allowed calculation of p-values. These indicate how likely it would be to observe as many or more patchy motifs in an image by

chance.

RNA FISH and IMC Data Analysis
The tiff images from the slide scanner and from the IMC were cropped to be roughly the same area and then overlaid in FIJI using the

turboreg plugin (bilinear, manual setting of landmarks). Landmarks were exported and IMC images scaled up using software custom

written in Matlab to reach the same resolution as microscopy images. For the upscaling of of the IMC images a similarity transform

was used and the total intensity per image was kept constant resulting in a factor by which the absolute IMC signal was increased

through upscaling. Pixel classification and segmentation were performed as described above to generate the single-cell mask. For

mRNA spot counting in the fluorescence images a previously published spot counting algorithm (Battich et al., 2013) was imple-

mented in our published software histoCAT (Schapiro et al., 2017). This newest release of histoCAT now screens for ‘‘RNA’’ in the

names of the images to be loaded and if true will automatically start the spot counting module. Parameters for spot detection match

those from the previous publication (Battich et al., 2013) and were set as follows: Object size = 5; Intensity Quanta Per Image = 0.02

0.99; Threshold of Spot Detection = 0.013; Steps of Deblending = 30. histoCAT allows the user to inspect the spot detection and

adapt the parameters to rerun the spot detection before continuing. Once all the images and themask are loaded histoCAT also auto-

matically creates the ‘‘Spots’’ channel for the image that contained ‘‘RNA’’ in the filename. Additionally, histoCAT calculates the ab-

solute ion counts per cell for all IMC channels. This allows direct comparison of either mean fluorescence intensity per cell versus

mean ion counts per cell or it allows comparison of absolute RNA spots per cell to absolute ion counts per cell. Of note, the ion counts

in histoCAT are multiplied by the factor of image upscaling. Therefore, to obtain the correct ion counts per single-cell the data was

exported from histoCAT, IMC data divided by the upscaling factor and plotted in R.

DATA AND SOFTWARE AVAILABILITY

The accesstion number for the data reported in this paper is MendeleyData: https://doi.org/doi:10.17632/m4b97v7myb.1. The spot

detection and patch detection implemented in histoCAT is available in the newest release of histoCAT (https://github.com/

BodenmillerGroup/histoCAT). All custom code from Matlab, Python, and R is available upon request.
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