



# Infrared Spectrum and InternalRotation Barrier of Nitroethylene

K. R. Loos and Hs. H. Günthard

Citation: The Journal of Chemical Physics **46**, 1200 (1967); doi: 10.1063/1.1840793 View online: http://dx.doi.org/10.1063/1.1840793 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/46/3?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Erratum: Infrared Spectrum and InternalRotation Barrier of Nitroethylene J. Chem. Phys. **48**, 4332 (1968); 10.1063/1.1669791

Distortional Effects on the Ethane InternalRotation Barrier J. Chem. Phys. **44**, 3033 (1966); 10.1063/1.1727176

Theory of the Origin of the InternalRotation Barrier in the Ethane Molecule. II J. Chem. Phys. **44**, 1529 (1966); 10.1063/1.1726890

InternalRotation in Hydrogen Peroxide: The FarInfrared Spectrum and the Determination of the Hindering Potential J. Chem. Phys. **42**, 1931 (1965); 10.1063/1.1696228

Note on the InternalRotation Barrier in Ethanic Compounds J. Chem. Phys. **33**, 316 (1960); 10.1063/1.1731128



This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 152.2.176.242 On: Sun, 30 Nov 2014 22:35:54

# Infrared Spectrum and Internal-Rotation Barrier of Nitroethylene

K. R. LOOS AND HS. H. GÜNTHARD

Laboratorium für Physikalische Chemie, Eidgenoessische Technische Hochschule, Zürich, Switzerland

(Received 20 September 1966)

The infrared spectra of nitroethylene- $d_0$  and 1-nitroethylene- $d_1$  have been obtained in the vapor phase over the range 4000-70 cm<sup>-1</sup>. All fundamental frequencies have been observed and the NO<sub>2</sub> torsion was located at 103 and 95 cm<sup>-1</sup> for the  $d_0$  and  $d_1$  isotopes, respectively. The barrier to internal rotation has been calculated to be  $6510\pm280$  cal/mole for H<sub>2</sub>CCHNO<sub>2</sub> and  $5960\pm280$  cal/mole for H<sub>2</sub>CCDNO<sub>2</sub> using the "semirigid" model with a  $V_2(1-\cos 2\phi)$  potential. A normal-coordinate analysis has been carried out in order to clarify the nature of the fundamental vibrations. It shows that there is considerable mixing between the symmetry coordinates in the normal modes. The existence of this interaction indicates that the common assumption that the torsional mode is decoupled from the other modes of the same symmetry, the semirigid model, does not appear to be valid here. The effect of this on the barrier height is discussed.

NITROETHYLENE is of considerable interest be-cause it is the simplest member of the nitro-olefin series and permits the study of the possible effects of conjugation between the ethylenic pi electrons and those on the nitro group. In particular, investigation of the far-infrared spectrum of the vapor leads to information about the barrier to internal rotation for the nitro group in this molecule. Figure 1 shows the structure of the nitroethylene molecule as determined by microwave spectroscopy.

The synthesis of nitroethylene- $d_0$  and 1-nitroethylene- $d_1$  was that of Hess, Bauder, and Günthard.<sup>1</sup> Infrared spectra were recorded on Perkin-Elmer 125 and 225 spectrometers from 4000 to 400  $\text{cm}^{-1}$  and on a Perkin-Elmer 301 spectrometer from 600 to 70 cm<sup>-1</sup> using a 70-cm path-length absorption cell. Intensity measurements at different temperatures were carried out on several hot bands with a 7-cm thermostatted cell.

## INFRARED SPECTRUM AND FUNDAMENTAL VIBRATIONS

The infrared spectra of nitroethylene- $d_0$  and 1-nitroethylene- $d_1$  have been obtained in the vapor phase over the range 4000 to 70 cm<sup>-1</sup>. Observed absorption bands for the two isotopes are listed in Tables I and II. All frequencies reported are accurate to at least  $\pm 2$ cm<sup>-1</sup>. Representative spectra are shown in Figs. 2 and 3.

In order to clarify the assignment of the fundamental vibrations and to obtain an insight into the molecular force field a normal-coordinate calculation was carried out using the ALGOL program developed by Hunziker<sup>2</sup> on the CDC 1604A computer at the ETH Rechenzentrum. A microwave study<sup>1</sup> has shown that nitroethylene is a planar molecule of  $C_s$  symmetry with the largest moment of inertia about an axis perpendicular to the molecular plane. The internal symmetry coordinates used are shown in Table III. Force constants

were transferred from ethylene<sup>3</sup> and nitromethane<sup>4</sup> in a first approximation which was subsequently refined using at least-squares iteration. No realistic force field could be obtained without the introduction of a considerable number of off-diagonal interaction constants in the F matrix.



FIG. 1. Structure of nitroethylene molecule.

The final values of the force constants used in the calculation of the normal modes are listed in Table IV. Calculated frequencies and normal coordinates for both isotopes expressed as linear combinations of internal symmetry coordinates are shown in Tables V and VI. Observed frequencies were assigned to their respective symmetry species on the basis of Teller-Redlich product-rule calculations and band contours. Bands corresponding to in-plane vibrations have shapes corresponding to various mixtures of Type A and Bcontours, while the out-of-plane vibrations have Type C band contours.

It is clear from the results in Tables V and VI that considerable interaction between symmetry coordinates

<sup>&</sup>lt;sup>1</sup>H. D. Hess, A. Bauder, and Hs. H. Günthard, "The Micro-wave Spectrum of Nitroethylene" (to be published). <sup>2</sup>H. Hunziker, J. Mol. Spectry. **7**, 131 (1965).

<sup>&</sup>lt;sup>3</sup> S. Brodersen, Kgl. Danske Videnskab. Selskab. Mat. Fys. Skrifter 1, 24 (1957). <sup>4</sup> T. P. Wilson, J. Chem. Phys. 11, 361 (1943).

| Frequency cm <sup>-1</sup>     | Intensity | Assignment             | Frequency cm <sup>-1</sup> | Intensity | Assignment                             |
|--------------------------------|-----------|------------------------|----------------------------|-----------|----------------------------------------|
| 3131 R<br>3122 0               | 187       | ψ <sub>1</sub>         | 955.0 Q                    |           | v11+2v18-2v18                          |
| 3112 P                         | v         | <b>P</b> 1             | 953.8 Q                    | s         | $\nu_{11} + 3\nu_{18} - 3\nu_{18}$     |
| 3062 R                         |           |                        | 952.4 Q                    |           | $\nu_{11} + 4\nu_{18} - 4\nu_{18}$     |
| 3055 Q<br>3046 P               | w         | <b>v</b> 2             | 951.2 Q                    |           | v11+5v18-5v18                          |
| 3000 R                         | vw        | $\nu_3$                | 950.0 Q                    |           | $\nu_{11} + 6\nu_{18} - 6\nu_{18}$     |
| 2985 F<br>2906<br>2890         | m         | $\nu_5 + \nu_6$        | 897 R<br>888 Q<br>878 P    | S         | <b>v</b> <sub>12</sub>                 |
| 2710                           | w         | 2v6                    | 803.0 Q                    |           | <i>v</i> 13                            |
| 2440                           | w         | $v_5 + v_{12}$         | 801.5 Q                    |           | $\nu_{13} + \nu_{18} - \nu_{18}$       |
| 2330                           | vw        | v8+v9                  | 800.0 Q                    |           | v13+2v18-2v18                          |
| 1918                           | m         | $\nu_6 + \nu_{16}$     | 798.5 Q                    |           | $\nu_{13} + 3\nu_{18} - 3\nu_{18}$     |
| 1740                           | w         | $2\nu_{12}$            | 797.0 Q                    |           | $\nu_{13}$ +4 $\nu_{18}$ -4 $\nu_{18}$ |
| 1656 R<br>1643 P               | m         | <i>V</i> 4             | 788                        | w         | ?                                      |
| 1566 R<br>1558 Q<br>1550 P     | vs        | $ u_5 $                | 661 R<br>649 Q<br>643 P    | S         | V <sub>14</sub>                        |
| 1386 R<br>1380 P               | vs        | $ u_6$                 | 655 R<br>647 P             | S         | <b>V</b> 15                            |
| 1368 <i>R</i><br>1360 <i>Q</i> | S         | דע                     | 549 R<br>541.0 Q           |           | <b>v</b> 16                            |
| 1352 P                         |           |                        | 539.5 Q                    |           | $\nu_{16} + \nu_{18} - \nu_{18}$       |
| 1322 R<br>1315 Q               | m         | v14+v15                | 538.5 Q                    |           | v16+2v18-2v18                          |
| 1308 P                         |           |                        | 537.0 Q                    |           | $\nu_{16} + 3\nu_{18} - 3\nu_{18}$     |
| 1278 R<br>1269 Q<br>1260 P     | S         | <b>v</b> 8             | 531 P                      |           |                                        |
| 962 Q<br>957.5 Q               | vs        | ν10<br>ν11             | 334 R<br>323 Q<br>313 P    | w         | V17                                    |
| 956.3 Q                        |           | $v_{11}+v_{18}-v_{18}$ | 103 <i>O</i>               | vŵ        | <b>V</b> 18                            |

TABLE I. Observed infrared bands of nitroethylene- $d_0$ .

exists which makes it difficult to assign most of the fundamental vibrations to simple bond stretching or bond bending modes. This interaction is further demonstrated by the considerable frequency shifts of many of the vibrations upon deuteration. Perhaps the introduction of more interaction constants in the force field would give more localized normal-coordinate vectors and better agreement between the observed and calculated frequencies. However, this procedure seems unjustified since for the two isotopes there are already 33 parameters in the force field with 36 independent frequencies.

=

Attempts to calculate the three CH stretching frequencies using only one force constant were unsuccessful and a lower value was required for the lone CH bond stretching constant. The intensity of this vibration at 2995 cm<sup>-1</sup> was considerably less than that of the other CH stretching modes, and, indeed, considerably less than the combination band  $\nu_5 + \nu_6$  occurring at 2898 cm<sup>-1</sup>.

The carbon-carbon double-bond stretching mode occurs as a well localized normal coordinate at 1650 and 1626 cm<sup>-1</sup> in the  $d_0$  and  $d_1$  isotopes. However, all the lower-lying frequencies correspond to normal coordinates which are considerably mixed. This is true even for the strong bands at 1558 and 1382 cm<sup>-1</sup> of the  $d_0$  isotope, and 1557 and 1381 cm<sup>-1</sup> of the  $d_1$  isotope which would be expected to be the symmetric and antisymmetric NO<sub>2</sub> stretching vibrations. In both isotopes these bands appear to contain considerable contributions from the C-C and CN stretching coordinates. Curiously enough, the vibration at 958 cm<sup>-1</sup> appears to

| Frequency cm <sup>-1</sup>                      | Intensity | Assignment                                      | Frequency cm <sup>-1</sup>                   | Intensity | Assignment                                                               |
|-------------------------------------------------|-----------|-------------------------------------------------|----------------------------------------------|-----------|--------------------------------------------------------------------------|
| 3130 R<br>3120 Q                                |           |                                                 | 955 Q                                        |           | $\nu_{10} + 2\nu_{18} - 2\nu_{18}$                                       |
| 3110 P                                          | ¥¥        | <i>ν</i> 1                                      | 954 Q                                        | s         | v10+3v18-3v18                                                            |
| 3058 R                                          |           |                                                 | 952 Q                                        |           | $\nu_{10}$ +4 $\nu_{18}$ -4 $\nu_{18}$                                   |
| 3048 Q<br>3038 P                                | w         | $\nu_2$                                         | 951 Q                                        |           | v10+5v18-5v18                                                            |
| 2900<br>2886                                    | m         | $\nu_5 + \nu_6$                                 | 950 Q                                        |           | $\nu_{10} + 6\nu_{18} - 6\nu_{18}$                                       |
| 2250                                            | vw        | Va                                              | 897 Q                                        | s         | <i>v</i> <sub>11</sub>                                                   |
| 1916                                            | w         | <i>ne</i> + <i>n</i> ,e                         | 873 Q                                        | S         | $\nu_{12}$                                                               |
| 1820                                            |           |                                                 | 768 Q                                        |           | $\nu_{13}$                                                               |
| 1710                                            | • ••      | $\nu_{9} + \nu_{12}, \nu_{10} + \nu_{12}$       | 765 Q                                        |           | $\nu_{13} + \nu_{18} - p_{18}$                                           |
| 1710                                            | vw        | $\nu_4 + \nu_{18}, \nu_{10} + \nu_{13}$         | 763 Q                                        | S         | $\nu_{13} + 2\nu_{18} - 2\nu_{18}$                                       |
| 1622 Q                                          | m         | V4                                              | 761                                          |           | $\nu_{18} + 3\nu_{18} - 3\nu_{18}$                                       |
| 1614 P                                          | P         |                                                 | 760                                          |           | $\nu_{13} + 4\nu_{13} - 4\nu_{18}$                                       |
| 1559 R<br>1553 Q<br>1544                        | vs        | ν <sub>5</sub>                                  | 657 R<br>643 Q<br>640 B                      | m         | <b>v</b> 14                                                              |
| 1496 <i>R</i><br>1481 <i>Q</i><br>1474 <i>P</i> | m         | <i>v</i> <sub>10</sub> + <i>v</i> <sub>14</sub> | 598 <i>R</i><br>589 <i>Q</i><br>580 <i>P</i> | w         | <b>V</b> 15                                                              |
| 1385 <i>R</i><br>1376 <i>Q</i><br>1365 <i>P</i> | vs        | $ u_6$                                          | 552 R                                        |           |                                                                          |
| 1356 R                                          |           |                                                 | 546 Q                                        |           | <b>V</b> 16                                                              |
| 1350 Q<br>1342 P                                | S         | V7                                              | 543 Q                                        |           | <b>v</b> <sub>16</sub> + <b>v</b> <sub>18</sub> - <b>v</b> <sub>18</sub> |
| 1012 1                                          |           |                                                 | 540 Q                                        | w         | $\nu_{16} + 2\nu_{18} - 2\nu_{18}$                                       |
| 1142 R<br>1135 Q                                | m         | <i>ν</i> <sub>8</sub>                           | 537 Q                                        |           | $\nu_{16} + 3\nu_{18} - 3\nu_{18}$                                       |
| 1126 P                                          |           |                                                 | 534 Q                                        |           | $\nu_{16} + 4\nu_{18} - 4\nu_{18}$                                       |
| 962 Q                                           | vs        | <b>v</b> 9                                      | 324 R                                        |           |                                                                          |
| 958 Q                                           |           | <b>\$\$10</b>                                   | 315 Q<br>300 P                               | w         | V17                                                                      |
| 956 Q                                           |           | $\nu_{10} + \nu_{18} - \nu_{18}$                | 95 Q                                         | vw        | P18                                                                      |

TABLE II. Observed infrared bands of 1-nitroethylene-d1.



FIG. 2. Infrared spectrum of nitroethylene gas,  $4000-1000 \text{ cm}^{-1}$  upper curve H<sub>2</sub>C-CHNO<sub>2</sub>, lower curve H<sub>2</sub>C-CDNO<sub>2</sub>. (a) 20 mm Hg/70-cm path length; (b) 5 mm Hg/10-cm path length; (c) 5 mm Hg/70-cm path length.

nis article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP 152.2.176.242 On: Sun. 30 Nov 2014 22:35:54 FIG. 3. Infrared spectrum of nitroethylene, 1000—50 cm<sup>-1</sup>. Upper curve: H<sub>2</sub>C-CHNO<sub>2</sub> (a) 10 mm Hg, 70-cm path length; (b) 5 mm Hg, 10-cm path length; (c) 20 mm Hg, 70-cm path length; (d) 50 mm Hg ( $45^{\circ}$ C), 70-cm path length. Lower curve: H<sub>2</sub>C-CDNO<sub>2</sub> (a) 20 mm Hg, 10-cm path length; (b) 20 mm Hg, 70-cm path length; (c) 20 mm Hg, 70-cm path length.



case as shown in Table VII. The "freezing" of all the

other coordinates results in a shift of several wavenumbers for the torsion in both isotopes, and the "freezing" of just the CH(CD) out-of-plane wagging coordinate results in virtually the same shift. Apparently the out-of-plane motion of the light atom is

excited by the torsion of the heavy NO<sub>2</sub> group about

the CN bond. The significance of this interaction is

further discussed in the section on internal rotation.

TABLE IV. Force constants for nitroethylene in 10<sup>5</sup> dyn cm<sup>-1</sup>

(number refers to symmetry coordinate).

Value

4.88

5.09

9.86

4.74

8.21

0.66

0.80

2.23 2.51

2.27 0.055 0.41 0.56 0.60 0.20 -0.060.12 -0.120.32 0.75 0.77 2.71 -0.820.30 0.20 0.10 0.20 -0.17 0.01 0.06 -0.160.06

Force constant

 $K_1$ 

 $K_4$ 

 $K_5$ 

 $K_8$ 

 $K_9$ 

 $K_{10}$ 

 $K_{11}$ 

 $K_{12}$ 

 $K_{13}$ 

 $K_2 = K_3$ 

 $K_6 = K_7$ 

be a symmetric skeletal

# C-N

stretching.

Although the torsional vibration is relatively low lying and considerably removed from the next-lowest frequency in the A'' block its normal coordinate is a linear combination of the torsional coordinate and the CH(CD) out-of-plane wagging coordinate as Tables V and VI show. In general one does not expect such interaction between vibrations whose frequencies are normally so far apart from one another and the existence of such an interaction is of some importance. If this low-lying vibration were independent of all other coordinates besides the torsional coordinate then a "freezing" of all the other vibrational coordinates in the same symmetry block ought to result in the same value for the calculated torsional frequency as obtained in the case where all the coordinates are free. This is not the

TABLE III. Symmetry coordinates for nitroethylene.

| Symmetry coordinate | Description                            | $K_{1b}$<br>$K_{16}$               |
|---------------------|----------------------------------------|------------------------------------|
| $S_1$               | CH stretching of lone CH               | К <sub>17</sub><br>К <sub>18</sub> |
| $S_2$               | CH stretching in CH <sub>2</sub> group | $k_{1,2} = k_{1,3}$                |
| $S_3$               | CH stretching in CH <sub>2</sub> group | $k_{2,3}$                          |
| $S_4$               | CC stretching                          | $k_{2,6} = k_{3,6}$                |
| $S_5$               | CN stretching                          | $k_{2,7} = k_{3,7}$                |
| $S_6$               | NO stretching                          | k4,5                               |
| S7                  | NO stretching                          | k5,6=k5,7                          |
| $S_8$               | CH <sub>2</sub> deformation            | k6,7                               |
| $S_9$               | CH <sub>2</sub> in-plane rocking       | k4,8                               |
| S10                 | CH in-plane wagging                    | $k_{4,10}$                         |
| $S_{11}$            | CCN deformation                        | $k_{5,10}$                         |
| $S_{12}$            | NO <sub>2</sub> deformation            | k <sub>5,12</sub>                  |
| $S_{13}$            | NO <sub>2</sub> in-plane rocking       | $k_{6,12} = k_{7,12}$              |
| $S_{14}$            | NO <sub>2</sub> torsion                | k10,12                             |
| $S_{15}$            | CH out-of-plane wagging                | k14,15                             |
| $S_{16}$            | torsion about the C-C bond             | k15,14                             |
| S17                 | NO <sub>2</sub> out-of-plane rocking   | k15,17                             |
| $S_{18}$            | CH <sub>2</sub> out-of-plane rocking   | k <sub>16,18</sub>                 |

1203

| Fre  | equency cm <sup>-1</sup> | c    | C                | e. | C   | c.   | c   | c   | c. | c  | c   | c                  | c   | c        | c   | c   | c   | 6   | c   |
|------|--------------------------|------|------------------|----|-----|------|-----|-----|----|----|-----|--------------------|-----|----------|-----|-----|-----|-----|-----|
| Obs  | Calc                     | - 31 | $\mathfrak{Z}_2$ | N3 | N4  | 35   | 56  | 37  | 38 | 28 | 510 | $\mathcal{S}_{11}$ | 512 | 518      | 314 | 515 | 316 | 317 | N18 |
| 3122 | 3124                     | 2    | -8               | 8  |     |      |     |     |    | -1 |     |                    |     | <u> </u> |     |     |     |     |     |
| 3055 | 3055                     | 4    | -8               | -9 | 1   |      |     |     |    |    |     |                    |     |          |     |     |     |     |     |
| 2995 | 2999                     | 12   | 4                | 1  | -1  |      |     |     |    |    |     |                    |     |          |     |     |     |     |     |
| 1650 | 1652                     | 1    | 1                | 1  | 27  | -5   | 3   | 2   | -4 |    | -1  | -2                 | -1  | -3       |     |     |     |     |     |
| 1558 | 1563                     | 2    |                  | 1  | 9   | 12   | -6  | -17 |    | 1  | 3   | -5                 | 6   | -3       |     |     |     |     |     |
| 1382 | 1397                     | 1    |                  | 1  |     | 1    | 22  | 7   | 4  | 2  | 4   | -5                 | -6  | -4       |     |     |     |     |     |
| 1360 | 1360                     |      | 2                | 1  | -8  | 2    | 12  | 2   | -7 | 1  | 2   | -2                 | -2  | -1       |     |     |     |     |     |
| 1269 | 1259                     | 1    |                  | 1  | 10  | -5   | 10  | -17 | 1  | -2 | -8  |                    | 2   | -4       |     |     |     |     |     |
| 958  | 991                      |      |                  |    | -2  | -15  | -23 | 30  |    | -3 | 6   | 2                  | 15  |          |     |     |     |     |     |
| 888  | 911                      |      | -2               | 1  | -8  | -6   | -14 | -5  |    | 14 | -5  | -7                 | -6  | -1       |     |     |     |     |     |
| 655  | 665                      | -2   |                  |    | -7  | -16  | 16  | -9  |    | 10 | 5   | 20                 | 15  | 10       |     |     |     |     |     |
| 541  | 531                      |      | -1               |    | -24 | - 39 | -15 | 12  | 2  | -2 | 3   | -15                | 23  | -21      |     |     |     |     |     |
| 325  | 326                      |      | -2               | 1  | -3  | -22  | 8   | -13 |    | -6 | -2  | 44                 | 10  | 58       |     |     |     |     |     |
| 1060 | 1086                     |      |                  |    |     |      |     |     |    |    |     |                    |     |          | 1   | 7   | -7  | -4  | -1  |
| 963  | 947                      |      |                  |    |     |      |     |     |    |    |     |                    |     |          |     | 5   | 5   | 1   | 7   |
| 803  | 791                      |      |                  |    |     |      |     |     |    |    |     |                    |     |          |     | 2   | 1   | 14  | -3  |
| 649  | 645                      |      |                  |    |     |      |     |     |    |    |     |                    |     |          |     | 10  | 13  | 8   | -4  |
| 103  | 104.5                    |      |                  |    |     |      |     |     |    |    |     |                    |     |          | -37 | 12  | -5  | -4  | -3  |

TABLE V. Calculated frequencies and normal coordinates for nitroethylene-d<sub>0</sub>.<sup>a</sup>

<sup>a</sup> The columns headed by  $S_n$  represent the columns of the matrix L relating symmetry coordinates and normal coordinates, S=LQ.

| Frequ | iency cm <sup>-1</sup> |    |                 | C. |    | c   | 6   | <u> </u> | 6  | C   | C   | с.                 | c        | с<br>С | <u> </u> |     | C.  |     |     |
|-------|------------------------|----|-----------------|----|----|-----|-----|----------|----|-----|-----|--------------------|----------|--------|----------|-----|-----|-----|-----|
| Obs   | Calc                   | 51 | $\mathcal{S}_2$ | 28 | 54 | 25  | N6  | 57       | 38 | 28  | 310 | $\mathcal{S}_{11}$ | $S_{12}$ | 513    | 514      | 515 | J16 | 317 | 318 |
| 3120  | 3122                   |    | -8              | 8  |    |     |     |          |    | -1  |     |                    |          |        |          |     |     |     |     |
| 3048  | 3050                   |    | -9              | -9 | 1  |     |     |          |    |     |     |                    |          |        |          |     |     |     |     |
| 2250  | 2261                   | 15 |                 |    | 5  | 2   |     |          |    |     |     | 2                  |          | 1      |          |     |     |     |     |
| 1626  | 1635                   | 3  | 1               | 1  | 26 | -8  | 3   | 4        | -4 |     | -1  | -1                 | -2       | -2     |          |     |     |     |     |
| 1557  | 1531                   | 5  |                 | 1  | 12 | 11  | -8  | - 19     | -1 | 1   | 1   | -4                 | 7        | -3     |          |     |     |     |     |
| 1381  | 1378                   | -3 |                 | -2 | -2 |     | 17  | 1        | 7  | -1  | -1  | 4                  | 3        | 4      |          |     |     |     |     |
| 1354  | 1353                   | 1  | 2               |    | 10 | -2  | -20 |          | 5  | -1  | -2  | 4                  | 3        | 4      |          |     |     |     |     |
| 1135  | 1152                   | 4  | 1               | 2  | 9  | 11  | 1   | 22       | 1  | 5   | 7   | 5                  | -1       | 3      |          |     |     |     |     |
| 958   | 958                    |    | 1               | 1  | -5 | -13 | -27 | -25      |    | 5   | 4   | 3                  | -18      |        |          |     |     |     |     |
| 873   | 832                    |    | 1               | -1 | 8  | 7   | -2  | 4        | -1 | -14 | 10  | 1                  | -8       |        |          |     |     |     |     |
| 584   | 614                    | -4 | 1               | 1  | 15 | 8   | 18  | -14      | -1 | 7   | 9   | 24                 | 8        | 16     |          |     |     |     |     |
| 520   | 513                    |    | -1              |    | -2 | -4  | -1  | 1        |    |     | 1   | -11                | 25       | -17    |          |     |     |     |     |
| 324   | 324                    |    | -2              | 1  | -3 | -20 | 9   | -13      |    | -6  | -3  |                    | 9        | 59     |          |     |     |     |     |
| 962   | 956                    |    |                 |    |    |     |     |          |    |     |     |                    |          |        |          | -1  | -8  | -3  | 7   |
| 897   | 887                    |    |                 |    |    |     |     |          |    |     |     |                    |          |        |          | 8   | -7  | -7  | 3   |
| 768   | 778                    |    |                 |    |    |     |     |          |    |     |     |                    |          |        |          | 4   | -3  | 13  | -2  |
| 637   | 635                    |    |                 |    |    |     |     |          |    |     |     |                    |          |        | -1       | -12 | -12 | 8   | 4   |
| 95    | 96.5                   |    |                 |    |    |     |     |          |    |     |     |                    |          |        | 40       | 10  | 4   | 4   | 3   |

TABLE VI. Calculated frequencies and normal coordinates for 1-nitroethylene- $d_{1.8}$ 

<sup>a</sup> The columns headed by  $S_n$  represent the columns of the matrix L relating symmetry coordinates and normal coordinates, S=LQ.

| TABLE VII. Torsiona | l frequencies calculated b | y normal-coordinate treatment for several models. |
|---------------------|----------------------------|---------------------------------------------------|
|---------------------|----------------------------|---------------------------------------------------|

| Molecule | Observed<br>(cm <sup>-1</sup> ) | Unrestricted<br>vibrations<br>(cm <sup>-1</sup> ) | All vibrations fro-<br>zen except torsion<br>(cm <sup>-1</sup> ) | CH(CD) out-of-<br>plane frozen<br>(cm <sup>-1</sup> ) |  |
|----------|---------------------------------|---------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|--|
| H2CCHNO2 | 103                             | 104.5                                             | 106.5                                                            | 106.3                                                 |  |
| H2CCDNO2 | 95                              | 96.5                                              | 97.9                                                             | 97.8                                                  |  |

1204

TABLE VIII. Thermodynamic functions of nitroethylene- $d_0$ in calories per degree mole.T (°K) $C_p^{\circ}$   $(H^{\circ}-H_0^{\circ})/T - (G^{\circ}-H_0^{\circ})/T S^{\circ}$ 

| <i>I</i> ( <b>K</b> ) | $C_p$ |       | (0 10)/2 | ~      |
|-----------------------|-------|-------|----------|--------|
| 298.16                | 17.35 | 11.88 | 58.58    | 70.46  |
| 300                   | 17.43 | 11.91 | 58.65    | 70.56  |
| 400                   | 21.50 | 13.81 | 62.33    | 76.15  |
| 500                   | 24.91 | 15.70 | 65.62    | 81.33  |
| 600                   | 27.67 | 17.47 | 68.65    | 86.12  |
| 700                   | 29.89 | 19.09 | 71.46    | 90.56  |
| 800                   | 31.71 | 20.56 | 74.11    | 94.67  |
| 900                   | 33.23 | 21.89 | 76.61    | 98.50  |
| 1000                  | 34.50 | 23.09 | 78.98    | 102.07 |
| 1100                  | 35.57 | 24.17 | 81.23    | 105.41 |
| 1200                  | 36.48 | 25.16 | 83.38    | 108.54 |
| 1300                  | 37.27 | 25.06 | 85.43    | 111.49 |
| 1400                  | 37.94 | 26.89 | 87.39    | 114.28 |
| 1500                  | 38.52 | 27.64 | 89.27    | 116.92 |
|                       |       |       |          |        |

Using the above assignment of the fundamentals and the rotational constants given in Ref. 1 the thermodynamic properties of nitroethylene- $d_0$  and 1-nitroethylene- $d_1$  have been calculated for the harmonicoscillator rigid-rotor model and are listed in Tables VIII and IX.

# HOT BANDS

Several of the observed fundamentals in the mid infrared showed complicated satellite structure which could be attributed to hot bands, or transitions originating in excited states of the low-lying torsion.<sup>5</sup> In order to check this interpretation measurements were made at 300° and 350°K on the sharp Q branch at 803 cm<sup>-1</sup> of nitroethylene- $d_0$  which is accompanied by a series of four satellites. The results are seen in Fig. 4. Calculated values for the normalized population of several states of the torsion at these temperatures are given in Table X and show that the satellites can be accounted for by this hypothesis.

TABLE IX. Thermodynamic functions of 1-nitroethylene- $d_1$  in calories per degree mole.

| <i>T</i> (°K) | $C_p^{\circ}$ | $(H^{\circ}-H_{0}^{\circ})/T$ | $-(G^{\circ}-H_{0}^{\circ})/T$ | S°     |
|---------------|---------------|-------------------------------|--------------------------------|--------|
| 298.16        | 17.95         | 12.13                         | 58.93                          | 71.06  |
| 300           | 18.03         | 12.17                         | 59.00                          | 71.18  |
| 400           | 22.16         | 14.17                         | 62.78                          | 76.94  |
| 500           | 25.59         | 16.12                         | 66.15                          | 82.27  |
| 600           | 28.36         | 17.94                         | 69.25                          | 87.19  |
| 700           | 30.58         | 19.59                         | 72.14                          | 91.73  |
| 800           | 32.40         | 21.08                         | 74.86                          | 95.94  |
| 900           | 33.89         | 22.43                         | 77.42                          | 99,85  |
| 1000          | 35.14         | 23.64                         | 79.85                          | 103.48 |
| 1100          | 36.18         | 24.73                         | 82.15                          | 106.88 |
| 1200          | 37.05         | 25.72                         | 84.35                          | 110,07 |
| 1300          | 37.80         | 26.62                         | 86.44                          | 113.07 |
| 1400          | 38.43         | 27.44                         | 88.45                          | 115.89 |
| 1500          | 38.98         | 28.20                         | 90.37                          | 118.56 |

<sup>5</sup>G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Co., Inc., New York, 1947), Vol. 2, p. 267.

TABLE X. Normalized populations of torsion levels for nitroethylene-d<sub>0</sub> at two different temperatures.

|       | <i>v</i> <sub>18</sub> = | 0    | 1    | 2    | 3   |
|-------|--------------------------|------|------|------|-----|
| 300°K |                          | 39.0 | 23.8 | 14.5 | 8.9 |
| 350°K |                          | 34.5 | 22.6 | 14.8 | 9.7 |

Although other bands also exhibited satellite structure no intensity measurements were carried out on them because the underlying rotational envelope would have complicated the interpretation. It is assumed that such satellites are due to upper stage transitions from the torsion.

## INTERNAL-ROTATION BARRIER

The far-infrared spectra of both isotopes show only one band which evidently is the NO<sub>2</sub> torsion occurring at 103 cm<sup>-1</sup> for nitroethylene, and at 95 cm<sup>-1</sup> for 1-nitroethylene- $d_1$ . This band is relatively narrow in both cases, having a half-width of about 1 cm<sup>-1</sup>, and consists of a superposition of several transitions. Since the upper levels of the vibration are appreciably populated at room temperature the transitions 1 $\leftarrow$ 0, 2 $\leftarrow$ 1, 3 $\leftarrow$ 2 will have comparable intensities. The absence of any other transitions in the far infrared indicate that the vibration is more nearly harmonic than most other torsions which generally show either broad unresolved absorption<sup>6</sup> or bands corresponding to the resolved upper transitions.<sup>7</sup>

The internal-rotation potential for the  $NO_2$  group may be written as:

$$V = V_2(1 - \cos 2\phi) + \cdots.$$

For the case of a harmonic oscillator and a high barrier, the barrier height is given by the following expression:

$$V_2=2\pi^2c^2\tilde{\nu}^2I_r,$$

where c is the speed of light,  $\tilde{\nu}$  the torsional frequency in cm<sup>-1</sup>, and  $I_r$  the reduced moment of inertia of the NO<sub>2</sub> group, calculated as follows:

$$I_r = I_t \Big[ 1 - I_t \sum_{n=1,2,3} (\cos^2 \phi_n / I_n) \Big],$$

| TABLE XI. | Internal-rotation | barrier | heights |
|-----------|-------------------|---------|---------|
|-----------|-------------------|---------|---------|

|                                   | Harmon                    | ic approx      |                                       |                |  |
|-----------------------------------|---------------------------|----------------|---------------------------------------|----------------|--|
| Molecule                          | cm <sup>-1</sup> cal/mole |                | Mathieu treatment<br>cm <sup>-1</sup> |                |  |
| H <sub>2</sub> CCHNO <sub>2</sub> | $2320 \pm 100$            | 6620±280       | $2280 \pm 100$                        | $6510 \pm 280$ |  |
| H <sub>2</sub> CCDNO <sub>2</sub> | $2120 \pm 100$            | $6050 \pm 280$ | $2087 \pm 100$                        | $5960 \pm 280$ |  |
|                                   |                           |                |                                       |                |  |

<sup>6</sup> K. R. Loos and R. C. Lord, Spectrochim. Acta 21, 119 (1965). <sup>7</sup> W. G. Fateley and F. A. Miller, Spectrochim. Acta 17, 857 (1961).



FIG. 4. Q branch of 803-cm<sup>-1</sup> band. 20 mm Hg, 7-cm path length; solid line, 20°C; dotted line, 75°C.

where  $I_t$  is the moment of inertia of NO<sub>2</sub> about its symmetry axis, the CN bond,  $\phi_n$  is the angle between this axis and the *n*th principal axis of inertia, and  $I_n$ is the nth principal moment of nitroethylene. From the structural data of the microwave study<sup>1</sup> the reduced moment of inertia for the NO<sub>2</sub> group is calculated to be 14.75 a.m.u.  $\cdot$  Å<sup>2</sup> for the  $d_0$  isotope and 15.78 a.m.u.  $\cdot$  Å<sup>2</sup> for the  $d_1$  isotope.

The more exact treatment requires the solution of the Mathieu equation for the internal-rotation problem<sup>8</sup>

 $[F_{p^{2}}+\frac{1}{2}V_{2}(1-\cos 2\phi)]u=Eu,$ 

where

$$F = \hbar^2/2I_r, \qquad p = -i(\partial/\partial\phi).$$

Here  $V_2 = Fs$ , where s is a parameter in the standard form of the Mathieu equation. Using the CDC 1604A computer a table of Mathieu eigenvalues has been calculated for functions having a period  $\cos 2\phi$ , and s values of 1916 and 1880 were obtained for the  $d_0$  and  $d_1$  isotopes, respectively.

Barrier heights calculated for both isotopes using the two methods are listed in Table XI for comparison, the difference between the two approaches being well within the error bounds of the calculation. The results compare favorably with the only other work reported on a twofold nitro barrier, that of Dixon and Wilson<sup>9</sup> who found a barrier of  $9100 \pm 2700$  cal/mole for methyl nitrate. The large barrier in nitroethylene probably arises from the conjugation of the ethylenic pi electrons with those on the nitro group, leading to a considerable amount of double-bond character in the C-N bond.

In calculating internal-rotation barriers from microwave or far-infrared data one usually assumes a semirigid model<sup>7,8</sup> neglecting any interaction of the torsion with other normal modes. It is generally assumed that such interaction is negligible if no other low-lying fundamental exists in the same symmetry species as the torsion. As shown above in the case of nitroethylene the torsional mode shifts about 2 cm<sup>-1</sup> if all normal modes are frozen, most of this shift coming from interaction with the out-of-plane wagging vibration of the hydrogen atom in the 1 position. In calculating the barrier  $V_2$  the observed frequency should be corrected for this effect. This would result in a barrier value of approximately 6900 cal/mole for nitroethylene- $d_0$ , an increase of almost 300 cal/mole over the values given in Table XI. In view of the incomplete knowledge of the force field a more precise correction was not carried out.

It is interesting to note in this connection that for the case of trifluoracetaldehyde the torsion was found in the far-infrared spectrum at 60 cm<sup>-1</sup> by Berney<sup>10</sup> while the value calculated from the microwave data is 75 cm<sup>-1,11</sup> The microwave value is obtained from an analysis of internal-rotation splittings using the semirigid model and the considerable discrepancy may be caused by the interaction of the torsion with the out-ofplane wagging of the CF<sub>3</sub> group.

## ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the Swiss National Foundation for the work and one of us (KRL) is grateful for an MIT-ETH Exchange Fellowship. We appreciate the assistance of Mr. H. Abplanalp and Mr. H. Hess in the technical phases of the work.

<sup>&</sup>lt;sup>8</sup> D. R. Herschbach, J. Chem. Phys. 31, 91 (1959).

<sup>&</sup>lt;sup>9</sup> W. B. Dixon and E. B. Wilson, Jr., J. Chem. Phys. 35, 191 (1961). <sup>10</sup> C. V. Berney (to be published).

<sup>&</sup>lt;sup>11</sup> R. C. Woods III, Proc. Intern. Symp. Mol. Struct. Spectry. Ohio State University 1964, Paper J-9 (1964); and private communication.