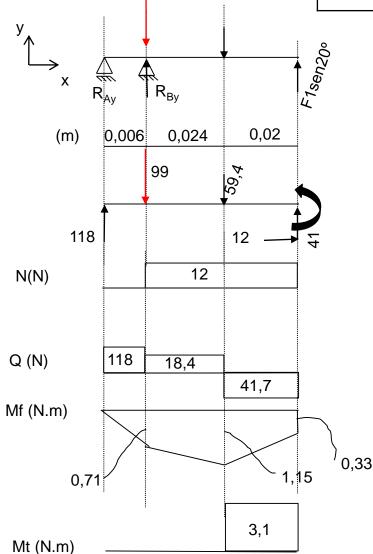
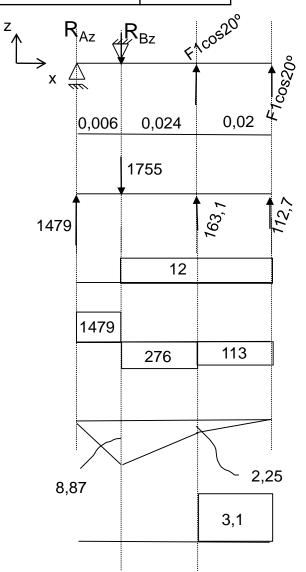
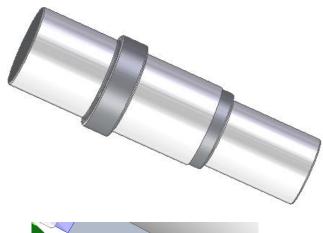
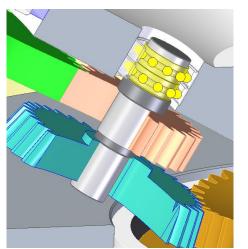


3ª prova – sem consulta – Prof. Fortulan


Aluno: _______ nº USP___


A figura abaixo representa o eixo de intermediário de um misturador *speed mixer* em ABNT 4340 Q&T a 540°C que suporta uma engrenagem cilíndrica de dentes retos (2) e outra cônica de dentes retos (1) e tem dois mancais de apoio. O eixo gira a 1380 rpm transmitindo esforços intermitentes (máximo 10 mins) sem reversão, aplicados com vibração média em temperatura de 80°C. Dimensionar o cubo da engrenagem e suas condições de montagem. Dimensionar os rolamentos em "**tandem**" lubrificados com graxa em óleo base ISO VG XX determinar momento de partida, checar velocidade crítica e **fazer croqui** considerando vedação, bloqueios e posicionamentos. Considere: μ_e Fofo-aço=0,15; μ_e aço-aço=0,3. L_e=12




Final Nº USP		Engrenagem	Lubrificação óleo Base
0 e 1	А	(1) Aço, Chaveta	ISO VG100
2 e 3	В	(1) Aço, interferência	ISO VG460
4 e 5	С	(2) Aço, Chaveta	ISO VG68
6 e 7	D	(2) Aço, Interferência	ISO VG100
8 e 9	Е	(1) Fofo, interferência	ISO VG460

Valores admissíveis (respectivamente em [kgf/cm²] e [MPa] para uniões com pinos para solicitação nulsantes):

	ANT 1010	St37 ABNT 1020	St50 ABNT 1030	St60 ABNT 1040	St70 ABNT 1050	ABNT 4340	ABNT 8620	GS fofo nodular	GG fofo cinzento
p _{adm}	550	650	880	1050	1200	2100	1700	550	450
	55	65	88	105	120	210	170	55	45
σ_{fadm}	460 46	550 55	700 70	850 85	1000 100	2000 200	1600 160	-	-
T _{adm}	300	360	480	580	680	1100	1000	-	-
	30	36	48	58	68	110	100	-	-

Tab. 18.6 - Niemann v.2, p.71

[•] Para solicitação alternada multiplicar por 0,7;

[•]Para solicitação estática multiplicar por 1,5;

[•]No caso de cavilhas, multiplicar por 0,7 os valores de p_{adm}

$$Mf_{Be} = \sqrt{1,68^2 + 1,149^2} = 2,04 \text{ kN.m}$$
 $Mf_C = \sqrt{2,13^2 + 0,291^2} = 2,15 \text{ kN.m}$ $Mt_B = Mt_B = 1 \text{ kN.m}$ $Mf_D = \sqrt{1,41^2 + 1,149^2} = 1,82 \text{ kN.m}$ $Mf_D = \sqrt{0^2 + 0,257^2} = 0,257 \text{ kN.m}$

$$M_{eq-Be} = \sqrt{M_{fr}^{2} + \frac{3}{4}M_{t}^{2}} = \sqrt{2,04^{2} + \frac{3}{4}0^{2}} = 2,04 \text{ kN.m} \qquad M_{eq-C} = \sqrt{M_{fr}^{2} + \frac{3}{4}M_{t}^{2}} = \sqrt{2,15^{2} + \frac{3}{4}1^{2}} = 2,32 \text{ kN.m}$$

$$M_{eq-Be} = \sqrt{M_{fr}^{2} + \frac{3}{4}M_{t}^{2}} = \sqrt{1,82^{2} + \frac{3}{4}1^{2}} = 2,02 \text{ kN.m} \qquad M_{eq-D} = \sqrt{M_{fr}^{2} + \frac{3}{4}M_{t}^{2}} = \sqrt{0,257^{2} + \frac{3}{4}1^{2}} = 0,90 \text{ kN.m}$$

Pré dim. Em C

$$\overline{d} = 2,17\sqrt[3]{\frac{M_{eq}}{\sigma_{adm}}} = 2,17\sqrt[3]{\frac{2,32.10^3}{1000.10^6}} = 0,047m \Rightarrow d = 1,1a1,2\overline{d} \Rightarrow d \cong \sim 55mm$$

Caso particular $k_f = \infty e k_t = 1$

$$\sigma^{*} = \sqrt{\sigma_{m\acute{a}x}^{2} + H^{2}\tau^{2}} \qquad H = \frac{\sigma_{Faf}\beta_{kt}}{\tau_{e}\beta_{kaf}} = \frac{520.1}{560.1} = 0,93$$

$$\sigma_{Faf} = 520MPa(Fig1);$$

$$\sigma^{*} = \sqrt{\sigma_{m\acute{a}x}^{2} + H^{2}\tau^{2}} \qquad \tau_{e} = 0,8\sigma_{e} \rightarrow 0,8.700 = 560MPa; \beta_{kt} = \beta_{kf} = 1 \Rightarrow sem \ entalhe$$

Planej 1 Mf, Meq 1 Pre dim em σ^* 1 ofadm 1^a sec 2 ofadm demais sec (ate 4) 3 Croqui 2

8620
$$\sigma_{e} = 260MPa$$

$$\sigma_{Faf} = 520MPa(Fig1);$$

$$\sigma_{Faf} = 240MPa(Fig1);$$

$$\sigma_{Faf} = 240MPa(Fig1);$$

4340
$$\sigma_{Faf} = 520MPa(Fig1); \qquad \qquad \sigma_{rt} = 750MPa \\ \sigma_{Faf} = 330MPa(Fig1); \qquad \qquad \sigma_{Faf} = 330MPa(Fig1);$$