80C51

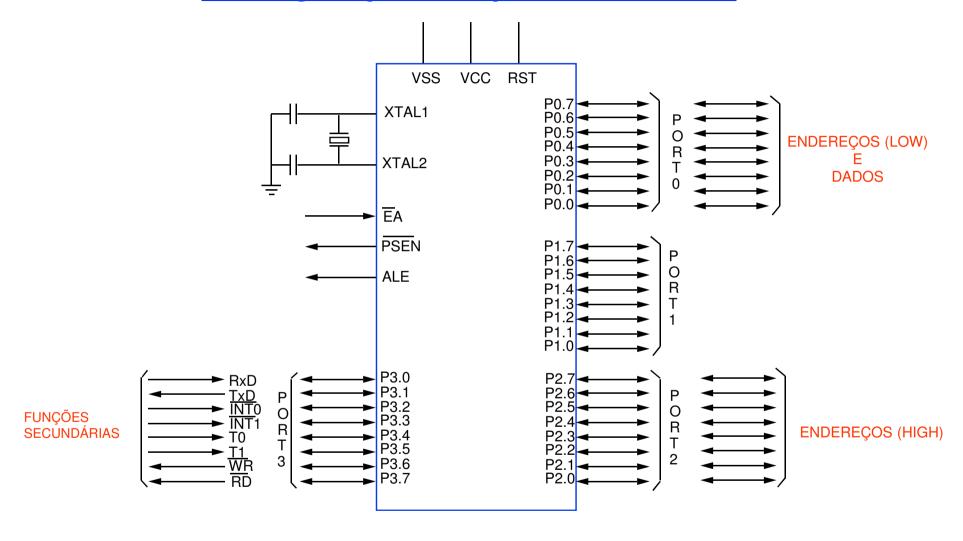
Parte 1

O microcontrolador 80C51

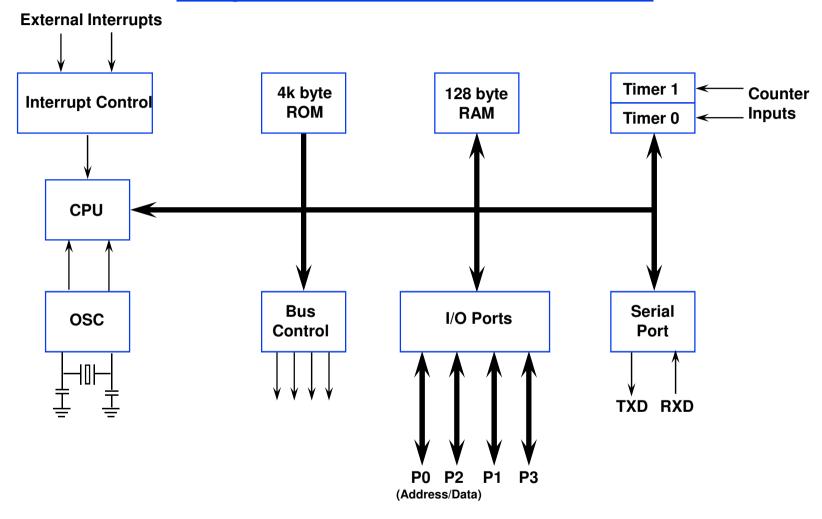
- O 80C51 é membro da família MCS-51, e constitui o núcleo de todos os dispositivos MCS-51
- É um sistema de um *chip* único, que além do microprocessador de 8 bits pode conter:
 - . Memória de Programa e Memória de Dados
 - . Portas de I/O
 - . Comunicação Serial
 - . Contadores/ "Timers"
 - . Lógica para Controle de Interrupção
 - . Conversores A/D e D/A
 - . etc ...
- O microprocessador de 8 bits é otimizado para aplicações de controle

Características do 80C51

- Duto de dados e ULA de 8 bits
- Interfaceamento fácil
- Versões disponíveis de 12 a 30 MHz
 (instruções de um ciclo, de1 μsec a 400 ns).
- O conjunto de instruções inclui:
 Multiplicação e Divisão
 Bit set, reset, e test (Instruções Booleanas).
- Diversos modos de endereçamento.


Características do 80C51 (continuação)

- ROM de 4K X 8 Memória de Programa.
- RAM de 128 x 8 Memória de Dados.
- Registradores de funções especiais.
- Porta Serial


- 32 linhas de I/O.

- Dois contadores/Timers de 16 bits.

Configuração dos pinos do 80C51

Diagrama em Blocos do 80C51

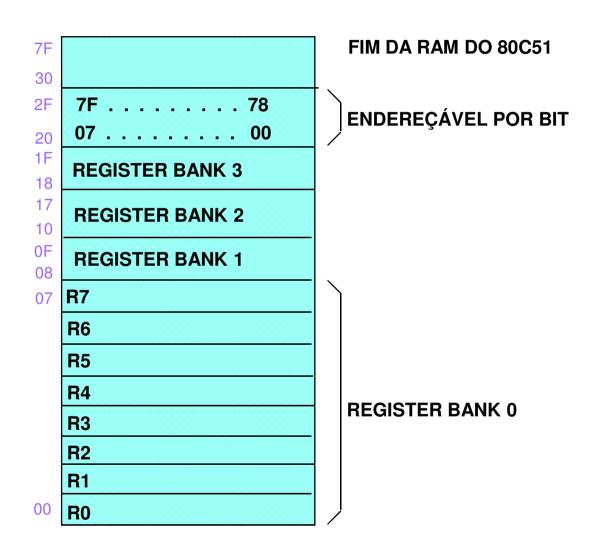
Espaço para Endereçamento

- espaço para endereçamento de até 64Kx8 de ROM Memória de Programa
- espaço para endereçamento de até 64Kx8 de RAM Memória externa de dados.
- RAM de 256 x 8 RAM Memória interna de dados.
- SFRs de 128 x 8 : Special Function Registers .
- Endereçamento por bit em 16 posições da RAM e 16 SFRs.

Memória de Programa

- Contador de Programa (PC) de 16 bits
- Ponteiro de Dados (DPTR) de 16 bits.
- endereçamento relativo para acessar look-up tables:

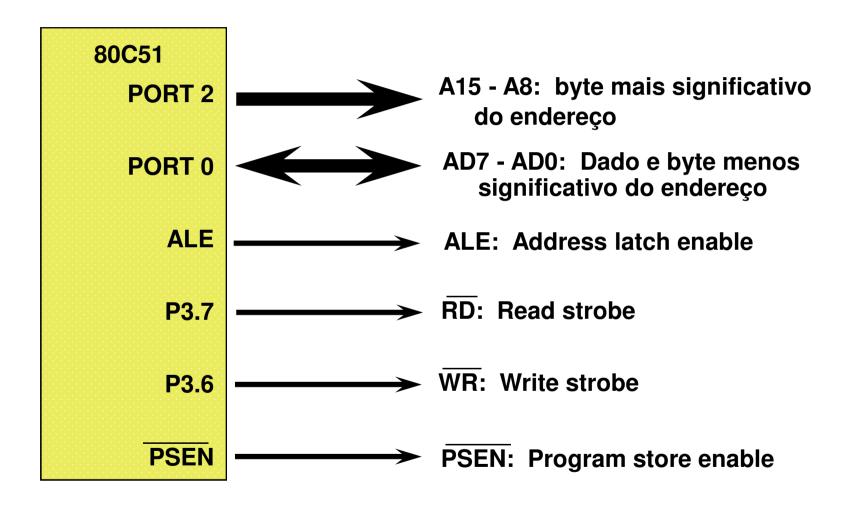
PC + ACC (Move).

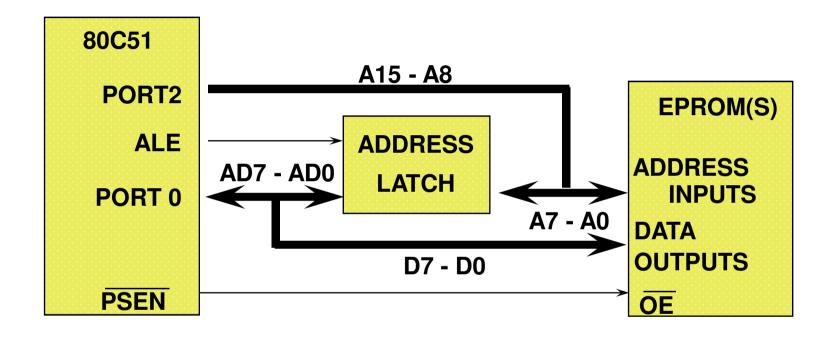

DPTR + ACC (Move and jump).

- pino EA em "0" torna inativa a ROM interna e habilita a memória de programa externa.

Memória Interna de Dados

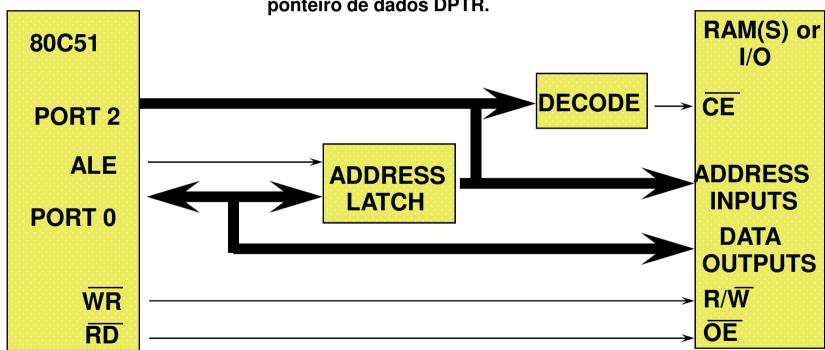
- faixa de endereço endereçavel diretamente:
 00 a 7F hexadecimal.
- faixa de endereço endereçavel indiretamente: 00 a FF hexadecimal.
- espaço endereçavel por bit: 20 a 2F hexadecimal.
- quatro bancos de 8 registradores:
 00 a 1F hexadecimal.


Memória Interna de Dados


Memória Externa de Dados

- endereçamento indireto através de R0 e R1, em segmentos de 256 bytes
- o espaço todo é indiretamente endereçável através do ponteiro de dados DPTR

Expansão do Duto Externo


Memória Externa de Programa

Memória Externa de Dados

- · espaço de endereço de 64K bytes
- endereçável indiretamente por R0 e R1, em segmentos de 256 bytes

Espaço de Endereço dos Registradores de Funções Especiais

- 80H a FFH, endereçável diretamente.
- 16 posições são endereçáveis por bit (aquelas terminando em 0 ou 8) :

Set, Clear, AND, OR, MOV

- este espaço contém:
 - .. registradores da CPU para funções especiais.
 - .. registradores de controle de I/O.

Mapa dos Registradores de Funções Especiais

endereçável por Bit——							
F8	Y						
F0	В						
E8							
E0	ACC						
D8							
D0	PSW						
C8							
C0							
B8	IP						
В0	P3						
A8	IE						
A0	P2						
98	SCON	SBUF					
90	P1						
88	TCON	TMOD	TL0	TL1	TH0	TH1	
80	P0	SP	DPH	DPL			PCON

Registradores de Funções Especiais

registradores da CPU:

- ACC : Accumulator.- B : registrador B.

- PSW : Program Status Word.

- SP : Stack Pointer.

- DPTR : Data Pointer (DPH, DPL).

controle de interrupção:

-IE : Interrupt Enable.
-IP : Interrupt Priority.

portas de I/O:

- P0 : Port 0.
- P1 : Port 1.
- P2 : Port 2.
- P3 : Port 3.

Registradores de Funções Especiais (continuação)

timers:

- TMOD : modo do Timer

- TCON : controle do Timer

- TH0 : byte + sign. do Timer 0

- TL0 : byte -sign do Timer 0

- TH1 : byte + sign. do Timer 1

- TL1 : byte - sign. do Timer1

comunicação serial:

- SCON : Serial port control.

- SBUF : Serial data registers.

Outro:

- PCON : Power control & misc.

PSW: Program Status Word

CY	AC	F0	RS1	RS0	OV	 Р

- CY : Carry Flag.

- AC : Auxiliary Carry Flag.

- F0 : Flag 0 (available for user).

- RS1 : Register Select 1.- RS0 : Register Select 0.

- OV : Arithmetic Overflow Flag.

- P : Accumulator Parity Flag.

RS1	RSO	Register Bank	Address
0	0	0	00h - 07h
0	1	1	08h - 0Fh
1	0	2	10h - 17h
1	1	3	18h - 1Fh

Contadores / Timers

 Dois Contadores/Timers de 16 bits
 contadores no modo crescente podem causar interrupção na ocorrência de overflow

- Contadores:
 - . ciclos da CPU (cristal/12).
 - . entrada externa (max. metade da taxa da CPU).
- 4 modos de operação.

Modos do Timer

- Modo 0:

Emula contador/timer (13 bits) do 8048 contador de 8-bits (TL0 or TL1).

prescaler de 5 bits (TH0 or TH1).

- Mode 1:

contador de 16-bits.

- Mode 2 :

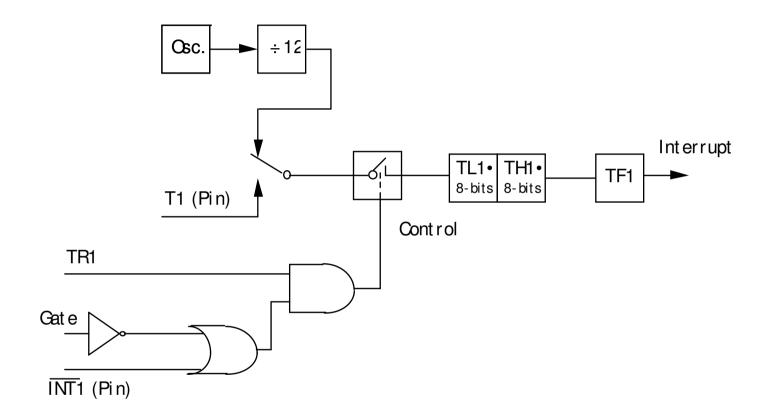
- . 8-bits auto-reload.
- . contador em TL0 ou TL1.
- . valor a ser carregado em TH0 ou TH1.
- . gera um flag periódico ou interrupção.

Modos do Timer (continuação)

- Modo 3 :

Separa o timer 0 em 2 contadores/timers de 8-bits.

O primeiro contador(TL0) opera como modo 0, sem prescaler.


O segundo contador (TH0) conta ciclos da CPU, e usa os seguintes recursos do *timer 1 :*

- . bit run, TR1, como habilitação
- . bit overflow, como flag
- . interrupção

Timer 1 (quando timer 0 encontra-se no modo 3):

- . Contador não ativo se no modo 3.
- . Contador em operação se no modo 0, 1, ou 2.
- . Possui entrada externa (T1) e *gate* (INT1), mas não há flag ou interrupção.
- . Pode ser usado como gerador de baud rate

Countador/Timer em 16 bits (Modo 1)

A entrada "Gate" controla o Contador "rodando" enquanto mantido por um sinal de interrupção ou não.

TMOD: Registrador de Modo do Contador/Timer

GATE C/T M1 M0 GATE C/T M1 M0

Timer 1

Timer 0

- GATE : determina que o pino INTx controla a habilitação do contador.
- C/T : <u>Set</u> para operação de contador e <u>reset</u> para operação de *timer*.
- M1, M0:
 - 00 : Emula contador/timer (13-bits) do 8048
 - 01 : countador/timer de 16 bits
 - 10: modo auto-reload de 8 bits
 - 11 :Timer 0 = dois timers de 8 bits
 - Timer 1 = Contador não ativo e *timer* ativo . Pode ser usado como gerador de Baud Rate.

TCON: Registrador de Controle para o Contador/Timer

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

- TF1, TF0 : flags de Overflow para Timer 1 e Timer 0.
- TR1, TR0 : bits de controle de execução para Timer 1 and Timer 0; "set" coloca os *timers* em operação.
- IE1, IE0 : flag para as interrupções externas 1 e 0. Tornam-se ativos (em "1") na borda de um sinal de interrupção. Recebem um 'clear"quando a interrupção é processada.
- IT1, IT0 : bit para controle do tipo de interrupção *
 Em "1"para selecionar disparo na borda de descida, e "0" para nível '0" no sinal de interrupção

^{* =} não relacionado à operação do contador/timer

Interface Serial

- UART Full duplex.
- Quatro modos de operação:
 - . Síncrono, mapeado em I/O (expansão).
 - . Assíncrono, em I/O, com baud rate variável.
 - . Modo de nove bits com baud rate variável
 - . Modo de nove bits com baud rate fixo
- Frames de 10 ou 11 bits
- Registradores:
 - SCON registrador de controle da porta serial
 - SBUF Lê dado recebido.
 - armazena dado a ser transmitido.
 - PCON bit SMOD

Modos de Operação da Interface Serial

TXD e RXD são os pinos de saída e entrada serial (Porta 3, bits 1 and 0).

Modo 0: Modo registrador de deslocamento. O dado serial é transmitido/recebido em RXD. Na saída TXD é gerado o *clock* de deslocamento. Baud rate é igual a 1/12 da.frequência do *clock*.

Modo 1: 10 bits são transmitidos or recebidos: Start (0), 8 bits de dados (o primeiro é D0), e um bit stop(1).
 O clock é variavel usando o overflow do Timer 1 ou entrada externa de contagem.
 Pode chegar até 104,2 KHz (20MHz osc.).

Modo 2: 11 bits transmitidos ou recebidos: Start (0), 8 bits de dados (o primeiro é D0), o nono bit é programável, e o stop bit (1). Baud Rate é programável entre 1/32 ou 1/64 da frequência do oscilador (625KHz para 20MHz osc.).

Modo 3: modo de 11 bits. Baud Rate variavel usando o overflow do Timer 1 ou entrada externa, 104.2 KHz max. (20 MHz osc.).

SCON: Registrador Serial de Controle

SMO SM1 SM2 REN TB8 RB8 TI RI

```
- SM0, SM1 = Modo serial
    00 = Modo 0 : registrador de deslocamento, expansão I/O
    01 = Modo 1 : UART de 8 bits com baud rate variável.
    10 = Modo 2 : UART 9 bits com baud rate fixa.
    11 = Modo 3 : UART de 9 bits com baud rate variável
- SM2 :
    Mod0 0
                         :não usado.
    Modo 1
                         : 1 =ignora bytes sem stop bits.
    Modo 2,3
                         : 0 = faz "Set" em todos bits de recepção
    de interrupção(RI).
                         : 1 = \text{``set''} em RI nos bytes onde bit 9 = 1.
- REN = habilita recepção
- TB8 = Nono bit transmitido (nos modos 2 e 3).
- RB8 = Nono bit recebido:
    Mode 0
                         : Não usado.
    Mode 1
                         : bit stop
    Mode 2.3
                         : 9.o bit de dado.
- TI = flag de interrupção transmitido
```

- RI = flag de interrupção recebido

Sistema de Interrupção

- 5 fontes de interrupção (em ordem de prioridade):
 - . Interrupção externa 0.
 - . Timer 0.
 - . Interrupção externa 1.
 - . Timer 1.
 - . Porta Serial
- Cada tipo de interrupção tem um endereço de vetor separado.
- Cada tipo de interrupção pode ser programado para um ou dois níveis de prioridade
- Interrupções externas podem ser programadas para serem sensíveis à borda ou a nível.

IE: Registrador de Habilitação de Interrupção

EA ---- ES ET1 EX1 ET0 EX0

- EA : habilita interrupção

global.

- ES : interface serial

- ET1 : Timer 1.

- EX1 : interrupção externa 1.

- ET0 : Timer 0.

- EX0 : interrupção externa 0

- 0 = não ativa

-1 = ativa