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FIGURE 5.19
Lift and pitching moment of a NACA 0009 airfoil.

increases beyond the limits of the small angle of attack assumption, the
streamlines do not follow the airfoil surface shape (Fig. 5.20) and the flow is
considered to be separated. This results in loss of lift, as indicated by the

experimental data in Fig. 5.19 (for a > 10°) and this condition is called airfoil
stall.

3. Airfoil camber does not change the lift slope and can be viewed as an
additional angle of attack effect (a;, in Eq. (5.66)). This is shown
schematically by Fig. 5.21. The symmetric airfoil will have zero lift at =0
while the airfoil with camber has an “effective” angle of attack that is larger
by ay,.

4. The trailing edge section has a larger effect on the above camber effect.
Therefore, if the airfoil lift needs to be changed without changing its angle
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FIGURE 5.20

Streamlines of the attached (a) and separated (b) flow over an airfoil.
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of attack, then changing the chordline geometry (e.g., by flaps, or slats) at
the trailing edge region is more effective than at the leading edge region.

5. The effect of thickness on the airfoil lift is not treated in a satisfactory
manner by the small-disturbance approach, but will be calculated more
accurately in the following two chapters.

6. The two-dimensional drag coefficient obtained by this model is zero and
there is no drag associated with the generation of two-dimensional lift.
Experimental airfoil data, however, includes drag due to the viscous
boundary layer on the airfoil, which should be included in engineering
calculations. The experimental drag coefficient values for the NACA 0009
airfoil are also plotted in Fig. 5.19 and for example the “zero-lift” drag
coefficient is close to C,; = 0.0055.

REFERENCES

5.1. Moran, J., An Introduction to Theoretical and Computational Aerodynamics, Wiley, New
York, 1984.

5.2. Glauert, H., The Elements of Aerofoil and Airscrew theory, 2d edn., Cambridge University
Press, 1959.

5.3. Van Dyke, M., Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford,
Calif. 1975.

5.4. Lighthill, M. J., “A New Approach to Thin Airfoil Theory,” The Aeronautical Quarterly,
vol. 3, pp. 193-210, 1951.

PROBLEMS

5.1. Find the camberline shape that leads to a constant pressure jump along the airfoil
chordline for zero angle of attack.
5.2. Consider the flow of a uniform stream of speed Q.. at angle of attack « past a thin
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5.3.
54.

5.5.

airfoil whose camberline is given by

o122

where h << 1 and A is a constant. Show that

ne C
C =2n(a+¢) cmo=2(,4 —7) —ZI
where

e=§(4—31) and u=6—’2hx

Find the value of A for the zero-lift angle to be zero.
Find the hinge moment for the flapped airfoil of Eq. (5.90).

Consider the flow of a uniform stream of speed Q.. at angle of attack « past a thin
airfoil whose upper surface is given by the parabola in Eq. (5.80) and whose lower
surface is z = 0. Find the lift coefficient and moment coefficient about the leading

edge.

Consider the flow of a uniform stream of speed Q.. at angle of attack a past a
biplane consisting of two-flat-plate airfoils of chord ¢ a distance & apart (no
stagger). Find the lift coefficient for each airfoil using a single vortex to represent

each one.

CHAPTER

EXACT
SOLUTIONS
WITH
COMPLEX
VARIABLES

Approximate solutions to the exact potential flow problem are obtained in this
book using both classical small-disturbance methods and numerical modeling.
It is important to have exact solutions available to test the accuracy of the
approximations and to assess their applicability. In this chapter complex
variables will be used to obtain the solution to three model problems: the flat
plate, the circular arc, and a symmetrical airfoil.

6.1 SUMMARY OF COMPLEX
VARIABLE THEORY

Prior to applying complex variable methods to potential flow problems, some
of the principles are discussed briefly (for more details about the mathematics
of complex variables, see Churchill®'). To begin, first define the imaginary unit
i by

i’=-1 6.1)
Then any complex number Y can be written as
Y=a+ib 6.2)

where a and b are real and are called the real and imaginary parts of Y,
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