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Application of Kramers-Kronig relations to the interpretation 
of dielectric data 
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London SW6 5PR 

Received 31 July 1974 

Abstract. The Kramers-Kronig transforms relating the real and imaginary parts of the 
dielectric susceptibility have been used both on empirical functions and on experimental 
data. Good agreement is found between measured values of the imaginary part and those 
calculated from measured values of the real part of the susceptibility. 

1. Introduction 

Under certain conditions that usually apply at low fields, the real and imaginary parts 
of the dielectric susceptibility (x = 1' - if') are related by the Kramers-Kronig trans- 
forms. Hence, if only one component is known, the other may be found by applying a 
transform. 

Dielectric loss peaks in solids are rarely of the classic Debye form but are usually 
much broader and often asymmetric when plotted with a logarithmic frequency axis. 
An empirical relation that fits a variety of materials (particularly organic polymers) is of 
the form (A K Jonscher 1974 private communication) : 

1 
(1) = 

(O/OJm + (0/w2)l-" 
where m and n lie between 0 and 1, and CO is positive. This increases as om at low frequen- 
cies and decreases as con-' at high frequencies (ie it reduces to a Debye peak if m = 1 
and n = 0). 

This paper describes the application of analytical and numerical transforms to 
empirical functions of this form and to experimental data. 

2. Mathematical properties 

The polarization of an isotropic dielectric in an electric field that varies sinusoidally with 
time may be described by a complex susceptibility 

P = E,,xE (2) 
provided that: (i) the amplitude of the polarization varies linearly with the amplitude of 
the field; and (ii) the polarization varies sinusoidally with time. 
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These requirements are satisfied if the polarization and the field obey a linear 
differential equation with constant coefficients. This is true for most materials at low 
fields. 

The Kramers-Kronig relations may be derived by assuming that the principle of 
causality holds (Landau and Lifshitz 1960) 

where 9 means that the Cauchy principal value of the integral is used. x' and x" are 
therefore Hilbert transforms of one another and belong to the class of conjugate func- 
tions (Titchmarsh 1959). 

Now from the definition (2), together with the requirement that the values of P and 
E are real, it may be shown that ~ ' ( o )  is an even function whereas ~"(o) is an odd function. 
Hence the relations may also be expressed as 

x"(0) = - -9 ____ 
2w n sp U' - 0' du 

which are more useful in practice. 

3. Analytic solutions 

A special case of (1) that can be transformed exactly is with m = n 

A number of materials give loss-peaks similar to this with n N 0.7 (A K Jonscher 1974 
private communication). The real part of the susceptibility is 

1 
1 

[wn(-O tan' inn + 1) - (tan' i n n  + I)] X' ( 0 2  - 1) taninn 

and this is shown for n = 0-7 in figure 1. 

at all frequencies. For n = 0.7 the ratio is within 5 %  of the value 1.96 (= t ang0 .7~~))  
for frequencies greater than ten times that at which the peak off '  occurs. 

At high frequencies, the ratio x'/x" tends to the value taninn that holds if x" = con- 

4. Numerical solutions 

4.1. Broad loss-peaks 

The empirical expression for broad, asymmetric loss-peaks (1) may be given in the reduced 
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form 

which may be transformed numerically. An outline of the method of computation is given 
in the Appendix. 

The result of applying the transformation to a broad loss-peak with m = n = 0 7  
is identical with figure 1. The transformation for a rather narrower peak (m = 0.8, 
n = 0.2) is shown in figure 2. 

I -  

X 

0.1 - 

I I 

0.1 c 
Log w Log w 

Figure 1. Exact transformation from x" to x' for 
x" = o"/(l + (11) with n = 0.7. 

Figure 2. Numerical transformation from f to 
x' for x'' = om/(l + mm-"+l)  with m = 0.8 and 
n = 0 2 .  

4.2. Experimental data 

Kramers-Kronig transformations of experimental data are useful in a number of 
situations : 

(i) since measurements of x' do not include the delta function at o = 0 due to the 
DC conductivity, x" calculated from them does not contain the contribution from the 
DC conductivity and thus new loss-peaks may be found at low frequencies; 

(ii) the part of x' due to a particular polarization mechanism may be found from 
measurements of x" near the corresponding peak; and 

(iii) agreement between experimental and calculated values gives more confidence 
in the results. 

Experimental data differ from mathematical functions in containing random errors 
and only extending over a limited frequency range. 

The effect of errors depends on the form of the against o characteristic. For exam- 
ple, even one small error in a x' that is almost independent of frequency will give a peak 
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in xi’. Smoothing the data would reduce the effect but could hide true features. Various 
criteria may be used to find true errors: 

(i) for frequencies less than 10” Hz, all loss processes are likely to be relaxations, that 
is, dx’/do should be negative; 

(ii) a gradient of log x‘ against log o steeper than -2 is unlikely, as is a gradient of 
log f ’  against log o lying outside the range - 1 to + 1 ; and 

(iii) data are also suspect if the gradient of lines joining consecutive points changes 
sharply from one interval to the next. Random errors are less important for data that 
are closely spaced in frequency. 

Since the value of X” (say) at a given frequency depends on values of 1’ over a range of 
frequencies near the given one, it is necessary to extrapolate X’ outside the range of 
measurements to calculate x” near the extremes of the range. The method used in the 

1 I I I I 1 

- 2  0 2 4 
Log f (Hz) 

Figure 3. Comparison of experimental x’’ and curves from numerical transformation of 
)I’ (STAG II-Sizl ,,Te,,As,,.,Ge,,,). 

present work is to fit a least-squares straight line to the first (or last) few points on a log x 
against log o plot and this line is used over the decade of frequency below the first point 
(or above the last point). x‘ is taken to be constant (or x’’ is taken to be zero) outside this 
range and X” (or x’) is only calculated for frequencies within the range of the measure- 
ments. For accurate results, the points should extend over at least three decades of fre- 
quency. An outline of the method of computation is given in the Appendix. 

Transformations of results for a STAG glass are shown in figure 3. It can be seen that 
there is good agreement with the experimental x” at high frequencies and that the AC 
component of 2’’ is recovered at low frequencies. 
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0 
(u2 - ul)  +-ln u2 - w2 2 

In organic polymers, the loss usually varies much less with frequency. A transfor- 
mation of typical polymer data (nylon 610: Curtis 1961) is shown in figure 4. It can be 
seen that at low frequencies the difference between the measured and calculated x'' gives a 
good straight line with a slope of - 1 (log x'' against log f ) ,  as expected for the DC com- 
ponent of x". 

o - u 2 0 + u ,  
0 - u1 0 + u2 

~~ 

IO  I I I I I 1 

x" I 

0.1 

5. Conclusions 

The work has shown how the Kramers-Kronig relations can be used in practical studies 
of dielectrics at low frequencies. Numerical transforms may be used for empirical 
functions that cannot be transformed exactly. Experimental data may also be trans- 
formed numerically provided that they extend over at least three decades of frequency. 
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A subroutine is used to integrate over the rest of the range. Since X” is significant over 
a wide frequency range, the integral is used in the form 

X”(Ui d(ln U). 
1 - o l u  

This is evaluated using Simpson’s rule with equal increments of In U. The subroutine 
integrates over one decade (or part of a decade) at a time in the following order: 

(i) the rest of the decade below 100 using 100 increments; 
(ii) the rest of the decade above 0.10 using 100 increments; 

(iii) the decades above 100 using 10 increments, continuing until a decade gives a 
negligible contribution ; and 

negligible contributjons. 
(iv) the decades below 0.1 o using 10 increments, continuing until a decade gives a 

All the contributions are then added and multiplied by 2/71 to give ~’(0). 

(b) Transformation of experimental data 

To apply simple methods of integration to unequally spaced data, it is necessary to 
interpolate between the points. Since dielectric data are typically very smooth when 
plotted as In x against In f, the method used in the present work is to fit exact parabolae 

In x(f) = A(ln f)’ + B In f + C 

to sets of three consecutive points (in most cases the parabolae will be almost straight 
between the three points). 

Least-squares straight lines 

In x(f) = B lnf + C 

are then fitted to the first (or last) few points. 

one except that intervals between alternate points are used instead of decades. 

expression for transforming to x”( f) being 

The method of transforming this approximating function is similar to the previous 

The approximation near the singularity is exactly the same, the corresponding 

The subroutine for transforming to z’( f) is similar to that used before, whereas for 
transforming to x”u) the integral is used in the form 

The integrals are evaluated using Simpson’s rule with equal increments of In U, the number 
of increments being chosen to give about 50 per decade. We define an interpolating 
interval to be the region in which a single interpolating equation is used (eg the interval 
between the first and third points or the interval between the highest frequency and ten 
times the highest frequency). The subroutine integrates over one interval (or part of an 
interval) at a time in the following order: 

(i) the remainder of the interval below u1 (=0.8 f); 
(ii) the remainder of the interval above u2 ( = 1.25f) ; 
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(iii) the rest of the intervals above f, stopping if an interval gives a negligible con- 

(iv) the rest of the intervals below f, stopping if an interval gives a negligible con- 

For transforming to ~ ' ( f ) ,  we assume that ~"(f) is zero outside O.lf, to lOf, (where 
f, is the lowest frequency and f, is the highest frequency). Hence the sum of all the 
contributions so far multiplied by 2/71 gives x'cf). 

For transforming to ~"0, we assume that x'cf) takes the end of range values outside 
O e l f ,  to lOf, and hence there is an extra contribution: 

tribution; and 

tribution. 

where ~ ' ( O . l f , )  and x'( lOf,) are obtained by extrapolation using the least-squares 
straight lines. Adding this to 2/71 times the sum of all the other contributions gives ~"(f). 

References 

Curtis A J 1961 J .  Res.  Nutn. Bur. Stand. 6 5 A  185-96 
Landau L D and Lifshitz E M 1960 Electrodynamics ofcontinuous Media (Oxford: Pergamon) 
Titchmarsh E C 1959 Introduction to the Theory of Fourier Integrals (Oxford: Clarendon) 


